Abstract

We developed a compact polarization-mode converter for microscopy to control three-dimensional polarization at the focus. The converter consisted of two homogeneously aligned liquid-crystal spatial light modulators with eight independently controllable electrodes (segments), and a quarter-waveplate. The converter converted a linearly polarized beam to three polarization modes: two orthogonal linear polarizations and a pseudo-radial polarization. We applied the converter to second-harmonic-generation microscopy and demonstrated the detection of three-dimensional molecular orientation.

© 2007 Optical Society of America

Full Article  |  PDF Article

Errata

Keisuke Yoshiki, Ryosuke Kanamaru, Mamoru Hashimoto, Nobuyuki Hashimoto, and Tsutomu Araki, "Second-harmonic-generation microscope using eight-segment polarization-mode converter to observe three-dimensional molecular orientation: publisher's note," Opt. Lett. 32, 2465-2465 (2007)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-32-16-2465

References

  • View by:
  • |
  • |
  • |

  1. C. Sheppard and Z. Hegedus, J. Opt. Soc. Am. A 5, 643 (1988).
    [CrossRef]
  2. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
    [CrossRef] [PubMed]
  3. M. Hashimoto, K. Yamada, and T. Araki, Opt. Rev. 12, 37 (2005).
    [CrossRef]
  4. A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
    [CrossRef]
  5. S. C. Tidwell, D. H. Ford, and W. D. Kimura, Appl. Opt. 29, 2234 (1990).
    [CrossRef] [PubMed]
  6. R. Yamaguchi, T. Nose, and S. Sato, Jpn. J. Appl. Phys. Part 1 28, 1730 (1989).
    [CrossRef]
  7. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef] [PubMed]
  8. M. A. A. Neil, F. Massoumian, R. Juskaitis, and T. Wilson, Opt. Lett. 27, 1929 (2002).
    [CrossRef]
  9. K. Yoshiki, M. Hashimoto, and T. Araki, Jpn. J. Appl. Phys. Part 1 44, 1066 (2005).
    [CrossRef]
  10. M. R. Beversluis, L. Novotny, and S. J. Stranick, Opt. Express 14, 2650 (2006).
    [CrossRef] [PubMed]
  11. D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingam, S. Stankovic, and T. Tschudi, Opt. Lett. 27, 1351 (2002).
    [CrossRef]
  12. I. Freund, M. Deutsch, and A. Sprecher, Biophys. J. 50, 693 (1986).
    [CrossRef] [PubMed]

2006 (1)

2005 (2)

K. Yoshiki, M. Hashimoto, and T. Araki, Jpn. J. Appl. Phys. Part 1 44, 1066 (2005).
[CrossRef]

M. Hashimoto, K. Yamada, and T. Araki, Opt. Rev. 12, 37 (2005).
[CrossRef]

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

2002 (2)

2001 (1)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

1999 (1)

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
[CrossRef]

1990 (1)

1989 (1)

R. Yamaguchi, T. Nose, and S. Sato, Jpn. J. Appl. Phys. Part 1 28, 1730 (1989).
[CrossRef]

1988 (1)

1986 (1)

I. Freund, M. Deutsch, and A. Sprecher, Biophys. J. 50, 693 (1986).
[CrossRef] [PubMed]

Araki, T.

M. Hashimoto, K. Yamada, and T. Araki, Opt. Rev. 12, 37 (2005).
[CrossRef]

K. Yoshiki, M. Hashimoto, and T. Araki, Jpn. J. Appl. Phys. Part 1 44, 1066 (2005).
[CrossRef]

Beversluis, M. R.

M. R. Beversluis, L. Novotny, and S. J. Stranick, Opt. Express 14, 2650 (2006).
[CrossRef] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Deutsch, M.

I. Freund, M. Deutsch, and A. Sprecher, Biophys. J. 50, 693 (1986).
[CrossRef] [PubMed]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Ford, D. H.

Freund, I.

I. Freund, M. Deutsch, and A. Sprecher, Biophys. J. 50, 693 (1986).
[CrossRef] [PubMed]

Gan, X.

Ganic, D.

Gu, M.

Hain, M.

Hashimoto, M.

K. Yoshiki, M. Hashimoto, and T. Araki, Jpn. J. Appl. Phys. Part 1 44, 1066 (2005).
[CrossRef]

M. Hashimoto, K. Yamada, and T. Araki, Opt. Rev. 12, 37 (2005).
[CrossRef]

Hegedus, Z.

Juskaitis, R.

Kimura, W. D.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Massoumian, F.

Neil, M. A. A.

Nesterov, A. V.

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
[CrossRef]

Niziev, V. G.

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
[CrossRef]

Nose, T.

R. Yamaguchi, T. Nose, and S. Sato, Jpn. J. Appl. Phys. Part 1 28, 1730 (1989).
[CrossRef]

Novotny, L.

M. R. Beversluis, L. Novotny, and S. J. Stranick, Opt. Express 14, 2650 (2006).
[CrossRef] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Sato, S.

R. Yamaguchi, T. Nose, and S. Sato, Jpn. J. Appl. Phys. Part 1 28, 1730 (1989).
[CrossRef]

Sheppard, C.

Somalingam, S.

Sprecher, A.

I. Freund, M. Deutsch, and A. Sprecher, Biophys. J. 50, 693 (1986).
[CrossRef] [PubMed]

Stankovic, S.

Stranick, S. J.

Tidwell, S. C.

Tschudi, T.

Wilson, T.

Yakunin, V. P.

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
[CrossRef]

Yamada, K.

M. Hashimoto, K. Yamada, and T. Araki, Opt. Rev. 12, 37 (2005).
[CrossRef]

Yamaguchi, R.

R. Yamaguchi, T. Nose, and S. Sato, Jpn. J. Appl. Phys. Part 1 28, 1730 (1989).
[CrossRef]

Yoshiki, K.

K. Yoshiki, M. Hashimoto, and T. Araki, Jpn. J. Appl. Phys. Part 1 44, 1066 (2005).
[CrossRef]

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biophys. J. (1)

I. Freund, M. Deutsch, and A. Sprecher, Biophys. J. 50, 693 (1986).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. D (1)

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
[CrossRef]

Jpn. J. Appl. Phys. Part 1 (2)

R. Yamaguchi, T. Nose, and S. Sato, Jpn. J. Appl. Phys. Part 1 28, 1730 (1989).
[CrossRef]

K. Yoshiki, M. Hashimoto, and T. Araki, Jpn. J. Appl. Phys. Part 1 44, 1066 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opt. Rev. (1)

M. Hashimoto, K. Yamada, and T. Araki, Opt. Rev. 12, 37 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Applied voltage dependency of polarization angle and extinction ratio, and photograph of homogeneously aligned liquid-crystal spatial light modulator with eight-segment electrodes whose contours are illustrated on the photograph.

Fig. 2
Fig. 2

(a) Schematic of second-harmonic-generation microscope with a polarization mode converter, and (b) intensity distributions of pseudo-radial polarization observed at pupil of objective through an analyzer. The arrows in the figures indicate the direction of the analyzer.

Fig. 3
Fig. 3

Second-harmonic-generation images of human Achilles’ tendon excited by (a),(d)↔, horizontal polarized beam; (b),(e) ↕, vertical polarized beam; and (c),(f) ☉, radially polarized beam. The collagen fiber was (a)–(c) sample A, horizontally oriented and (d)–(f) sample B, oriented perpendicular to the plane of the drawing. These images are 30 μ m square. Scale bar: 5 μ m .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E out = ( E x E y ) = R π 4 QR π 4 M ( ξ ) E in = exp ( i ξ 2 ) ( cos ( ξ 2 + π 4 ) sin ( ξ 2 + π 4 ) ) ,
R ± π 4 = 1 2 ( 1 1 ± 1 1 )
Q = ( 1 0 0 exp ( i π 2 ) ) ,
E in = 1 2 ( 1 1 ) ,
M ( ξ ) = ( exp ( i ξ ) 0 0 1 ) .

Metrics