Abstract

Multiangle, fiber-based, spectral-domain Doppler optical coherence tomography with a phase-resolved algorithm is presented to measure three components of an arbitrary velocity vector. A beam divider that divides a probe beam to have five independent viewpoints and path length delays was designed. The divider was inserted into the sampling arm of a Doppler optical coherence tomography system between the collimator and the first galvo mirror of a two-axis galvo scanner. The divider produced five independent Δk’s (the average difference between the wave vectors of incoming and outgoing beams) after passing through the focusing lens while keeping two-axis scanning capability. After calibration, an unknown velocity vector field inside a microtube was quantified by solving a three-dimensional minimization problem.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, Opt. Lett. 22, 64 (1997).
    [CrossRef] [PubMed]
  2. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, Opt. Lett. 22, 1439 (1997).
    [CrossRef]
  3. Y.-C. Ahn, W. Jung, and Z. Chen, Appl. Phys. Lett. 89, 064109 (2006).
    [CrossRef]
  4. Y.-C. Ahn, W. Jung, J. Zhang, and Z. Chen, Opt. Express 13, 8164 (2005).
    [CrossRef] [PubMed]
  5. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, Opt. Lett. 25, 1358 (2000).
    [CrossRef]
  6. H. Ren, K. M. Brecke, A. Ding, Y. Zhau, J. S. Nelson, and Z. Chen, Opt. Lett. 27, 409 (2002).
    [CrossRef]
  7. D. P. Davé and T. E. Milner, Opt. Lett. 25, 1523 (2000).
    [CrossRef]
  8. L. Wu, Opt. Lasers Eng. 42, 303 (2004).
    [CrossRef]
  9. C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, Opt. Lett. 32, 506 (2007).
    [CrossRef] [PubMed]
  10. H. Yokoyama, M. Akiba, K. P. Chan, and N. Tanno, in Conference on Laser and Electro-Optics Technical Digest, CLEO/Pacific Rim 2001, 4th Pacific Rim Conference on Laser and Electro-Optics (2001), paper TuD1-5.
    [PubMed]
  11. A. Røyset, T. Støren, F. Stabo-Eeg, and T. Lindmo, Proc. SPIE 6079, 607925 (2006).
    [CrossRef]
  12. C. D. Meinhart, S. T. Wereley, and J. G. Santiago, Exp. Fluids 27, 414 (1999).
    [CrossRef]
  13. J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, Exp. Fluids 25, 316 (1998).
    [CrossRef]
  14. F. Pereira and M. Gharib, Meas. Sci. Technol. 13, 683 (2002).
    [CrossRef]

2007 (1)

2006 (2)

Y.-C. Ahn, W. Jung, and Z. Chen, Appl. Phys. Lett. 89, 064109 (2006).
[CrossRef]

A. Røyset, T. Støren, F. Stabo-Eeg, and T. Lindmo, Proc. SPIE 6079, 607925 (2006).
[CrossRef]

2005 (1)

2004 (1)

L. Wu, Opt. Lasers Eng. 42, 303 (2004).
[CrossRef]

2002 (2)

2000 (2)

1999 (1)

C. D. Meinhart, S. T. Wereley, and J. G. Santiago, Exp. Fluids 27, 414 (1999).
[CrossRef]

1998 (1)

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, Exp. Fluids 25, 316 (1998).
[CrossRef]

1997 (2)

Adrian, R. J.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, Exp. Fluids 25, 316 (1998).
[CrossRef]

Ahn, Y.-C.

Y.-C. Ahn, W. Jung, and Z. Chen, Appl. Phys. Lett. 89, 064109 (2006).
[CrossRef]

Y.-C. Ahn, W. Jung, J. Zhang, and Z. Chen, Opt. Express 13, 8164 (2005).
[CrossRef] [PubMed]

Akiba, M.

H. Yokoyama, M. Akiba, K. P. Chan, and N. Tanno, in Conference on Laser and Electro-Optics Technical Digest, CLEO/Pacific Rim 2001, 4th Pacific Rim Conference on Laser and Electro-Optics (2001), paper TuD1-5.
[PubMed]

Barton, J. K.

Beebe, D. J.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, Exp. Fluids 25, 316 (1998).
[CrossRef]

Brecke, K. M.

Chan, K. P.

H. Yokoyama, M. Akiba, K. P. Chan, and N. Tanno, in Conference on Laser and Electro-Optics Technical Digest, CLEO/Pacific Rim 2001, 4th Pacific Rim Conference on Laser and Electro-Optics (2001), paper TuD1-5.
[PubMed]

Chen, Z.

Dave, D.

Davé, D. P.

de Boer, J. F.

Ding, A.

Gharib, M.

F. Pereira and M. Gharib, Meas. Sci. Technol. 13, 683 (2002).
[CrossRef]

Huang, D.

Izatt, J. A.

Jung, W.

Y.-C. Ahn, W. Jung, and Z. Chen, Appl. Phys. Lett. 89, 064109 (2006).
[CrossRef]

Y.-C. Ahn, W. Jung, J. Zhang, and Z. Chen, Opt. Express 13, 8164 (2005).
[CrossRef] [PubMed]

Kulkarni, M. D.

Lindmo, T.

A. Røyset, T. Støren, F. Stabo-Eeg, and T. Lindmo, Proc. SPIE 6079, 607925 (2006).
[CrossRef]

Meinhart, C. D.

C. D. Meinhart, S. T. Wereley, and J. G. Santiago, Exp. Fluids 27, 414 (1999).
[CrossRef]

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, Exp. Fluids 25, 316 (1998).
[CrossRef]

Milner, T. E.

Nelson, J. S.

Pedersen, C. J.

Pereira, F.

F. Pereira and M. Gharib, Meas. Sci. Technol. 13, 683 (2002).
[CrossRef]

Ren, H.

Rollins, A. M.

Røyset, A.

A. Røyset, T. Støren, F. Stabo-Eeg, and T. Lindmo, Proc. SPIE 6079, 607925 (2006).
[CrossRef]

Santiago, J. G.

C. D. Meinhart, S. T. Wereley, and J. G. Santiago, Exp. Fluids 27, 414 (1999).
[CrossRef]

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, Exp. Fluids 25, 316 (1998).
[CrossRef]

Saxer, C.

Shen, Q.

Shure, M. A.

Stabo-Eeg, F.

A. Røyset, T. Støren, F. Stabo-Eeg, and T. Lindmo, Proc. SPIE 6079, 607925 (2006).
[CrossRef]

Støren, T.

A. Røyset, T. Støren, F. Stabo-Eeg, and T. Lindmo, Proc. SPIE 6079, 607925 (2006).
[CrossRef]

Tanno, N.

H. Yokoyama, M. Akiba, K. P. Chan, and N. Tanno, in Conference on Laser and Electro-Optics Technical Digest, CLEO/Pacific Rim 2001, 4th Pacific Rim Conference on Laser and Electro-Optics (2001), paper TuD1-5.
[PubMed]

Welch, A. J.

Wereley, S. T.

C. D. Meinhart, S. T. Wereley, and J. G. Santiago, Exp. Fluids 27, 414 (1999).
[CrossRef]

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, Exp. Fluids 25, 316 (1998).
[CrossRef]

Wu, L.

L. Wu, Opt. Lasers Eng. 42, 303 (2004).
[CrossRef]

Xiang, S.

Yazdanfar, S.

Yokoyama, H.

H. Yokoyama, M. Akiba, K. P. Chan, and N. Tanno, in Conference on Laser and Electro-Optics Technical Digest, CLEO/Pacific Rim 2001, 4th Pacific Rim Conference on Laser and Electro-Optics (2001), paper TuD1-5.
[PubMed]

Zhang, J.

Zhao, Y.

Zhau, Y.

Appl. Phys. Lett. (1)

Y.-C. Ahn, W. Jung, and Z. Chen, Appl. Phys. Lett. 89, 064109 (2006).
[CrossRef]

Exp. Fluids (2)

C. D. Meinhart, S. T. Wereley, and J. G. Santiago, Exp. Fluids 27, 414 (1999).
[CrossRef]

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, Exp. Fluids 25, 316 (1998).
[CrossRef]

Meas. Sci. Technol. (1)

F. Pereira and M. Gharib, Meas. Sci. Technol. 13, 683 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (1)

L. Wu, Opt. Lasers Eng. 42, 303 (2004).
[CrossRef]

Opt. Lett. (6)

Proc. SPIE (1)

A. Røyset, T. Støren, F. Stabo-Eeg, and T. Lindmo, Proc. SPIE 6079, 607925 (2006).
[CrossRef]

Other (1)

H. Yokoyama, M. Akiba, K. P. Chan, and N. Tanno, in Conference on Laser and Electro-Optics Technical Digest, CLEO/Pacific Rim 2001, 4th Pacific Rim Conference on Laser and Electro-Optics (2001), paper TuD1-5.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The three parts (A, B and C) of the developed beam divider make six different beam paths: AA, BB, CC, AB, BC, and AC. Each path generates one Δ k and experiences different path length delays (shown in parentheses) because the three parts have different thicknesses. Since Δ k AC and Δ k BB have a same path length delay of 2 δ , there are five independent Δ k ’s with five different path length delays. Panel (a) shows how Δ k AB is produced. Panel (b) depicts Δ k ’s and an arbitrary velocity vector V when one sees them along the z axis. BD, beam divider; FL, focusing lens; FP, focal plane.

Fig. 2
Fig. 2

Schematic of fiber-based, spectral-domain DOCT: a 130 nm wide spectrum was sampled by a 1 × 1024 InGaAs detector array at 7.7 kHz . Imaging depth and depth resolution were 3.4 mm and 8 μ m in air, respectively. A two-axis scanner with two galvo mirrors was used. A microtube with a 300 μ m inner diameter was rotated by θ in the x y plane from the x axis and ϕ from the z axis. BD, beam divider; CM, collimator; DAQ, data acquisition system; DG, diffraction grating; FC, flow channel; FL, focusing lens; GM, galvo mirror; LCL, low-coherence light; LSC, line scan camera; RL, relay lens.

Fig. 3
Fig. 3

Calibration results for (a) Δ f 1 , (b) Δ f 2 , (c) Δ f 4 , (d) Δ f 5 .

Fig. 4
Fig. 4

Velocity vector field measured by the spectral-domain DOCT along the diameter of the microtube. Velocity vectors (b) were identified from the five Doppler images (a) of a cross section.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ f i = Δ ϕ i 2 π T = V Δ k i 2 π ( i = 1 , 2 , 3 , ) ,
Δ f i = V [ A i sin ϕ cos ( θ B i ) C i cos ϕ ] ( i = 1 5 ) ,
A 1 = 2 A 2 = 2 A 3 = 2 A 4 = A 5 = 2 k sin α π ,
B i = π ( i 1 ) 3 ,
C 1 = C 2 = C 3 2 = C 4 = C 5 = 2 k cos α π .
Δ f i ˜ V Δ k ̃ i 2 π ( i = 1 , 2 , 4 , 5 ) ,

Metrics