Abstract

The use of an optically thin indium–tin–oxide (ITO) electrode is presented for an optoelectric biosensor simultaneously recording optical images and microimpedance to examine time-dependent cellular growth. The transmittance of a 100nm thick ITO electrode layer is approximately the same as the transmittance of a clean glass substrate, whereas the industry-standard Au(47.5nm)Ti(2.5nm) electrode layer drops the transmittance to less than 10% of that of the glass substrate. The simultaneous optoelectric measurements permit determining the correlation of the cell-covered area increase with the microimpedance increase, and the example results obtained for live porcine pulmonary artery endothelial cells delineate the quantitative and comprehensive nature of cellular attachment and spreading to the substrate, which has not been clearly perceived before.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Katayama, Thin Solid Films 341, 140 (1999).
    [CrossRef]
  2. I. Giaever and C. R. Keese, Proc. Natl. Acad. Sci. U.S.A. 81, 3761 (1984).
    [CrossRef] [PubMed]
  3. W. Tschugguel, Z. Zhegu, L. Gajdzik, M. Maier, B. R. Binder, and J. Graf, Pfluegers Arch. 430, 145 (1995).
    [CrossRef]
  4. C. Xiao, B. Lachance, G. Sunahara, and J. H. T. Luong, Anal. Chem. 74, 5748 (2002).
    [CrossRef] [PubMed]
  5. S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. K. Barua, J. Appl. Phys. 54, 3497 (1983).
    [CrossRef]
  6. H. Hillebrandt, A. Abdelghani, C. Abdelghani-Jaquin, M. Aepfelbacher, and E. Sackmann, Appl. Phys. A 73, 539 (2001).
    [CrossRef]
  7. C. K. Choi, A. E. English, S. Jun, K. D. Kihm, and P. I. Rack, Biosens. Bioelectron. 22, 2585 (2007).
    [CrossRef]

2007

C. K. Choi, A. E. English, S. Jun, K. D. Kihm, and P. I. Rack, Biosens. Bioelectron. 22, 2585 (2007).
[CrossRef]

2002

C. Xiao, B. Lachance, G. Sunahara, and J. H. T. Luong, Anal. Chem. 74, 5748 (2002).
[CrossRef] [PubMed]

2001

H. Hillebrandt, A. Abdelghani, C. Abdelghani-Jaquin, M. Aepfelbacher, and E. Sackmann, Appl. Phys. A 73, 539 (2001).
[CrossRef]

1999

M. Katayama, Thin Solid Films 341, 140 (1999).
[CrossRef]

1995

W. Tschugguel, Z. Zhegu, L. Gajdzik, M. Maier, B. R. Binder, and J. Graf, Pfluegers Arch. 430, 145 (1995).
[CrossRef]

1984

I. Giaever and C. R. Keese, Proc. Natl. Acad. Sci. U.S.A. 81, 3761 (1984).
[CrossRef] [PubMed]

1983

S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. K. Barua, J. Appl. Phys. 54, 3497 (1983).
[CrossRef]

Abdelghani, A.

H. Hillebrandt, A. Abdelghani, C. Abdelghani-Jaquin, M. Aepfelbacher, and E. Sackmann, Appl. Phys. A 73, 539 (2001).
[CrossRef]

Abdelghani-Jaquin, C.

H. Hillebrandt, A. Abdelghani, C. Abdelghani-Jaquin, M. Aepfelbacher, and E. Sackmann, Appl. Phys. A 73, 539 (2001).
[CrossRef]

Aepfelbacher, M.

H. Hillebrandt, A. Abdelghani, C. Abdelghani-Jaquin, M. Aepfelbacher, and E. Sackmann, Appl. Phys. A 73, 539 (2001).
[CrossRef]

Banerjee, R.

S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. K. Barua, J. Appl. Phys. 54, 3497 (1983).
[CrossRef]

Barua, A. K.

S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. K. Barua, J. Appl. Phys. 54, 3497 (1983).
[CrossRef]

Basu, N.

S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. K. Barua, J. Appl. Phys. 54, 3497 (1983).
[CrossRef]

Batabyal, A. K.

S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. K. Barua, J. Appl. Phys. 54, 3497 (1983).
[CrossRef]

Binder, B. R.

W. Tschugguel, Z. Zhegu, L. Gajdzik, M. Maier, B. R. Binder, and J. Graf, Pfluegers Arch. 430, 145 (1995).
[CrossRef]

Choi, C. K.

C. K. Choi, A. E. English, S. Jun, K. D. Kihm, and P. I. Rack, Biosens. Bioelectron. 22, 2585 (2007).
[CrossRef]

English, A. E.

C. K. Choi, A. E. English, S. Jun, K. D. Kihm, and P. I. Rack, Biosens. Bioelectron. 22, 2585 (2007).
[CrossRef]

Gajdzik, L.

W. Tschugguel, Z. Zhegu, L. Gajdzik, M. Maier, B. R. Binder, and J. Graf, Pfluegers Arch. 430, 145 (1995).
[CrossRef]

Giaever, I.

I. Giaever and C. R. Keese, Proc. Natl. Acad. Sci. U.S.A. 81, 3761 (1984).
[CrossRef] [PubMed]

Graf, J.

W. Tschugguel, Z. Zhegu, L. Gajdzik, M. Maier, B. R. Binder, and J. Graf, Pfluegers Arch. 430, 145 (1995).
[CrossRef]

Hillebrandt, H.

H. Hillebrandt, A. Abdelghani, C. Abdelghani-Jaquin, M. Aepfelbacher, and E. Sackmann, Appl. Phys. A 73, 539 (2001).
[CrossRef]

Jun, S.

C. K. Choi, A. E. English, S. Jun, K. D. Kihm, and P. I. Rack, Biosens. Bioelectron. 22, 2585 (2007).
[CrossRef]

Katayama, M.

M. Katayama, Thin Solid Films 341, 140 (1999).
[CrossRef]

Keese, C. R.

I. Giaever and C. R. Keese, Proc. Natl. Acad. Sci. U.S.A. 81, 3761 (1984).
[CrossRef] [PubMed]

Kihm, K. D.

C. K. Choi, A. E. English, S. Jun, K. D. Kihm, and P. I. Rack, Biosens. Bioelectron. 22, 2585 (2007).
[CrossRef]

Lachance, B.

C. Xiao, B. Lachance, G. Sunahara, and J. H. T. Luong, Anal. Chem. 74, 5748 (2002).
[CrossRef] [PubMed]

Luong, J. H. T.

C. Xiao, B. Lachance, G. Sunahara, and J. H. T. Luong, Anal. Chem. 74, 5748 (2002).
[CrossRef] [PubMed]

Maier, M.

W. Tschugguel, Z. Zhegu, L. Gajdzik, M. Maier, B. R. Binder, and J. Graf, Pfluegers Arch. 430, 145 (1995).
[CrossRef]

Rack, P. I.

C. K. Choi, A. E. English, S. Jun, K. D. Kihm, and P. I. Rack, Biosens. Bioelectron. 22, 2585 (2007).
[CrossRef]

Ray, S.

S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. K. Barua, J. Appl. Phys. 54, 3497 (1983).
[CrossRef]

Sackmann, E.

H. Hillebrandt, A. Abdelghani, C. Abdelghani-Jaquin, M. Aepfelbacher, and E. Sackmann, Appl. Phys. A 73, 539 (2001).
[CrossRef]

Sunahara, G.

C. Xiao, B. Lachance, G. Sunahara, and J. H. T. Luong, Anal. Chem. 74, 5748 (2002).
[CrossRef] [PubMed]

Tschugguel, W.

W. Tschugguel, Z. Zhegu, L. Gajdzik, M. Maier, B. R. Binder, and J. Graf, Pfluegers Arch. 430, 145 (1995).
[CrossRef]

Xiao, C.

C. Xiao, B. Lachance, G. Sunahara, and J. H. T. Luong, Anal. Chem. 74, 5748 (2002).
[CrossRef] [PubMed]

Zhegu, Z.

W. Tschugguel, Z. Zhegu, L. Gajdzik, M. Maier, B. R. Binder, and J. Graf, Pfluegers Arch. 430, 145 (1995).
[CrossRef]

Anal. Chem.

C. Xiao, B. Lachance, G. Sunahara, and J. H. T. Luong, Anal. Chem. 74, 5748 (2002).
[CrossRef] [PubMed]

Appl. Phys. A

H. Hillebrandt, A. Abdelghani, C. Abdelghani-Jaquin, M. Aepfelbacher, and E. Sackmann, Appl. Phys. A 73, 539 (2001).
[CrossRef]

Biosens. Bioelectron.

C. K. Choi, A. E. English, S. Jun, K. D. Kihm, and P. I. Rack, Biosens. Bioelectron. 22, 2585 (2007).
[CrossRef]

J. Appl. Phys.

S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. K. Barua, J. Appl. Phys. 54, 3497 (1983).
[CrossRef]

Pfluegers Arch.

W. Tschugguel, Z. Zhegu, L. Gajdzik, M. Maier, B. R. Binder, and J. Graf, Pfluegers Arch. 430, 145 (1995).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

I. Giaever and C. R. Keese, Proc. Natl. Acad. Sci. U.S.A. 81, 3761 (1984).
[CrossRef] [PubMed]

Thin Solid Films

M. Katayama, Thin Solid Films 341, 140 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Normal transmittance, calculated for bare slideglass ( I ) and Au ( 47.5 nm ) Ti ( 2.5 nm ) coated slideglass (II), and measured for bare slideglass (III), 100 nm ITO-coated slideglass (IV), 500 nm ITO-coated slideglass ( V ) , and Au Ti -coated slideglass (VI). The PCM images of PPAECs on a bare glass are comparable with the corresponding images on a 100 nm ITO-coated glass, while no discernable cellular image is available for Au Ti -coated glass under the same illumination intensity.

Fig. 2
Fig. 2

Schematic of the optoelectric cellular sensor using an ITO Si 3 N 4 electrode. The ITO electrode consists of a 300 nm thick Si 3 N 4 insulating layer on a 100 nm thick ITO electrode layer sputtered on a slideglass. An Olympus IX-71 inverted platform accommodates an incubator (WeatherStation, Olympus) for dynamic imaging of live cells using the 14 bit EMCCD. The impedance is dependent on membrane capacitance, cell–cell adhesion, and cell–substrate adhesion.

Fig. 3
Fig. 3

Normalized resistance, ( R c R n ) R n , with R c being the cell-covered electrode resistance and R n being the naked electrode resistance, as functions of the normalized cell-covered area ( A c A e ) , where A e is the area of the total examined opening electrode, 0.05 mm 2 , and A c is the cell-covered area. The total 12 data points at t = 1 , 3, 6, 12, 21, 87, 126, 168, 240, 294, 447, and 759 min and three representative differential interference contrast microscopy (DICM) images at t = 6 , 126, and 447 min , including the schematic of the corresponding cellular attachment, are shown. The DICM images clearly show correlations between the level of cellular confluence and the measured resistance of the ITO electrode.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

M m ( z ) = [ M 11 M 12 M 21 M 22 ] m = [ cos ( 2 π λ p ̃ m d m ) , i p ̃ m sin ( 2 π λ p ̃ m d m ) i p ̃ m sin ( 2 π λ p ̃ m d m ) , cos ( 2 π λ p ̃ m d m ) ] ,
M = m = 1 N M m ( z ) = [ M 11 M 12 M 21 M 22 ] .
T = p ̃ N + 1 p ̃ 0 t 2 ,
t = 2 p ̃ 0 ( M 11 + M 12 p ̃ N + 1 ) p ̃ 0 + ( M 21 + M 22 p ̃ N + 1 ) .

Metrics