Abstract

We show that the radiation forces (RFs) on a Rayleigh dielectric sphere induced by a partially coherent light beam are greatly affected by the spatial coherence. We find that the magnitude of the RFs greatly decreases as the spatial coherence decreases and derive an inequality for the required correlation width σ0 (i.e., the spatial coherence of the beam) to stably trap the particles.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, IEEE J. Sel. Top. Quantum Electron. 6, 841 (2000).
    [CrossRef]
  2. K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
    [CrossRef]
  3. A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
    [CrossRef]
  4. A. Ashkin, J. M. Dziezic, and T. Yamane, Acta Crystallogr. 330, 769 (1987).
  5. A. Ashkin and J. M. Dziezic, Science 235, 1517 (1987).
    [CrossRef] [PubMed]
  6. A. Ashkin, Phys. Rev. Lett. 40, 729 (1978).
    [CrossRef]
  7. S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, Phys. Rev. Lett. 57, 314 (1986).
    [CrossRef] [PubMed]
  8. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
    [CrossRef] [PubMed]
  9. C.-H. Chen, P.-T. Tai, and W.-F. Hsieh, Appl. Phys. Lett. 43, 6001 (2004).
    [CrossRef]
  10. V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGoin, E. M. Wright, and K. Dholakia, Appl. Phys. Lett. 85, 4001 (2004).
    [CrossRef]
  11. J. Y. Ye, G. Chang, T. B. Norris, C. Tse, M. J. Zohdy, K. W. Hollman, M. O'Donnell, and J. R. Baker, Jr., Opt. Lett. 29, 2136 (2004).
    [CrossRef] [PubMed]
  12. K. Okamoto and S. Kawata, Phys. Rev. Lett. 83, 4534 (1999).
    [CrossRef]
  13. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
  14. B. Lü, B. Zhang, and B. Cai, J. Mod. Opt. 42, 523 (1995).
    [CrossRef]
  15. A. T. Friberg and J. Turnuen, J. Opt. Soc. Am. A 5, 713 (1988).
    [CrossRef]
  16. J. Pu, S. Nemoto, and H. Zhang, J. Mod. Opt. 46, 1611 (1999).
  17. Y. Harada and T. Asakura, Opt. Commun. 124, 529 (1996).
    [CrossRef]

2004

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

C.-H. Chen, P.-T. Tai, and W.-F. Hsieh, Appl. Phys. Lett. 43, 6001 (2004).
[CrossRef]

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGoin, E. M. Wright, and K. Dholakia, Appl. Phys. Lett. 85, 4001 (2004).
[CrossRef]

J. Y. Ye, G. Chang, T. B. Norris, C. Tse, M. J. Zohdy, K. W. Hollman, M. O'Donnell, and J. R. Baker, Jr., Opt. Lett. 29, 2136 (2004).
[CrossRef] [PubMed]

2000

A. Ashkin, IEEE J. Sel. Top. Quantum Electron. 6, 841 (2000).
[CrossRef]

1999

J. Pu, S. Nemoto, and H. Zhang, J. Mod. Opt. 46, 1611 (1999).

K. Okamoto and S. Kawata, Phys. Rev. Lett. 83, 4534 (1999).
[CrossRef]

1996

Y. Harada and T. Asakura, Opt. Commun. 124, 529 (1996).
[CrossRef]

1995

B. Lü, B. Zhang, and B. Cai, J. Mod. Opt. 42, 523 (1995).
[CrossRef]

1988

1987

A. Ashkin, J. M. Dziezic, and T. Yamane, Acta Crystallogr. 330, 769 (1987).

A. Ashkin and J. M. Dziezic, Science 235, 1517 (1987).
[CrossRef] [PubMed]

1986

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, Phys. Rev. Lett. 57, 314 (1986).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
[CrossRef] [PubMed]

1978

A. Ashkin, Phys. Rev. Lett. 40, 729 (1978).
[CrossRef]

1970

A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[CrossRef]

Asakura, T.

Y. Harada and T. Asakura, Opt. Commun. 124, 529 (1996).
[CrossRef]

Ashkin, A.

A. Ashkin, IEEE J. Sel. Top. Quantum Electron. 6, 841 (2000).
[CrossRef]

A. Ashkin, J. M. Dziezic, and T. Yamane, Acta Crystallogr. 330, 769 (1987).

A. Ashkin and J. M. Dziezic, Science 235, 1517 (1987).
[CrossRef] [PubMed]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, Phys. Rev. Lett. 57, 314 (1986).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
[CrossRef] [PubMed]

A. Ashkin, Phys. Rev. Lett. 40, 729 (1978).
[CrossRef]

A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[CrossRef]

Baker, J. R.

Bjorkholm, J. E.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
[CrossRef] [PubMed]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, Phys. Rev. Lett. 57, 314 (1986).
[CrossRef] [PubMed]

Block, S. M.

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

Cable, A.

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, Phys. Rev. Lett. 57, 314 (1986).
[CrossRef] [PubMed]

Cai, B.

B. Lü, B. Zhang, and B. Cai, J. Mod. Opt. 42, 523 (1995).
[CrossRef]

Chang, G.

Chen, C.-H.

C.-H. Chen, P.-T. Tai, and W.-F. Hsieh, Appl. Phys. Lett. 43, 6001 (2004).
[CrossRef]

Chu, S.

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, Phys. Rev. Lett. 57, 314 (1986).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
[CrossRef] [PubMed]

Dholakia, K.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGoin, E. M. Wright, and K. Dholakia, Appl. Phys. Lett. 85, 4001 (2004).
[CrossRef]

Dziedzic, J. M.

Dziezic, J. M.

A. Ashkin and J. M. Dziezic, Science 235, 1517 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziezic, and T. Yamane, Acta Crystallogr. 330, 769 (1987).

Friberg, A. T.

Garcés-Chávez, V.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGoin, E. M. Wright, and K. Dholakia, Appl. Phys. Lett. 85, 4001 (2004).
[CrossRef]

Harada, Y.

Y. Harada and T. Asakura, Opt. Commun. 124, 529 (1996).
[CrossRef]

Hollman, K. W.

Hsieh, W.-F.

C.-H. Chen, P.-T. Tai, and W.-F. Hsieh, Appl. Phys. Lett. 43, 6001 (2004).
[CrossRef]

Kawata, S.

K. Okamoto and S. Kawata, Phys. Rev. Lett. 83, 4534 (1999).
[CrossRef]

Lü, B.

B. Lü, B. Zhang, and B. Cai, J. Mod. Opt. 42, 523 (1995).
[CrossRef]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).

McGoin, D.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGoin, E. M. Wright, and K. Dholakia, Appl. Phys. Lett. 85, 4001 (2004).
[CrossRef]

Melville, H.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGoin, E. M. Wright, and K. Dholakia, Appl. Phys. Lett. 85, 4001 (2004).
[CrossRef]

Nemoto, S.

J. Pu, S. Nemoto, and H. Zhang, J. Mod. Opt. 46, 1611 (1999).

Neuman, K. C.

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

Norris, T. B.

O'Donnell, M.

Okamoto, K.

K. Okamoto and S. Kawata, Phys. Rev. Lett. 83, 4534 (1999).
[CrossRef]

Pu, J.

J. Pu, S. Nemoto, and H. Zhang, J. Mod. Opt. 46, 1611 (1999).

Roskey, D.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGoin, E. M. Wright, and K. Dholakia, Appl. Phys. Lett. 85, 4001 (2004).
[CrossRef]

Summers, M. D.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGoin, E. M. Wright, and K. Dholakia, Appl. Phys. Lett. 85, 4001 (2004).
[CrossRef]

Tai, P.-T.

C.-H. Chen, P.-T. Tai, and W.-F. Hsieh, Appl. Phys. Lett. 43, 6001 (2004).
[CrossRef]

Tse, C.

Turnuen, J.

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).

Wright, E. M.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGoin, E. M. Wright, and K. Dholakia, Appl. Phys. Lett. 85, 4001 (2004).
[CrossRef]

Yamane, T.

A. Ashkin, J. M. Dziezic, and T. Yamane, Acta Crystallogr. 330, 769 (1987).

Ye, J. Y.

Zhang, B.

B. Lü, B. Zhang, and B. Cai, J. Mod. Opt. 42, 523 (1995).
[CrossRef]

Zhang, H.

J. Pu, S. Nemoto, and H. Zhang, J. Mod. Opt. 46, 1611 (1999).

Zohdy, M. J.

Acta Crystallogr.

A. Ashkin, J. M. Dziezic, and T. Yamane, Acta Crystallogr. 330, 769 (1987).

Appl. Phys. Lett.

C.-H. Chen, P.-T. Tai, and W.-F. Hsieh, Appl. Phys. Lett. 43, 6001 (2004).
[CrossRef]

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGoin, E. M. Wright, and K. Dholakia, Appl. Phys. Lett. 85, 4001 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Ashkin, IEEE J. Sel. Top. Quantum Electron. 6, 841 (2000).
[CrossRef]

J. Mod. Opt.

B. Lü, B. Zhang, and B. Cai, J. Mod. Opt. 42, 523 (1995).
[CrossRef]

J. Pu, S. Nemoto, and H. Zhang, J. Mod. Opt. 46, 1611 (1999).

J. Opt. Soc. Am. A

Opt. Commun.

Y. Harada and T. Asakura, Opt. Commun. 124, 529 (1996).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[CrossRef]

A. Ashkin, Phys. Rev. Lett. 40, 729 (1978).
[CrossRef]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, Phys. Rev. Lett. 57, 314 (1986).
[CrossRef] [PubMed]

K. Okamoto and S. Kawata, Phys. Rev. Lett. 83, 4534 (1999).
[CrossRef]

Rev. Sci. Instrum.

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

Science

A. Ashkin and J. M. Dziezic, Science 235, 1517 (1987).
[CrossRef] [PubMed]

Other

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematics of a GSM beam focused onto a particle. F is the geometrical focus.

Fig. 2
Fig. 2

Effect of σ 0 on (a) F Grad , x , (b) F Grad , z , and (c) F Scat . (a)–(c) black solid curve, σ 0 w 0 = 5 ; red dashed curve, σ 0 w 0 = 1 ; blue dashed–dotted curve, σ 0 w 0 = 0.5 ; green short-dashed curve, σ 0 w 0 = 0.2 .

Fig. 3
Fig. 3

Changes of the RFs ( F Scat + F Grad , z ) on the z axis for σ 0 w 0 =(a) 5, (b) 1, (c) 0.5, and (d) 0.2.

Fig. 4
Fig. 4

Dependence of F Grad , x A , B max (solid curve), F Grad , z C , D max (dashed curve), and F Scat C , D (dotted–dashed curve) on σ 0 for various a; the horizontal dotted lines denote f B (a) and (b). Vertical dotted line P passes through the cross point 1 of F Grad , z C , D max = F Scat C , D ; (a)–(d). vertical dotted line Q passes through the cross point of F Grand , x A , B max = f B .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

W in ( x 1 , x 2 , z = 0 ) = I 0 e ( x 1 2 + x 2 2 ) w 0 2 e ( x 1 x 2 ) 2 ( 2 σ 0 2 ) .
F Scat = e z n m α I 0 ( c Θ 1 2 ) e 2 x 2 ( w 0 2 Θ ) .
F Grad , x = e x [ 8 π n m β I 0 x ( c w 0 2 Θ 3 2 ) ] e 2 x 2 ( w 0 2 Θ ) ,
F Grad , z = e z I 0 [ 2 π n m β ( c Θ 5 2 ) ] [ Θ 4 x 2 w 0 2 ] × [ Δ z f 2 + z ( 1 + w 0 2 σ 0 2 ) z 0 2 ] e 2 x 2 ( w 0 2 Θ ) .
σ 0 2 w 0 2 > f 2 [ 3 z 0 2 f ( 9 f 2 32 π 2 γ 0 2 ) 1 2 + 9 z 0 2 f 2 16 π 2 γ 0 2 τ ] ( 16 π 2 γ 0 2 τ 2 18 z 0 2 f 4 ) ,
2 z 0 ( 1 + z 0 2 f 2 ) < 4 2 π γ 0 3 < f .

Metrics