Abstract

Maximum trapping efficiency in optical tweezers occurs close to the coverslip because spherical aberration owing to a mismatch in the refractive indices of the specimen (water) and the immersion oil dramatically decreases the trap efficiency as the trap depth increases. Measuring the axial trap efficiency at various tube lengths by use of an oil-immersion objective has shown that such an aberration can be balanced by another source of spherical aberration, leading to a shift in the position of the maximum efficiency in the Z direction. For a 1.1μm polystyrene bead we could achieve the maximal efficiency at a depth of 70μm, whereas the trap was stable up to a depth of 100μm.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Bustamante, Z. Bryant, and S. B. Smith, Nature 421, 423 (2003).
    [CrossRef] [PubMed]
  2. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, Nature 365, 721 (1993).
    [CrossRef] [PubMed]
  3. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
    [CrossRef] [PubMed]
  4. C. J. R. Sheppard, M. Gu, K. Brain, and H. Zhou, Appl. Opt. 33, 616 (1994).
    [CrossRef] [PubMed]
  5. P. C. Ke and M. Gu, J. Mod. Opt. 45, 2159 (1998).
    [CrossRef]
  6. S. N. S. Reihani, H. R. Khalesifard, and R. Golestanian, Opt. Commun. 259, 204 (2006).
    [CrossRef]
  7. B. Lin, J. Yu, and S. A. Rice, Phys. Rev. E 62, 3909 (2000).
    [CrossRef]
  8. K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
    [CrossRef]
  9. The working distance for an objective lens is defined as the distance between the specimen and the front surface of the objective lens. Whereas a typical value of this parameter for a normal objective is ∼100 μm, for long-working-distance objective lenses it could be more than 200 μm.

2006

S. N. S. Reihani, H. R. Khalesifard, and R. Golestanian, Opt. Commun. 259, 204 (2006).
[CrossRef]

2004

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

2003

C. Bustamante, Z. Bryant, and S. B. Smith, Nature 421, 423 (2003).
[CrossRef] [PubMed]

2000

B. Lin, J. Yu, and S. A. Rice, Phys. Rev. E 62, 3909 (2000).
[CrossRef]

1998

P. C. Ke and M. Gu, J. Mod. Opt. 45, 2159 (1998).
[CrossRef]

1994

1993

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, Nature 365, 721 (1993).
[CrossRef] [PubMed]

1986

Ashkin, A.

Bjorkholm, J. E.

Block, S. M.

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, Nature 365, 721 (1993).
[CrossRef] [PubMed]

Brain, K.

Bryant, Z.

C. Bustamante, Z. Bryant, and S. B. Smith, Nature 421, 423 (2003).
[CrossRef] [PubMed]

Bustamante, C.

C. Bustamante, Z. Bryant, and S. B. Smith, Nature 421, 423 (2003).
[CrossRef] [PubMed]

Chu, S.

Dziedzic, J. M.

Golestanian, R.

S. N. S. Reihani, H. R. Khalesifard, and R. Golestanian, Opt. Commun. 259, 204 (2006).
[CrossRef]

Gu, M.

Ke, P. C.

P. C. Ke and M. Gu, J. Mod. Opt. 45, 2159 (1998).
[CrossRef]

Khalesifard, H. R.

S. N. S. Reihani, H. R. Khalesifard, and R. Golestanian, Opt. Commun. 259, 204 (2006).
[CrossRef]

Lin, B.

B. Lin, J. Yu, and S. A. Rice, Phys. Rev. E 62, 3909 (2000).
[CrossRef]

Neuman, K. C.

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

Reihani, S. N.

S. N. S. Reihani, H. R. Khalesifard, and R. Golestanian, Opt. Commun. 259, 204 (2006).
[CrossRef]

Rice, S. A.

B. Lin, J. Yu, and S. A. Rice, Phys. Rev. E 62, 3909 (2000).
[CrossRef]

Schmidt, C. F.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, Nature 365, 721 (1993).
[CrossRef] [PubMed]

Schnapp, B. J.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, Nature 365, 721 (1993).
[CrossRef] [PubMed]

Sheppard, C. J.

Smith, S. B.

C. Bustamante, Z. Bryant, and S. B. Smith, Nature 421, 423 (2003).
[CrossRef] [PubMed]

Svoboda, K.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, Nature 365, 721 (1993).
[CrossRef] [PubMed]

Yu, J.

B. Lin, J. Yu, and S. A. Rice, Phys. Rev. E 62, 3909 (2000).
[CrossRef]

Zhou, H.

Appl. Opt.

J. Mod. Opt.

P. C. Ke and M. Gu, J. Mod. Opt. 45, 2159 (1998).
[CrossRef]

Nature

C. Bustamante, Z. Bryant, and S. B. Smith, Nature 421, 423 (2003).
[CrossRef] [PubMed]

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, Nature 365, 721 (1993).
[CrossRef] [PubMed]

Opt. Commun.

S. N. S. Reihani, H. R. Khalesifard, and R. Golestanian, Opt. Commun. 259, 204 (2006).
[CrossRef]

Opt. Lett.

Phys. Rev. E

B. Lin, J. Yu, and S. A. Rice, Phys. Rev. E 62, 3909 (2000).
[CrossRef]

Rev. Sci. Instrum.

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

Other

The working distance for an objective lens is defined as the distance between the specimen and the front surface of the objective lens. Whereas a typical value of this parameter for a normal objective is ∼100 μm, for long-working-distance objective lenses it could be more than 200 μm.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the optical tweezer: L1, L2, L4, L5, Lt, lenses; BS, beam splitter; M1, M2, mirrors; HM1, HM2, half-mirrors; DM1, DM2, dichroic mirrors; CCD1, CCD2, charge-coupled devices; QP quadrant photodiode.

Fig. 2
Fig. 2

Schematics of (a) finite, (b) infinite, and (c) negative tube lengths.

Fig. 3
Fig. 3

Escape velocity versus trapping depth with tube length as a parameter for a finite-distance-corrected objective lens: (a) positive and infinite tube lengths (in centimeters), (b) typical negative tube length ( t = 25 cm ) . The laser power was 23.6 mW before the objective.

Fig. 4
Fig. 4

Escape velocity versus trapping depth with tube length (in centimeters) as a parameter for an infinite-distance-corrected objective lens. The laser power was 23.6 mW before the objective.

Tables (1)

Tables Icon

Table 1 Focal Lengths and Positions with Respect to the BFP of the Objective of the Lenses that Were Used to Produce the Tube Lengths

Metrics