Abstract

A multiband infrared fiber-optic radiometer was developed for online near room temperature and emissivity measurements. Real time measurements were carried out on gray and selective bodies at near room temperature. The mean accuracy obtained for the body temperature was roughly 1°C and for emissivity was roughly 0.03. The radiometer is capable of performing measurements without prior knowledge of the body emissivity. Incorporation of fiber optics allows one to perform measurements without a clear line of sight between the radiometer and the body. This radiometer will have important applications in biology, electronics, and other areas.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Tank and H. Dietl, Infrared Phys. 30, 331 (1990).
    [CrossRef]
  2. M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, and W. F. Kosonocky, Opt. Eng. 36, 3176 (1997).
    [CrossRef]
  3. S. Shalem, A. German, N. Barkay, F. Moser, and A. Katzir, Fiber Integr. Opt. 16, 27 (1997).
    [CrossRef]
  4. V. Scharf and A. Katzir, Appl. Phys. Lett. 77, 2955 (2000).
    [CrossRef]
  5. S. Sade and A. Katzir, J. Appl. Phys. 96, 3507 (2004).
    [CrossRef]
  6. I. Uman, S. Sade, V. Gopal, J. A. Harrington, and A. Katzir, Appl. Opt. 43, 2039 (2004).
    [CrossRef] [PubMed]
  7. A. Sala, Radiant Properties of Materials (PWN/Elsevier, 1986).
  8. K. Chrzanowski and M. Sulim, Appl. Opt. 37, 5051 (1998).
    [CrossRef]
  9. K. Levenberg, Q. Appl. Math. 2, 164 (1944).
  10. D. W. Marquardt, J. Soc. Ind. Appl. Math. 11, 431 (1963).
    [CrossRef]

2004

2000

V. Scharf and A. Katzir, Appl. Phys. Lett. 77, 2955 (2000).
[CrossRef]

1998

1997

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, and W. F. Kosonocky, Opt. Eng. 36, 3176 (1997).
[CrossRef]

S. Shalem, A. German, N. Barkay, F. Moser, and A. Katzir, Fiber Integr. Opt. 16, 27 (1997).
[CrossRef]

1990

V. Tank and H. Dietl, Infrared Phys. 30, 331 (1990).
[CrossRef]

1963

D. W. Marquardt, J. Soc. Ind. Appl. Math. 11, 431 (1963).
[CrossRef]

1944

K. Levenberg, Q. Appl. Math. 2, 164 (1944).

Barkay, N.

S. Shalem, A. German, N. Barkay, F. Moser, and A. Katzir, Fiber Integr. Opt. 16, 27 (1997).
[CrossRef]

Chrzanowski, K.

Dietl, H.

V. Tank and H. Dietl, Infrared Phys. 30, 331 (1990).
[CrossRef]

German, A.

S. Shalem, A. German, N. Barkay, F. Moser, and A. Katzir, Fiber Integr. Opt. 16, 27 (1997).
[CrossRef]

Gopal, V.

Harrington, J. A.

Hou, E. S. H.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, and W. F. Kosonocky, Opt. Eng. 36, 3176 (1997).
[CrossRef]

Kaplinsky, M. B.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, and W. F. Kosonocky, Opt. Eng. 36, 3176 (1997).
[CrossRef]

Katzir, A.

I. Uman, S. Sade, V. Gopal, J. A. Harrington, and A. Katzir, Appl. Opt. 43, 2039 (2004).
[CrossRef] [PubMed]

S. Sade and A. Katzir, J. Appl. Phys. 96, 3507 (2004).
[CrossRef]

V. Scharf and A. Katzir, Appl. Phys. Lett. 77, 2955 (2000).
[CrossRef]

S. Shalem, A. German, N. Barkay, F. Moser, and A. Katzir, Fiber Integr. Opt. 16, 27 (1997).
[CrossRef]

Kosonocky, W. F.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, and W. F. Kosonocky, Opt. Eng. 36, 3176 (1997).
[CrossRef]

Levenberg, K.

K. Levenberg, Q. Appl. Math. 2, 164 (1944).

Li, J.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, and W. F. Kosonocky, Opt. Eng. 36, 3176 (1997).
[CrossRef]

Manikopoulos, C. N.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, and W. F. Kosonocky, Opt. Eng. 36, 3176 (1997).
[CrossRef]

Marquardt, D. W.

D. W. Marquardt, J. Soc. Ind. Appl. Math. 11, 431 (1963).
[CrossRef]

McCaffrey, N. J.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, and W. F. Kosonocky, Opt. Eng. 36, 3176 (1997).
[CrossRef]

Moser, F.

S. Shalem, A. German, N. Barkay, F. Moser, and A. Katzir, Fiber Integr. Opt. 16, 27 (1997).
[CrossRef]

Patel, V.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, and W. F. Kosonocky, Opt. Eng. 36, 3176 (1997).
[CrossRef]

Ravindra, N. M.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, and W. F. Kosonocky, Opt. Eng. 36, 3176 (1997).
[CrossRef]

Sade, S.

Sala, A.

A. Sala, Radiant Properties of Materials (PWN/Elsevier, 1986).

Scharf, V.

V. Scharf and A. Katzir, Appl. Phys. Lett. 77, 2955 (2000).
[CrossRef]

Shalem, S.

S. Shalem, A. German, N. Barkay, F. Moser, and A. Katzir, Fiber Integr. Opt. 16, 27 (1997).
[CrossRef]

Sulim, M.

Tank, V.

V. Tank and H. Dietl, Infrared Phys. 30, 331 (1990).
[CrossRef]

Uman, I.

Appl. Opt.

Appl. Phys. Lett.

V. Scharf and A. Katzir, Appl. Phys. Lett. 77, 2955 (2000).
[CrossRef]

Fiber Integr. Opt.

S. Shalem, A. German, N. Barkay, F. Moser, and A. Katzir, Fiber Integr. Opt. 16, 27 (1997).
[CrossRef]

Infrared Phys.

V. Tank and H. Dietl, Infrared Phys. 30, 331 (1990).
[CrossRef]

J. Appl. Phys.

S. Sade and A. Katzir, J. Appl. Phys. 96, 3507 (2004).
[CrossRef]

J. Soc. Ind. Appl. Math.

D. W. Marquardt, J. Soc. Ind. Appl. Math. 11, 431 (1963).
[CrossRef]

Opt. Eng.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, and W. F. Kosonocky, Opt. Eng. 36, 3176 (1997).
[CrossRef]

Q. Appl. Math.

K. Levenberg, Q. Appl. Math. 2, 164 (1944).

Other

A. Sala, Radiant Properties of Materials (PWN/Elsevier, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Emissivities of the gray and selective bodies calculated from FTIR measurements. Emissivity of the selective body was approximated by a second-degree polynomial.

Fig. 3
Fig. 3

Real-time measurements of the gray body (each tenth measurement is shown). The time elapsed from the beginning of the measurements is shown on the x axis. The values of the measured parameters are shown on the y axis. The curves show the reference PT100 temperature measurements and emissivity obtained from FTIR measurement. The open circles show the calculated results.

Fig. 4
Fig. 4

Same as Fig. 3 but for the selective body (each tenth measurement is shown).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S i = A i [ λ 1 i λ 2 i f i ( λ ) ϵ ( λ ) W BB ( λ , T body ) d λ + λ 1 i λ 2 i f i ( λ ) [ 1 ϵ ( λ ) ] W BB ( λ , T room ) d λ ] + B i .
ϵ ( λ ) ϵ 0 + ϵ 1 λ + ϵ 2 λ 2 .

Metrics