Abstract

A novel method to stabilize a channeled spectropolarimeter is described. The fluctuating retardations of the high-order retarders used in the spectropolarimeter are calibrated in parallel to the measurement of the wavenumber-dependent state of polarization (SOP) of light. Both the calibration of the retarders and the measurement of the SOP can be made simultaneously using a single light to be measured, and hence the resultant wavenumber-dependent SOP is almost immune to fluctuation of the retardations. The effectiveness of this method is experimentally demonstrated with retardation fluctuations induced by a temperature change up to 40°C.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Oka and T. Kato, Opt. Lett. 24, 1475 (1999).
    [CrossRef]
  2. S. H. Jones, F. J. Iannarilli, and P. L. Kebabian, Opt. Express 12, 6559 (2004).
    [CrossRef] [PubMed]
  3. D. Sabatke, A. Locke, E. L. Dereniak, J. Garcia, T. Hamilton, and R. W. McMillan, Opt. Eng. 41, 1048 (2002).
    [CrossRef]
  4. E. Kim, D. Dave, and T. E. Milner, Opt. Commun. 249, 351 (2005).
    [CrossRef]

2005

E. Kim, D. Dave, and T. E. Milner, Opt. Commun. 249, 351 (2005).
[CrossRef]

2004

2002

D. Sabatke, A. Locke, E. L. Dereniak, J. Garcia, T. Hamilton, and R. W. McMillan, Opt. Eng. 41, 1048 (2002).
[CrossRef]

1999

Dave, D.

E. Kim, D. Dave, and T. E. Milner, Opt. Commun. 249, 351 (2005).
[CrossRef]

Dereniak, E. L.

D. Sabatke, A. Locke, E. L. Dereniak, J. Garcia, T. Hamilton, and R. W. McMillan, Opt. Eng. 41, 1048 (2002).
[CrossRef]

Garcia, J.

D. Sabatke, A. Locke, E. L. Dereniak, J. Garcia, T. Hamilton, and R. W. McMillan, Opt. Eng. 41, 1048 (2002).
[CrossRef]

Hamilton, T.

D. Sabatke, A. Locke, E. L. Dereniak, J. Garcia, T. Hamilton, and R. W. McMillan, Opt. Eng. 41, 1048 (2002).
[CrossRef]

Iannarilli, F. J.

Jones, S. H.

Kato, T.

Kebabian, P. L.

Kim, E.

E. Kim, D. Dave, and T. E. Milner, Opt. Commun. 249, 351 (2005).
[CrossRef]

Locke, A.

D. Sabatke, A. Locke, E. L. Dereniak, J. Garcia, T. Hamilton, and R. W. McMillan, Opt. Eng. 41, 1048 (2002).
[CrossRef]

McMillan, R. W.

D. Sabatke, A. Locke, E. L. Dereniak, J. Garcia, T. Hamilton, and R. W. McMillan, Opt. Eng. 41, 1048 (2002).
[CrossRef]

Milner, T. E.

E. Kim, D. Dave, and T. E. Milner, Opt. Commun. 249, 351 (2005).
[CrossRef]

Oka, K.

Sabatke, D.

D. Sabatke, A. Locke, E. L. Dereniak, J. Garcia, T. Hamilton, and R. W. McMillan, Opt. Eng. 41, 1048 (2002).
[CrossRef]

Opt. Commun.

E. Kim, D. Dave, and T. E. Milner, Opt. Commun. 249, 351 (2005).
[CrossRef]

Opt. Eng.

D. Sabatke, A. Locke, E. L. Dereniak, J. Garcia, T. Hamilton, and R. W. McMillan, Opt. Eng. 41, 1048 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the channeled spectropolarimeter.

Fig. 2
Fig. 2

Experimental setup using a halogen lamp.

Fig. 3
Fig. 3

(a) Calibrated phase retardations ϕ j ( σ ) , ( j = 1 , 2 ) and (b) demodulated normalized Stokes parameters. The solid and dashed curves are obtained by use of the self-calibration method and an additional reference light, respectively.

Fig. 4
Fig. 4

Measured normalized Stokes parameters under temperature variation (a) without and (b) with the self-calibration technique. Theoretical values are S 1 S 0 = 1 2 , S 2 S 0 = 1 2 , and S 3 S 0 = 0 .

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P ( σ ) = ( 1 2 ) S 0 ( σ ) + ( 1 4 ) S 23 ( σ ) cos [ ϕ 2 ( σ ) ϕ 1 ( σ ) + arg { S 23 ( σ ) } ] ( 1 4 ) S 23 ( σ ) cos [ ϕ 2 ( σ ) + ϕ 1 ( σ ) arg { S 23 ( σ ) } ] + ( 1 2 ) S 1 ( σ ) cos [ ϕ 2 ( σ ) + arg { S 1 ( σ ) } ] ,
F 0 ( σ ) = ( 1 2 ) S 0 ( σ ) ,
F 2 ( σ ) = ( 1 4 ) S 1 ( σ ) exp { i [ ϕ 2 ( σ ) + arg { S 1 ( σ ) } ] } ,
F ( σ ) = ( 1 8 ) S 23 ( σ ) exp { i [ ϕ 2 ( σ ) ϕ 1 ( σ ) + arg { S 23 ( σ ) } ] } ,
F + ( σ ) = ( 1 8 ) S 23 ( σ ) exp { i [ ϕ 2 ( σ ) + ϕ 1 ( σ ) arg { S 23 ( σ ) } ] } ,
F 2 2 ( σ ) = ( 1 16 ) S 1 ( σ ) 2 e i 2 ϕ 2 ( σ ) ,
F ( σ ) F + ( σ ) = ( 1 64 ) S 23 ( σ ) 2 e i 2 ϕ 2 ( σ ) .
16 F 2 2 ( σ ) 64 F ( σ ) F + ( σ ) = { S 1 2 ( σ ) + S 2 2 ( σ ) + S 3 2 ( σ ) } e i 2 ϕ 2 ( σ ) .

Metrics