Abstract

We present a new, simple method to suppress texture pattern artifacts induced by the optical heterogeneity of tissues to improve the performance of flow imaging for real-time phase-resolved optical Doppler tomography. The method performs transverse scanning of the probe beam in the forward and then reverse directions, and it takes average of the spatial phase changes between them to obtain the final velocity image. It relies on the fact that the phase changes between successive axial scans due to the optical heterogeneity of the sample are time independent, while those due to the moving particles are time dependent. We experimentally demonstrate this method by real-time imaging of a flow phantom.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. P. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. van Gemert, and J. S. Nelson, Opt. Lett. 22, 1119 (1997).
    [CrossRef] [PubMed]
  2. Y. H. Zhao, Z. P. Chen, C. Saxer, S. H. Xiang, J. F. de Boer, and J. S. Nelson, Opt. Lett. 25, 114 (2000).
    [CrossRef]
  3. H. W. Ren, Z. H. Ding, Y. H. Zhao, J. J. Miao, J. S. Nelson, and Z. P. Chen, Opt. Lett. 27, 1702 (2002).
    [CrossRef]
  4. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, Opt. Express 11, 3490 (2003).
    [CrossRef] [PubMed]
  5. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, Opt. Lett. 29, 171 (2004).
    [CrossRef] [PubMed]
  6. J. Zhang and Z. P. Chen, Opt. Express 13, 7449 (2005).
    [CrossRef] [PubMed]
  7. B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, Opt. Express 13, 5483 (2005).
    [CrossRef] [PubMed]
  8. H. W. Ren, T. Sun, D. J. MacDonald, M. J. Cobb, and X. D. Li, Opt. Lett. 31, 927 (2006).
    [CrossRef] [PubMed]
  9. R. K. Wang and Z. H. Ma, Phys. Med. Biol. 51, 3231 (2006).
    [CrossRef] [PubMed]

2006 (2)

2005 (2)

2004 (1)

2003 (1)

2002 (1)

2000 (1)

1997 (1)

Bajraszewski, T.

Berisha, F.

Bouma, B. E.

Cense, B.

Chen, T. C.

Chen, Z. P.

Cobb, M. J.

de Boer, J. F.

Ding, Z. H.

Fercher, A. F.

Hitzenberger, C. K.

Leitgeb, R. A.

Li, X. D.

Ma, Z. H.

R. K. Wang and Z. H. Ma, Phys. Med. Biol. 51, 3231 (2006).
[CrossRef] [PubMed]

MacDonald, D. J.

Malekafzali, A.

Miao, J. J.

Milner, T. E.

Nassif, N.

Nelson, J. S.

Park, B. H.

Pierce, M. C.

Ren, H. W.

Saxer, C.

Schmetterer, L.

Srinivas, S.

Sun, T.

Tearney, G. J.

Vakoc, B. J.

van Gemert, M. J.

Wang, R. K.

R. K. Wang and Z. H. Ma, Phys. Med. Biol. 51, 3231 (2006).
[CrossRef] [PubMed]

Wang, X. J.

White, B. R.

Wojtkowski, M.

Xiang, S. H.

Yun, S. H.

Zhang, J.

Zhao, Y. H.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the spectral-domain OCT system used in this study: PC, polarization controller; C, collimator; ND, neutral-density filter; DM, double-pass mirror; L, lens; M, mirror; G, grating.

Fig. 2
Fig. 2

Imaging results from a solid scattering sample: (a) structure image; (b), (c) velocity images obtained from the conventional PR and the current methods, respectively, with Δ x = 5 μ m . (d), (e) Corresponding velocity images with Δ x = 2.5 μ m . The respective image sizes are (a)–(c) 1.4 mm × 2.5 mm and (d), (e) 1.4 mm × 1.25 mm . The velocity images were coded as gray, white represents 10 kHz , and black represents 10 kHz .

Fig. 3
Fig. 3

Imaging results from a flow phantom with (left column) Δ x = 5 μ m and (right column) Δ x = 2.5 μ m : (a), (d) structure images; (b), (e) velocity images obtained from the conventional PR method; (c), (f), images obtained from the current approach. The respective image sizes are (left column) 1.2 mm × 2.5 mm and (right column) 1.2 mm × 1.25 mm . The color coding for velocity images is the same as in Fig. 2.

Tables (1)

Tables Icon

Table 1 Evaluated STDs of DFS for the Velocity Images (in kHz)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ a ( z , x ) = Δ ϕ F ( x , z ) + k ¯ Δ z ( Δ n x + Δ x , z Δ n x , z ) ,
Δ ϕ b ( z , x ) = Δ ϕ F ( x , z ) + k ¯ Δ z ( Δ n x , z Δ n x + Δ x , z ) .

Metrics