Abstract

We report the observation of particles trapped at an air–water surface orbiting in a reverse direction with respect to the orbital angular momentum of the light field. The effect is explained by a combination of asymmetric particle shape and confinement of the particle on the 2D air–water interface. The experiment highlights the strong influence of the particle shape on the momentum transfer, an effect that is often not considered in optical trapping experiments.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Davis, E. Carcole, and D. M. Cottrell, Appl. Opt. 35, 599 (1996).
    [CrossRef] [PubMed]
  2. D. McGloin and K. Dholakia, Contemp. Phys. 46, 15 (2005).
    [CrossRef]
  3. D. G. Grier, Nature 424, 810 (2003).
    [CrossRef] [PubMed]
  4. N. B. Simpson, L. Allen, and M. J. Padgett, J. Mod. Opt. 43, 2485 (1996).
    [CrossRef]
  5. K. Ladavac and D. G. Grier, Opt. Express 12, 1144 (2005).
    [CrossRef]
  6. A. Jesacher, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, Opt. Express 14, 6342 (2006).
    [CrossRef] [PubMed]
  7. D. A. White, Comput. Phys. Commun. 128, 558 (2000).
    [CrossRef]
  8. T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, V.G.Hartland and X.Zhu, eds., in Proc. SPIE 5514, 514 (2004).
  9. P. Galjada and P. Ormos, Appl. Phys. Lett. 78, 249 (2001).
    [CrossRef]
  10. http://www.uibk.ac.at/medphysik/forschung.html.
  11. Z. S. Sacks, D. Rozas, and G. A. Swartzlander, J. Opt. Soc. Am. B 15, 2226 (1998).
    [CrossRef]

2006

2005

K. Ladavac and D. G. Grier, Opt. Express 12, 1144 (2005).
[CrossRef]

D. McGloin and K. Dholakia, Contemp. Phys. 46, 15 (2005).
[CrossRef]

2003

D. G. Grier, Nature 424, 810 (2003).
[CrossRef] [PubMed]

2001

P. Galjada and P. Ormos, Appl. Phys. Lett. 78, 249 (2001).
[CrossRef]

2000

D. A. White, Comput. Phys. Commun. 128, 558 (2000).
[CrossRef]

1998

1996

J. A. Davis, E. Carcole, and D. M. Cottrell, Appl. Opt. 35, 599 (1996).
[CrossRef] [PubMed]

N. B. Simpson, L. Allen, and M. J. Padgett, J. Mod. Opt. 43, 2485 (1996).
[CrossRef]

Allen, L.

N. B. Simpson, L. Allen, and M. J. Padgett, J. Mod. Opt. 43, 2485 (1996).
[CrossRef]

Bernet, S.

Carcole, E.

Cottrell, D. M.

Davis, J. A.

Dholakia, K.

D. McGloin and K. Dholakia, Contemp. Phys. 46, 15 (2005).
[CrossRef]

Fürhapter, S.

Galjada, P.

P. Galjada and P. Ormos, Appl. Phys. Lett. 78, 249 (2001).
[CrossRef]

Grier, D. G.

Heckenberg, N. R.

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, V.G.Hartland and X.Zhu, eds., in Proc. SPIE 5514, 514 (2004).

Jesacher, A.

Ladavac, K.

Maurer, C.

McGloin, D.

D. McGloin and K. Dholakia, Contemp. Phys. 46, 15 (2005).
[CrossRef]

Nieminen, T. A.

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, V.G.Hartland and X.Zhu, eds., in Proc. SPIE 5514, 514 (2004).

Ormos, P.

P. Galjada and P. Ormos, Appl. Phys. Lett. 78, 249 (2001).
[CrossRef]

Padgett, M. J.

N. B. Simpson, L. Allen, and M. J. Padgett, J. Mod. Opt. 43, 2485 (1996).
[CrossRef]

Ritsch-Marte, M.

Rozas, D.

Rubinsztein-Dunlop, H.

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, V.G.Hartland and X.Zhu, eds., in Proc. SPIE 5514, 514 (2004).

Sacks, Z. S.

Simpson, N. B.

N. B. Simpson, L. Allen, and M. J. Padgett, J. Mod. Opt. 43, 2485 (1996).
[CrossRef]

Swartzlander, G. A.

White, D. A.

D. A. White, Comput. Phys. Commun. 128, 558 (2000).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

P. Galjada and P. Ormos, Appl. Phys. Lett. 78, 249 (2001).
[CrossRef]

Comput. Phys. Commun.

D. A. White, Comput. Phys. Commun. 128, 558 (2000).
[CrossRef]

Contemp. Phys.

D. McGloin and K. Dholakia, Contemp. Phys. 46, 15 (2005).
[CrossRef]

J. Mod. Opt.

N. B. Simpson, L. Allen, and M. J. Padgett, J. Mod. Opt. 43, 2485 (1996).
[CrossRef]

J. Opt. Soc. Am. B

Nature

D. G. Grier, Nature 424, 810 (2003).
[CrossRef] [PubMed]

Opt. Express

Other

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, V.G.Hartland and X.Zhu, eds., in Proc. SPIE 5514, 514 (2004).

http://www.uibk.ac.at/medphysik/forschung.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Holographic tweezers setup. The SLM is illuminated with an expanded, collimated laser beam. The off-axis phase hologram diffracts the light through a telescope, which images the SLM plane onto the Fourier plane of the objective.

Fig. 2
Fig. 2

Orbiting of a polystyrene bead and a glass splinter in an optical vortex ( L = ± 30 ) . The interface is almost flat over the visible area. (a) Sequential movie captures that indicate the particles’ movements. (b) Measurements of the corresponding velocities. The L = 30 vortex makes both objects rotate counterclockwise (frames 1–32), whereas inverting the topological charge to L = + 30 (frames 33–37) causes only the bead to change its sense of rotation.

Fig. 3
Fig. 3

(a) Wedge-shaped glass particle as a model for our numerical calculations. The particle is assumed to lie flat on the water–air interface, still fully covered with water. (b) Within geometrical optics, the helical light field of an optical vortex can be represented by a bundle of twisted rays, whereas each ray includes the angle α with the light ring of the LG mode.

Tables (1)

Tables Icon

Table 1 Momentum Transfer Efficiencies for Different Wedge Geometries a

Metrics