Abstract

We demonstrate, for what we believe to be the first time, the use of a 3×3 fiber-optic coupler to realize a homodyne optical coherence tomography (OCT) system for en face imaging of highly scattering tissues and turbid media. The homodyne OCT setup exploits the inherent phase shifts between different output ports of a 3×3 fiber-optic coupler to extract amplitude information of a sample. Our homodyne en face OCT system features a measured resolution of 14μm axially and 9.4μm laterally with a 90dB signal-to-noise ratio at 10μs integration time. En face OCT imaging of a stage 52 Xenopus laevis was successfully demonstrated at a depth of 600μm within the sample.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
    [CrossRef] [PubMed]
  2. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, Opt. Lett. 19, 590 (1994).
    [CrossRef] [PubMed]
  3. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, Appl. Opt. 41, 805 (2002).
    [CrossRef] [PubMed]
  4. C. K. Hitzenberger, P. Trost, P. W. Lo, and Q. Y. Zhou, Opt. Express 11, 2753 (2003).
    [CrossRef] [PubMed]
  5. E. Beaurepaire, L. Moreaux, F. Amblard, and J. Mertz, Opt. Lett. 24, 969 (1999).
    [CrossRef]
  6. M. A. Choma, C. H. Yang, and J. A. Izatt, Opt. Lett. 28, 2162 (2003).
    [CrossRef] [PubMed]
  7. R. C. Youngquist, S. Carr, and D. E. N. Davies, Opt. Lett. 12, 944 (1987).
    [CrossRef] [PubMed]

2003

2002

1999

1994

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

1987

Amblard, F.

Beaurepaire, E.

Boccara, A. C.

Carr, S.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Choma, M. A.

Davies, D. E. N.

Dubois, A.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, Opt. Lett. 19, 590 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Hee, M. R.

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, Opt. Lett. 19, 590 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Izatt, J. A.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Lo, P. W.

Mertz, J.

Moreaux, L.

Owen, G. M.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, Opt. Lett. 19, 590 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Trost, P.

Vabre, L.

Yang, C. H.

Youngquist, R. C.

Zhou, Q. Y.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of homodyne en face OCT system. (b) Schematically demonstrates triangular relationship between 3 × 3 coupler coefficients and interferometric phase shifts between the coupler arms. (c) Unscaled interference signals at detectors D j after dc removal. (d) Sum of the scaled interference signals. SLD, superluminescent diode; SMF, single-mode fiber; i j , j th interference signal.

Fig. 2
Fig. 2

Plots of theoretical (shot-noise-limited) as well as measured SNR versus integration time of the homodyne en face OCT system.

Fig. 3
Fig. 3

(a) Photograph of a stage 52 Xenopus leavis showing locations where en face images were acquired by using the homodyne OCT setup. Shown are the en face OCT images of (b) cornea and ciliary body in the eye, (c) heart, and (d) gill structures at a depth of 600 μ m into the sample. (e)–(g) En face images of the gill region of (d) at 40 μ m depth intervals into the sample. Each en face OCT image is 790 μ m × 900 μ m .

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P j ( z ) = P r , j + P s , j + 2 ( 1 s j ) α 41 α 4 j α 51 α 5 j P r { P s ( z ) γ ( z ) } cos [ 2 k 0 z + ψ ( z ) + ϕ j ] ,
i Re = s 1 i 1 = 2 α 41 α 41 α 51 α 51 P r { P s ( z ) γ ( z ) } cos [ 2 k 0 z + ψ ( z ) ] ,
i Im = 2 α 41 α 41 α 51 α 51 P r { P s ( z ) γ ( z ) } sin [ 2 k 0 z + ψ ( z ) ] , = s 1 i 1 cos ( ϕ 2 ) s 2 i 2 β sin ( ϕ 2 ) , where β = α 41 α 51 α 42 α 52 .
i 0 = i Re 2 + i Im 2 ,
2 k 0 z + ψ ( z ) = tan 1 ( i Im i Re ) .
[ i 1 ( t 1 ) i 2 ( t 1 ) i 1 ( t 2 ) i 2 ( t 2 ) ] [ s 1 s 2 ] = [ i 3 ( t 1 ) i 3 ( t 2 ) ] ,
s j P s , j = k s k [ P k ( z ) P r , k ] k ( P s , k P s , 2 ) P s , j P s , 2 .

Metrics