Abstract

We present a full-field phase microscopy technique for quantitative nanoscale surface profiling of samples in reflection. This technique utilizes swept-source optical coherence tomography in a full-field common path interferometer for phase-stable cross-sectional acquisition without scanning. Subwavelength variations in surface sample features are measured without interference from spurious reflections by processing the interferometric phase at a selected depth plane, providing a 1.3nm stability for high signal-to-noise ratio surface features. Nanoscale imaging was demonstrated by measuring the location of receptor sites on a DNA assay biochip and the surface topography of erythrocytes in a blood smear.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription