Abstract

A light-guiding, flexible fused-silica (FFS) capillary has been used in designing an optical fiber Cr VI sensor for monitoring Cr VI ions in water samples. The FFS capillary is similar to a conventional silica optical fiber in that it can guide light in the wavelength region from the UV to the near IR but different from a conventional optical fiber in that it is a tubular waveguide. The inner surface of the FFS capillary is fused silica, which one can modify to design an optical fiber chemical sensor. The FFS capillary has a cladding layer plus a protective polymer coating on its outside surface. The cladding layer ensures the ability of the FFS capillary to guide light. The protective coating increases the FFS capillary’s mechanical strength and makes it robust for practical applications. Compared with conventional silica optical fibers, it is much easier and more feasible to use this FFS capillary to fabricate long-path (tens of meters to thousands of meters) evanescent-wave based chemical sensors. We describe a Cr VI sensor based on the intrinsic evanescent-wave absorption by Cr VI ions in a water sample filled inside the capillary as an example of use of a FFS capillary in chemical sensor design. This simple sensor, using a 30m light-guiding FFS capillary as a transducer, has the capability of detecting as little as 31 parts in 109 of Cr VI in a water sample, which is close to the detection limit of some sophisticated, expensive analytical instruments.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Tao, in Encyclopedia of Sensors, C.A.Grimes, E.C.Dickey, and M.V.Pishko, eds. (American Scientific, to be published).
  2. K. T. V. Grattan and B. T. Meggitt, eds., Chemical and Environmental Sensing, Vol. 4. Optical Fiber Sensor Technology (Kluwer Academic, 1999).
  3. A. Messica, A. Greenstein, and A. Katzir, Appl. Opt. 35, 2274 (1996).
    [CrossRef] [PubMed]
  4. L. Xu, J. C. Fanguy, K. Soni, and S. Tao, Opt. Lett. 29, 1191 (2004).
    [CrossRef] [PubMed]
  5. S. Tao, J. C. Fanguy, and L. Xu, 'Optical fiber ammonia sensing probes using reagent immobilized porous silica coatings as transducers,' Sens. Actuators B (to be published).
  6. R. Krska, R. Kellner, U. Schiessl, M. Tack, and Katzir, Appl. Phys. Lett. 63, 1868 (1993).
    [CrossRef]
  7. S. Tao and T. Kumamaru, Anal. Proc. 32, 371 (1995).

2004 (1)

1996 (1)

1995 (1)

S. Tao and T. Kumamaru, Anal. Proc. 32, 371 (1995).

1993 (1)

R. Krska, R. Kellner, U. Schiessl, M. Tack, and Katzir, Appl. Phys. Lett. 63, 1868 (1993).
[CrossRef]

Fanguy, J. C.

L. Xu, J. C. Fanguy, K. Soni, and S. Tao, Opt. Lett. 29, 1191 (2004).
[CrossRef] [PubMed]

S. Tao, J. C. Fanguy, and L. Xu, 'Optical fiber ammonia sensing probes using reagent immobilized porous silica coatings as transducers,' Sens. Actuators B (to be published).

Grattan, K. T. V.

K. T. V. Grattan and B. T. Meggitt, eds., Chemical and Environmental Sensing, Vol. 4. Optical Fiber Sensor Technology (Kluwer Academic, 1999).

Greenstein, A.

Katzir,

R. Krska, R. Kellner, U. Schiessl, M. Tack, and Katzir, Appl. Phys. Lett. 63, 1868 (1993).
[CrossRef]

Katzir, A.

Kellner, R.

R. Krska, R. Kellner, U. Schiessl, M. Tack, and Katzir, Appl. Phys. Lett. 63, 1868 (1993).
[CrossRef]

Krska, R.

R. Krska, R. Kellner, U. Schiessl, M. Tack, and Katzir, Appl. Phys. Lett. 63, 1868 (1993).
[CrossRef]

Kumamaru, T.

S. Tao and T. Kumamaru, Anal. Proc. 32, 371 (1995).

Meggitt, B. T.

K. T. V. Grattan and B. T. Meggitt, eds., Chemical and Environmental Sensing, Vol. 4. Optical Fiber Sensor Technology (Kluwer Academic, 1999).

Messica, A.

Schiessl, U.

R. Krska, R. Kellner, U. Schiessl, M. Tack, and Katzir, Appl. Phys. Lett. 63, 1868 (1993).
[CrossRef]

Soni, K.

Tack, M.

R. Krska, R. Kellner, U. Schiessl, M. Tack, and Katzir, Appl. Phys. Lett. 63, 1868 (1993).
[CrossRef]

Tao, S.

L. Xu, J. C. Fanguy, K. Soni, and S. Tao, Opt. Lett. 29, 1191 (2004).
[CrossRef] [PubMed]

S. Tao and T. Kumamaru, Anal. Proc. 32, 371 (1995).

S. Tao, J. C. Fanguy, and L. Xu, 'Optical fiber ammonia sensing probes using reagent immobilized porous silica coatings as transducers,' Sens. Actuators B (to be published).

S. Tao, in Encyclopedia of Sensors, C.A.Grimes, E.C.Dickey, and M.V.Pishko, eds. (American Scientific, to be published).

Xu, L.

L. Xu, J. C. Fanguy, K. Soni, and S. Tao, Opt. Lett. 29, 1191 (2004).
[CrossRef] [PubMed]

S. Tao, J. C. Fanguy, and L. Xu, 'Optical fiber ammonia sensing probes using reagent immobilized porous silica coatings as transducers,' Sens. Actuators B (to be published).

Anal. Proc. (1)

S. Tao and T. Kumamaru, Anal. Proc. 32, 371 (1995).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. Krska, R. Kellner, U. Schiessl, M. Tack, and Katzir, Appl. Phys. Lett. 63, 1868 (1993).
[CrossRef]

Opt. Lett. (1)

Other (3)

S. Tao, in Encyclopedia of Sensors, C.A.Grimes, E.C.Dickey, and M.V.Pishko, eds. (American Scientific, to be published).

K. T. V. Grattan and B. T. Meggitt, eds., Chemical and Environmental Sensing, Vol. 4. Optical Fiber Sensor Technology (Kluwer Academic, 1999).

S. Tao, J. C. Fanguy, and L. Xu, 'Optical fiber ammonia sensing probes using reagent immobilized porous silica coatings as transducers,' Sens. Actuators B (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Structure of a FFS capillary tubular waveguide. The tubular waveguide consists of a fused-silica capillary, a doped silica coating on the outside surface of the capillary, and a polyimide coating on top of the doped silica coating. The arrows show light beams traveling through the waveguide.

Fig. 2
Fig. 2

Diagrammatic structure of an optical Cr VI sensor with a 30 m FFS capillary coiled around a 7.5 cm mandrel as a transducer.

Fig. 3
Fig. 3

Intrinsic EW absorption spectra of Cr VI ions recorded with the FFS capillary-based sensor as water samples containing Cr VI in different concentrations was pumped through the 30 m FFS capillary.

Fig. 4
Fig. 4

Time response of the FFS capillary Cr VI sensor when water samples containing Cr VI in different concentrations were pumped through the capillary sequentially.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A = log ( I 0 I ) = η p ϵ C [ d p l n 2 sin θ a ( n 1 2 n 2 2 sin 2 θ ) 1 2 ] .

Metrics