Abstract

We demonstrate a highly realistic model of optical coherence tomography, based on an existing model of coherent optical microscopes, which employs a full wave description of light. A defining feature of the model is the decoupling of the key functions of an optical coherence tomography system: sample illumination, light-sample interaction and the collection of light scattered by the sample. We show how such a model can be implemented using the finite-difference time-domain method to model light propagation in general samples. The model employs vectorial focussing theory to represent the optical system and, thus, incorporates general illumination beam types and detection optics. To demonstrate its versatility, we model image formation of a stratified medium, a numerical point-spread function phantom and a numerical phantom, based upon a physical three-dimensional structured phantom employed in our laboratory. We show that simulated images compare well with experimental images of a three-dimensional structured phantom. Such a model provides a powerful means to advance all aspects of optical coherence tomography imaging.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A 24, 2527–2542 (2007).
    [Crossref]
  2. M. Kirillin, I. Meglinski, V. Kuzmin, E. Sergeeva, and R. Myllylä, “Simulation of optical coherence tomography images by Monte Carlo modeling based on polarization vector approach,” Opt. Lett. 18, 21714–21724 (2010).
  3. I. Meglinski, M. Kirillin, V. Kuzmin, and R. Myllyla, “Simulation of polarization-sensitive optical coherence tomography images by a Monte Carlo method,” Opt. Lett. 33, 1581–1583 (2008).
  4. J. M. Schmitt and A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997).
  5. I. V. Turchin, E. A. Sergeeva, L. S. Dolin, V. A. Kamensky, N. M. Shakhova, and R. Richards-Kortum, “Novel algorithm of processing optical coherence tomography images for differentiation of biological tissue pathologies,” J. Biomed. Opt. 10, 064024 (2005).
    [Crossref]
  6. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Inverse scattering for optical coherence tomography,” J. Opt. Soc. Am. A 23, 1027–1037 (2006).
  7. A. Tycho, T. M. Jorgensen, H. T. Yura, and P. E. Andersen, “Derivation of a Monte Carlo method for modeling heterodyne detection in optical coherence tomography systems,” Appl. Opt. 41, 6676–6691 (2002).
    [Crossref] [PubMed]
  8. Q. Lu, X. Gan, M. Gu, and Q. Luo, “Monte Carlo modeling of optical coherence tomography imaging through turbid media,” Appl. Opt. 43, 1628–1637 (2004).
    [Crossref] [PubMed]
  9. L. S. Dolin, “A theory of optical coherence tomography,” Radiophys. Quantum El. 41, 850–873 (1998).
    [Crossref]
  10. L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML - Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Meth. Prog. Bio. 47, 131–146 (1995).
    [Crossref]
  11. L. Chin, A. Curatolo, B. F. Kennedy, B. J. Doyle, P. R. T. Munro, R. A. McLaughlin, and D. D. Sampson, “Analysis of image formation in optical coherence elastography using a multiphysics approach,” Biomed. Opt. Express 5, 2913–2930 (2014).
    [Crossref] [PubMed]
  12. J. A. Izatt, E. A. Swanson, J. G. Fujimoto, M. R. Hee, and G. M. Owen, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).
  13. P. Török, P. R. T. Munro, and E. E. Kriezis, “High numerical aperture vectorial imaging in coherent optical microscopes,” Opt. Express 16, 507–523 (2008).
    [Crossref] [PubMed]
  14. I. R. Capoglu, J. D. Rogers, A. Taflove, and V. Backman, “Chapter – 1: The microscope in a computer: image synthesis from three-dimensional full-vector solutions of Maxwell’s equations at the nanometer scale,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), 57, pp. 1–91.
    [Crossref]
  15. D. C. Reed and C. A. DiMarzio, “Computational model of OCT in lung tissue,” Proc. SPIE 7570, 75700I (2010).
    [Crossref]
  16. Y.-T. Hung, S.-L. Huang, and S. H. Tseng, “Full EM wave simulation on optical coherence tomography: impact of surface roughness,” Proc. SPIE 8592, 859216 (2013).
    [Crossref]
  17. A. Taflove and S. Hagness, Computational Electrodynamics, 3 (Artech House, 2005).
  18. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
    [Crossref]
  19. P. D. Higdon, P. Török, and T. Wilson, “Imaging properties of high aperture multiphoton fluorescence scanning microscopes,” J. Mod. Opt. 193, 127–141 (1998).
  20. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems ii. structure of the image field in an aplanatic system,” Proc. Roy. Soc. A 253, 358–379 (1959).
    [Crossref]
  21. V. S. Ignatowsky, “Diffraction by a lens of arbitrary aperture,” T. Opt. Inst. Petrograd 1, 1–36 (1919).
  22. R. Luneburg, Mathematical Theory of Optics (University of California, Berkeley and Los Angeles, 1966).
  23. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000).
    [Crossref] [PubMed]
  24. P. Török and P. R. T. Munro, “The use of Gauss-Laguerre vector beams in STED microscopy,” Opt. Express 12, 3605–3617 (2004).
    [Crossref] [PubMed]
  25. P. Török and P. Varga, “Electromagnetic diffraction of light focused through a stratified medium,” Appl. Opt. 36, 2305–2312 (1997).
    [Crossref] [PubMed]
  26. P. Török, “An imaging theory for advanced, high numerical aperture optical microscopes,” D.Sc. Thesis (2004).
  27. J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
    [Crossref]
  28. P. R. T. Munro and P. Török, “Vectorial, high numerical aperture study of Nomarski’s differential interference contrast microscope,” Opt. Express 13, 6833–6847 (2005).
    [Crossref] [PubMed]
  29. P. R. T. Munro, D. Engelke, and D. D. Sampson, “A compact source condition for modelling focused fields using the pseudospectral time-domain method,” Opt. Express 22, 5599–5613 (2014).
    [Crossref] [PubMed]
  30. A. Oskooi and S. G. Johnson, “Electromagnetic wave source conditions,” in Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology, A. Taflove, A. Oskooi, and S. G. Johnson, eds. (Artech House, 2013), pp. 65–96.
  31. D. E. Merewether, R. Fisher, and F. W. Smith, “On implementing a numeric Huygen’s source scheme in a finite difference program to illuminate scattering bodies,” IEEE T. Nucl. Sci. 27, 1829–1833 (1980).
    [Crossref]
  32. I. R. Capoglu, A. Taflove, and V. Backman, “FDTD simulation of a partially-coherent Gaussian Schell-model beam,” in IEEE International Symposium on Antennas and Propagation (IEEE, 2011), pp. 2286–2288.
  33. P. R. T. Munro and P. Török, “Calculation of the image of an arbitrary vectorial electromagnetic field,” Opt. Express 15, 9293–9307 (2007).
    [Crossref] [PubMed]
  34. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1988).
  35. J. R. Rogers and M. D. Hopler, “Conversion of group refractive index to phase refractive index,” J. Opt. Soc. Am. A 5, 1595–1600 (1988).
  36. C. J. R. Sheppard, “Cylindrical lenses–focusing and imaging: a review [invited],” Appl. Opt. 52, 538–545 (2013).
    [Crossref] [PubMed]
  37. M. Born and E. Wolf, Principles of Optics, 7 (Cambridge University, 1999).
    [Crossref]
  38. O. Bruno and J. Chaubell, “One-dimensional inverse scattering problem for optical coherence tomography,” Inverse Probl. 21, 499524 (2005).
    [Crossref]
  39. J. A. Izatt and M. A. Choma, “Theory of optical coherence tomography,” in Optical Coherence Tomography, Theory and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer, 2008), pp. 47–72.
    [Crossref]
  40. A. Curatolo, B. F. Kennedy, and D. D. Sampson, “Structured three-dimensional optical phantom for optical coherence tomography,” Opt. Express 19, 19480–19485 (2011).
    [Crossref] [PubMed]
  41. I. S. Saidi, S. L. Jacques, and F. K. Tittel, “Mie and Rayleigh modeling of visible-light scattering in neonatal skin”;, Appl. Opt. 34, 7410–7418 (1995).
    [Crossref] [PubMed]
  42. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, 1983).
  43. B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5, 2113–2124 (2014).
    [Crossref] [PubMed]
  44. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [Crossref]
  45. P. Wahl, D.-S. Ly-Gagnon, C. Debaes, D. Miller, and H. Thienpont, “B-calm: An open-source GPU-based 3D-FDTD with multi-pole dispersion for plasmonics,” Opt. Quantum Electron. 44, 285–290 (2012).
    [Crossref]
  46. P. Gong, R. A. McLaughlin, Y. Liew, P. R. T. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt.  19, 021111 (2013).
    [Crossref]
  47. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27, 243–245 (2002).
  48. D. Lorenser, C. C. Singe, A. Curatolo, and D. D. Sampson, “Energy-efficient low-Fresnel-number Bessel beams and their application in optical coherence tomography,” Opt. Lett. 39, 548–551 (2014).

2014 (4)

2013 (3)

P. Gong, R. A. McLaughlin, Y. Liew, P. R. T. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt.  19, 021111 (2013).
[Crossref]

C. J. R. Sheppard, “Cylindrical lenses–focusing and imaging: a review [invited],” Appl. Opt. 52, 538–545 (2013).
[Crossref] [PubMed]

Y.-T. Hung, S.-L. Huang, and S. H. Tseng, “Full EM wave simulation on optical coherence tomography: impact of surface roughness,” Proc. SPIE 8592, 859216 (2013).
[Crossref]

2012 (1)

P. Wahl, D.-S. Ly-Gagnon, C. Debaes, D. Miller, and H. Thienpont, “B-calm: An open-source GPU-based 3D-FDTD with multi-pole dispersion for plasmonics,” Opt. Quantum Electron. 44, 285–290 (2012).
[Crossref]

2011 (1)

2010 (3)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

D. C. Reed and C. A. DiMarzio, “Computational model of OCT in lung tissue,” Proc. SPIE 7570, 75700I (2010).
[Crossref]

M. Kirillin, I. Meglinski, V. Kuzmin, E. Sergeeva, and R. Myllylä, “Simulation of optical coherence tomography images by Monte Carlo modeling based on polarization vector approach,” Opt. Lett. 18, 21714–21724 (2010).

2008 (2)

2007 (2)

2006 (1)

2005 (3)

I. V. Turchin, E. A. Sergeeva, L. S. Dolin, V. A. Kamensky, N. M. Shakhova, and R. Richards-Kortum, “Novel algorithm of processing optical coherence tomography images for differentiation of biological tissue pathologies,” J. Biomed. Opt. 10, 064024 (2005).
[Crossref]

P. R. T. Munro and P. Török, “Vectorial, high numerical aperture study of Nomarski’s differential interference contrast microscope,” Opt. Express 13, 6833–6847 (2005).
[Crossref] [PubMed]

O. Bruno and J. Chaubell, “One-dimensional inverse scattering problem for optical coherence tomography,” Inverse Probl. 21, 499524 (2005).
[Crossref]

2004 (2)

2002 (2)

2000 (1)

1998 (2)

L. S. Dolin, “A theory of optical coherence tomography,” Radiophys. Quantum El. 41, 850–873 (1998).
[Crossref]

P. D. Higdon, P. Török, and T. Wilson, “Imaging properties of high aperture multiphoton fluorescence scanning microscopes,” J. Mod. Opt. 193, 127–141 (1998).

1997 (2)

1995 (2)

I. S. Saidi, S. L. Jacques, and F. K. Tittel, “Mie and Rayleigh modeling of visible-light scattering in neonatal skin”;, Appl. Opt. 34, 7410–7418 (1995).
[Crossref] [PubMed]

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML - Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Meth. Prog. Bio. 47, 131–146 (1995).
[Crossref]

1994 (2)

J. A. Izatt, E. A. Swanson, J. G. Fujimoto, M. R. Hee, and G. M. Owen, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).

J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[Crossref]

1988 (1)

1980 (1)

D. E. Merewether, R. Fisher, and F. W. Smith, “On implementing a numeric Huygen’s source scheme in a finite difference program to illuminate scattering bodies,” IEEE T. Nucl. Sci. 27, 1829–1833 (1980).
[Crossref]

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems ii. structure of the image field in an aplanatic system,” Proc. Roy. Soc. A 253, 358–379 (1959).
[Crossref]

1919 (1)

V. S. Ignatowsky, “Diffraction by a lens of arbitrary aperture,” T. Opt. Inst. Petrograd 1, 1–36 (1919).

Andersen, P. E.

Backman, V.

I. R. Capoglu, J. D. Rogers, A. Taflove, and V. Backman, “Chapter – 1: The microscope in a computer: image synthesis from three-dimensional full-vector solutions of Maxwell’s equations at the nanometer scale,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), 57, pp. 1–91.
[Crossref]

I. R. Capoglu, A. Taflove, and V. Backman, “FDTD simulation of a partially-coherent Gaussian Schell-model beam,” in IEEE International Symposium on Antennas and Propagation (IEEE, 2011), pp. 2286–2288.

Berenger, J.-P.

J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[Crossref]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, 1983).

Boppart, S. A.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7 (Cambridge University, 1999).
[Crossref]

Brown, T. G.

Bruno, O.

O. Bruno and J. Chaubell, “One-dimensional inverse scattering problem for optical coherence tomography,” Inverse Probl. 21, 499524 (2005).
[Crossref]

Capoglu, I. R.

I. R. Capoglu, A. Taflove, and V. Backman, “FDTD simulation of a partially-coherent Gaussian Schell-model beam,” in IEEE International Symposium on Antennas and Propagation (IEEE, 2011), pp. 2286–2288.

I. R. Capoglu, J. D. Rogers, A. Taflove, and V. Backman, “Chapter – 1: The microscope in a computer: image synthesis from three-dimensional full-vector solutions of Maxwell’s equations at the nanometer scale,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), 57, pp. 1–91.
[Crossref]

Carney, P. S.

Chaubell, J.

O. Bruno and J. Chaubell, “One-dimensional inverse scattering problem for optical coherence tomography,” Inverse Probl. 21, 499524 (2005).
[Crossref]

Chen, Z.

Chin, L.

Choma, M. A.

J. A. Izatt and M. A. Choma, “Theory of optical coherence tomography,” in Optical Coherence Tomography, Theory and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer, 2008), pp. 47–72.
[Crossref]

Curatolo, A.

Davis, B. J.

Debaes, C.

P. Wahl, D.-S. Ly-Gagnon, C. Debaes, D. Miller, and H. Thienpont, “B-calm: An open-source GPU-based 3D-FDTD with multi-pole dispersion for plasmonics,” Opt. Quantum Electron. 44, 285–290 (2012).
[Crossref]

DiMarzio, C. A.

D. C. Reed and C. A. DiMarzio, “Computational model of OCT in lung tissue,” Proc. SPIE 7570, 75700I (2010).
[Crossref]

Ding, Z.

Dolin, L. S.

I. V. Turchin, E. A. Sergeeva, L. S. Dolin, V. A. Kamensky, N. M. Shakhova, and R. Richards-Kortum, “Novel algorithm of processing optical coherence tomography images for differentiation of biological tissue pathologies,” J. Biomed. Opt. 10, 064024 (2005).
[Crossref]

L. S. Dolin, “A theory of optical coherence tomography,” Radiophys. Quantum El. 41, 850–873 (1998).
[Crossref]

Doyle, B. J.

Engelke, D.

Fisher, R.

D. E. Merewether, R. Fisher, and F. W. Smith, “On implementing a numeric Huygen’s source scheme in a finite difference program to illuminate scattering bodies,” IEEE T. Nucl. Sci. 27, 1829–1833 (1980).
[Crossref]

Fujimoto, J. G.

Gan, X.

Gong, P.

P. Gong, R. A. McLaughlin, Y. Liew, P. R. T. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt.  19, 021111 (2013).
[Crossref]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1988).

Gu, M.

Hagness, S.

A. Taflove and S. Hagness, Computational Electrodynamics, 3 (Artech House, 2005).

Hee, M. R.

Higdon, P. D.

P. D. Higdon, P. Török, and T. Wilson, “Imaging properties of high aperture multiphoton fluorescence scanning microscopes,” J. Mod. Opt. 193, 127–141 (1998).

Hopler, M. D.

Huang, S.-L.

Y.-T. Hung, S.-L. Huang, and S. H. Tseng, “Full EM wave simulation on optical coherence tomography: impact of surface roughness,” Proc. SPIE 8592, 859216 (2013).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, 1983).

Hung, Y.-T.

Y.-T. Hung, S.-L. Huang, and S. H. Tseng, “Full EM wave simulation on optical coherence tomography: impact of surface roughness,” Proc. SPIE 8592, 859216 (2013).
[Crossref]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Ignatowsky, V. S.

V. S. Ignatowsky, “Diffraction by a lens of arbitrary aperture,” T. Opt. Inst. Petrograd 1, 1–36 (1919).

Izatt, J. A.

J. A. Izatt, E. A. Swanson, J. G. Fujimoto, M. R. Hee, and G. M. Owen, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).

J. A. Izatt and M. A. Choma, “Theory of optical coherence tomography,” in Optical Coherence Tomography, Theory and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer, 2008), pp. 47–72.
[Crossref]

Jacques, S. L.

I. S. Saidi, S. L. Jacques, and F. K. Tittel, “Mie and Rayleigh modeling of visible-light scattering in neonatal skin”;, Appl. Opt. 34, 7410–7418 (1995).
[Crossref] [PubMed]

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML - Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Meth. Prog. Bio. 47, 131–146 (1995).
[Crossref]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

A. Oskooi and S. G. Johnson, “Electromagnetic wave source conditions,” in Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology, A. Taflove, A. Oskooi, and S. G. Johnson, eds. (Artech House, 2013), pp. 65–96.

Jorgensen, T. M.

Kamensky, V. A.

I. V. Turchin, E. A. Sergeeva, L. S. Dolin, V. A. Kamensky, N. M. Shakhova, and R. Richards-Kortum, “Novel algorithm of processing optical coherence tomography images for differentiation of biological tissue pathologies,” J. Biomed. Opt. 10, 064024 (2005).
[Crossref]

Kennedy, B. F.

Kennedy, K. M.

Kirillin, M.

M. Kirillin, I. Meglinski, V. Kuzmin, E. Sergeeva, and R. Myllylä, “Simulation of optical coherence tomography images by Monte Carlo modeling based on polarization vector approach,” Opt. Lett. 18, 21714–21724 (2010).

I. Meglinski, M. Kirillin, V. Kuzmin, and R. Myllyla, “Simulation of polarization-sensitive optical coherence tomography images by a Monte Carlo method,” Opt. Lett. 33, 1581–1583 (2008).

Knüttel, A.

Kriezis, E. E.

Kuzmin, V.

M. Kirillin, I. Meglinski, V. Kuzmin, E. Sergeeva, and R. Myllylä, “Simulation of optical coherence tomography images by Monte Carlo modeling based on polarization vector approach,” Opt. Lett. 18, 21714–21724 (2010).

I. Meglinski, M. Kirillin, V. Kuzmin, and R. Myllyla, “Simulation of polarization-sensitive optical coherence tomography images by a Monte Carlo method,” Opt. Lett. 33, 1581–1583 (2008).

Latham, B.

Liew, Y.

P. Gong, R. A. McLaughlin, Y. Liew, P. R. T. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt.  19, 021111 (2013).
[Crossref]

Lorenser, D.

Lu, Q.

Luneburg, R.

R. Luneburg, Mathematical Theory of Optics (University of California, Berkeley and Los Angeles, 1966).

Luo, Q.

Ly-Gagnon, D.-S.

P. Wahl, D.-S. Ly-Gagnon, C. Debaes, D. Miller, and H. Thienpont, “B-calm: An open-source GPU-based 3D-FDTD with multi-pole dispersion for plasmonics,” Opt. Quantum Electron. 44, 285–290 (2012).
[Crossref]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
[Crossref]

Marks, D. L.

McLaughlin, R. A.

Meglinski, I.

M. Kirillin, I. Meglinski, V. Kuzmin, E. Sergeeva, and R. Myllylä, “Simulation of optical coherence tomography images by Monte Carlo modeling based on polarization vector approach,” Opt. Lett. 18, 21714–21724 (2010).

I. Meglinski, M. Kirillin, V. Kuzmin, and R. Myllyla, “Simulation of polarization-sensitive optical coherence tomography images by a Monte Carlo method,” Opt. Lett. 33, 1581–1583 (2008).

Merewether, D. E.

D. E. Merewether, R. Fisher, and F. W. Smith, “On implementing a numeric Huygen’s source scheme in a finite difference program to illuminate scattering bodies,” IEEE T. Nucl. Sci. 27, 1829–1833 (1980).
[Crossref]

Miller, D.

P. Wahl, D.-S. Ly-Gagnon, C. Debaes, D. Miller, and H. Thienpont, “B-calm: An open-source GPU-based 3D-FDTD with multi-pole dispersion for plasmonics,” Opt. Quantum Electron. 44, 285–290 (2012).
[Crossref]

Munro, P. R. T.

Myllyla, R.

Myllylä, R.

M. Kirillin, I. Meglinski, V. Kuzmin, E. Sergeeva, and R. Myllylä, “Simulation of optical coherence tomography images by Monte Carlo modeling based on polarization vector approach,” Opt. Lett. 18, 21714–21724 (2010).

Nelson, J. S.

Oskooi, A.

A. Oskooi and S. G. Johnson, “Electromagnetic wave source conditions,” in Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology, A. Taflove, A. Oskooi, and S. G. Johnson, eds. (Artech House, 2013), pp. 65–96.

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Owen, G. M.

Ralston, T. S.

Reed, D. C.

D. C. Reed and C. A. DiMarzio, “Computational model of OCT in lung tissue,” Proc. SPIE 7570, 75700I (2010).
[Crossref]

Ren, H.

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems ii. structure of the image field in an aplanatic system,” Proc. Roy. Soc. A 253, 358–379 (1959).
[Crossref]

Richards-Kortum, R.

I. V. Turchin, E. A. Sergeeva, L. S. Dolin, V. A. Kamensky, N. M. Shakhova, and R. Richards-Kortum, “Novel algorithm of processing optical coherence tomography images for differentiation of biological tissue pathologies,” J. Biomed. Opt. 10, 064024 (2005).
[Crossref]

Rogers, J. D.

I. R. Capoglu, J. D. Rogers, A. Taflove, and V. Backman, “Chapter – 1: The microscope in a computer: image synthesis from three-dimensional full-vector solutions of Maxwell’s equations at the nanometer scale,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), 57, pp. 1–91.
[Crossref]

Rogers, J. R.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Saidi, I. S.

Sampson, D. D.

Saunders, C. M.

Schlachter, S. C.

Schmitt, J. M.

Sergeeva, E.

M. Kirillin, I. Meglinski, V. Kuzmin, E. Sergeeva, and R. Myllylä, “Simulation of optical coherence tomography images by Monte Carlo modeling based on polarization vector approach,” Opt. Lett. 18, 21714–21724 (2010).

Sergeeva, E. A.

I. V. Turchin, E. A. Sergeeva, L. S. Dolin, V. A. Kamensky, N. M. Shakhova, and R. Richards-Kortum, “Novel algorithm of processing optical coherence tomography images for differentiation of biological tissue pathologies,” J. Biomed. Opt. 10, 064024 (2005).
[Crossref]

Shakhova, N. M.

I. V. Turchin, E. A. Sergeeva, L. S. Dolin, V. A. Kamensky, N. M. Shakhova, and R. Richards-Kortum, “Novel algorithm of processing optical coherence tomography images for differentiation of biological tissue pathologies,” J. Biomed. Opt. 10, 064024 (2005).
[Crossref]

Sheppard, C. J. R.

Singe, C. C.

Smith, F. W.

D. E. Merewether, R. Fisher, and F. W. Smith, “On implementing a numeric Huygen’s source scheme in a finite difference program to illuminate scattering bodies,” IEEE T. Nucl. Sci. 27, 1829–1833 (1980).
[Crossref]

Swanson, E. A.

Taflove, A.

I. R. Capoglu, J. D. Rogers, A. Taflove, and V. Backman, “Chapter – 1: The microscope in a computer: image synthesis from three-dimensional full-vector solutions of Maxwell’s equations at the nanometer scale,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), 57, pp. 1–91.
[Crossref]

A. Taflove and S. Hagness, Computational Electrodynamics, 3 (Artech House, 2005).

I. R. Capoglu, A. Taflove, and V. Backman, “FDTD simulation of a partially-coherent Gaussian Schell-model beam,” in IEEE International Symposium on Antennas and Propagation (IEEE, 2011), pp. 2286–2288.

Thienpont, H.

P. Wahl, D.-S. Ly-Gagnon, C. Debaes, D. Miller, and H. Thienpont, “B-calm: An open-source GPU-based 3D-FDTD with multi-pole dispersion for plasmonics,” Opt. Quantum Electron. 44, 285–290 (2012).
[Crossref]

Tien, A.

Tittel, F. K.

Török, P.

Tseng, S. H.

Y.-T. Hung, S.-L. Huang, and S. H. Tseng, “Full EM wave simulation on optical coherence tomography: impact of surface roughness,” Proc. SPIE 8592, 859216 (2013).
[Crossref]

Turchin, I. V.

I. V. Turchin, E. A. Sergeeva, L. S. Dolin, V. A. Kamensky, N. M. Shakhova, and R. Richards-Kortum, “Novel algorithm of processing optical coherence tomography images for differentiation of biological tissue pathologies,” J. Biomed. Opt. 10, 064024 (2005).
[Crossref]

Tycho, A.

Varga, P.

Wahl, P.

P. Wahl, D.-S. Ly-Gagnon, C. Debaes, D. Miller, and H. Thienpont, “B-calm: An open-source GPU-based 3D-FDTD with multi-pole dispersion for plasmonics,” Opt. Quantum Electron. 44, 285–290 (2012).
[Crossref]

Wang, L. H.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML - Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Meth. Prog. Bio. 47, 131–146 (1995).
[Crossref]

Wilson, T.

P. D. Higdon, P. Török, and T. Wilson, “Imaging properties of high aperture multiphoton fluorescence scanning microscopes,” J. Mod. Opt. 193, 127–141 (1998).

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems ii. structure of the image field in an aplanatic system,” Proc. Roy. Soc. A 253, 358–379 (1959).
[Crossref]

M. Born and E. Wolf, Principles of Optics, 7 (Cambridge University, 1999).
[Crossref]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
[Crossref]

Wood, F. M.

P. Gong, R. A. McLaughlin, Y. Liew, P. R. T. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt.  19, 021111 (2013).
[Crossref]

Youngworth, K. S.

Yura, H. T.

Zhao, Y.

Zheng, L. Q.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML - Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Meth. Prog. Bio. 47, 131–146 (1995).
[Crossref]

Appl. Opt. (5)

Biomed. Opt. Express (2)

Comput. Meth. Prog. Bio. (1)

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML - Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Meth. Prog. Bio. 47, 131–146 (1995).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

IEEE T. Nucl. Sci. (1)

D. E. Merewether, R. Fisher, and F. W. Smith, “On implementing a numeric Huygen’s source scheme in a finite difference program to illuminate scattering bodies,” IEEE T. Nucl. Sci. 27, 1829–1833 (1980).
[Crossref]

Inverse Probl. (1)

O. Bruno and J. Chaubell, “One-dimensional inverse scattering problem for optical coherence tomography,” Inverse Probl. 21, 499524 (2005).
[Crossref]

J. Biomed. Opt (1)

P. Gong, R. A. McLaughlin, Y. Liew, P. R. T. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt.  19, 021111 (2013).
[Crossref]

J. Biomed. Opt. (1)

I. V. Turchin, E. A. Sergeeva, L. S. Dolin, V. A. Kamensky, N. M. Shakhova, and R. Richards-Kortum, “Novel algorithm of processing optical coherence tomography images for differentiation of biological tissue pathologies,” J. Biomed. Opt. 10, 064024 (2005).
[Crossref]

J. Comput. Phys. (1)

J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[Crossref]

J. Mod. Opt. (1)

P. D. Higdon, P. Török, and T. Wilson, “Imaging properties of high aperture multiphoton fluorescence scanning microscopes,” J. Mod. Opt. 193, 127–141 (1998).

J. Opt. Soc. Am. A (4)

Opt. Express (7)

Opt. Lett. (5)

Opt. Quantum Electron. (1)

P. Wahl, D.-S. Ly-Gagnon, C. Debaes, D. Miller, and H. Thienpont, “B-calm: An open-source GPU-based 3D-FDTD with multi-pole dispersion for plasmonics,” Opt. Quantum Electron. 44, 285–290 (2012).
[Crossref]

Proc. Roy. Soc. A (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems ii. structure of the image field in an aplanatic system,” Proc. Roy. Soc. A 253, 358–379 (1959).
[Crossref]

Proc. SPIE (2)

D. C. Reed and C. A. DiMarzio, “Computational model of OCT in lung tissue,” Proc. SPIE 7570, 75700I (2010).
[Crossref]

Y.-T. Hung, S.-L. Huang, and S. H. Tseng, “Full EM wave simulation on optical coherence tomography: impact of surface roughness,” Proc. SPIE 8592, 859216 (2013).
[Crossref]

Radiophys. Quantum El. (1)

L. S. Dolin, “A theory of optical coherence tomography,” Radiophys. Quantum El. 41, 850–873 (1998).
[Crossref]

T. Opt. Inst. Petrograd (1)

V. S. Ignatowsky, “Diffraction by a lens of arbitrary aperture,” T. Opt. Inst. Petrograd 1, 1–36 (1919).

Other (11)

R. Luneburg, Mathematical Theory of Optics (University of California, Berkeley and Los Angeles, 1966).

P. Török, “An imaging theory for advanced, high numerical aperture optical microscopes,” D.Sc. Thesis (2004).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1988).

I. R. Capoglu, A. Taflove, and V. Backman, “FDTD simulation of a partially-coherent Gaussian Schell-model beam,” in IEEE International Symposium on Antennas and Propagation (IEEE, 2011), pp. 2286–2288.

A. Oskooi and S. G. Johnson, “Electromagnetic wave source conditions,” in Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology, A. Taflove, A. Oskooi, and S. G. Johnson, eds. (Artech House, 2013), pp. 65–96.

A. Taflove and S. Hagness, Computational Electrodynamics, 3 (Artech House, 2005).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
[Crossref]

I. R. Capoglu, J. D. Rogers, A. Taflove, and V. Backman, “Chapter – 1: The microscope in a computer: image synthesis from three-dimensional full-vector solutions of Maxwell’s equations at the nanometer scale,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2012), 57, pp. 1–91.
[Crossref]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, 1983).

J. A. Izatt and M. A. Choma, “Theory of optical coherence tomography,” in Optical Coherence Tomography, Theory and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer, 2008), pp. 47–72.
[Crossref]

M. Born and E. Wolf, Principles of Optics, 7 (Cambridge University, 1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

a) A schematic diagram of a spectral-domain OCT system containing a light source (LS), lenses (L1 – L4), beam splitter (BS), sample (S) and detector (D); b) A typical ray of the geometrical optics field, ε0(s, k). Phase and amplitude modulation are described by Ai(s) whilst refraction by L2 is described by [Lij]; c) A 4f system which images the light scattered by the sample onto a detector or into the guided mode of an optical fiber with any aberrations being represented by the phase modulation Ad(s).

Fig. 2
Fig. 2

Schematic diagram of where the source field is introduced, Sinc, and where the scattered field is recorded, Ssc, in FDTD simulations. PML stands for perfectly matched layer.

Fig. 3
Fig. 3

Plots of numerical phase refractive index ñp and numerical group refractive index ñg for air (n0 = 1) and dielectric material (n0 = 1.42). The horizontal axis represents the continuous case wavelength.

Fig. 4
Fig. 4

OCT A-scans for 5 (left) and 20 (right) thin sheets of material with refractive index 1.42, embedded in a background of refractive index 1. The locations of the sheets are indicated by vertical lines.

Fig. 5
Fig. 5

Images and plots which demonstrate the depth-dependent PSFs employed in OCT by simulating images of 24 scatterers arranged equidistantly along the optical axis. (left) Each image corresponds to a different detector sensitivity function: D = (Dpt,0,0)T, D = (Dint,0,0)T and D = (Dext,0,0)T. (upper right) Transverse line plots corresponding to PSFs at three axial depths for each detector sensitivity function. (lower right) Axial line scans corresponding to the three detector sensitivity functions. The envelope function of the PSFs has been plotted to illustrate the confocal function for each case.

Fig. 6
Fig. 6

a) Schematic diagram of the physical phantom reported in [40]. Imaging is performed from above the sample as demonstrated by the objective lens (not to scale). b) OCT image of the phantom acquired with a Telesto II system, showing the lettering feature at the centre and the auto-correlation image at the top. The nearly horizontal line depicts the top of the phantom’s embedding medium, from which light reflects, leading to the faintest “OBEL” image.

Fig. 7
Fig. 7

Diagram showing how a collection of spherical scatterers in a three-dimensional beam (left) can be approximated in a two-dimensional system (right) where fields and scatterers extend uniformly in the y direction. The scatterers are, thus, cylinders, depicted as circles in the xz plane.

Fig. 8
Fig. 8

a) Schematic diagram of the numerical phantom for which OCT image formation was simulated. The scatterers are not to scale; b) Magnitudes of the principal field component for the TM and TE cases, respectively, normalized by the in-focus free space field magnitude; c) Experimental OCT image of the physical phantom; d) Experimentally acquired auto-correlation image of the physical phantom; e) Simulated OCT image of the numerical phantom for the TM case; f) Simulated auto-correlation image of the numerical phantom for the TM case; g) Simulated OCT image of the numerical phantom for the TE case; h) Simulated auto-correlation image of the numerical phantom for the TE case. The scale bars in each image indicate 50μm. The axial scale represents physical distance, scaled using the refractive index of silicone (1.42) for the experimental images and the mean group numerical refractive index for the simulated cases (1.48, see Fig. 3).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I t o t ( k ) = S ( k ) | D diag ( D ( r d ) ) E t o t ( r d , k ) d S | 2 ,
E i n c ( r s , k ) = i k f 2 π s x 2 + s y 2 NA 2 A i ( s ) [ L i j ] ε 0 ( s , k ) exp ( i k s r s ) d s x d s y s z ,
J s * ( t ) = R { k ^ × E i n c ( r s , k 0 ) exp ( ω 0 ( t t 0 ) ) exp ( π ( ( t t 0 ) / W ) 2 ) } ,
I t o t ( k ) = I r e f ( k ) + I s c ( k ) + I i n t ( k ) ,
n ˜ g = n ˜ p λ ˜ d n ˜ p d λ ˜ .

Metrics