Abstract

Ballistic imaging commonly denotes the formation of line-of-sight shadowgraphs through turbid media by suppression of multiply scattered photons. The technique relies on a femtosecond laser acting as light source for the images and as switch for an optical Kerr gate that separates ballistic photons from multiply scattered ones. The achievable image resolution is one major limitation for the investigation of small objects. In this study, practical influences on the optical Kerr gate and image quality are discussed theoretically and experimentally applying a switching beam with large aperture (D = 19mm). It is shown how switching pulse energy and synchronization of switching and imaging pulse in the Kerr cell influence the gate’s transmission. Image quality of ballistic imaging and standard shadowgraphy is evaluated and compared, showing that the present ballistic imaging setup is advantageous for optical densities in the range of 8 < OD < 13. Owing to the spatial transmission characteristics of the optical Kerr gate, a rectangular aperture stop is formed, which leads to different resolution limits for vertical and horizontal structures in the object. Furthermore, it is reported how to convert the ballistic imaging setup into a schlieren-type system with an optical schlieren edge.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
    [CrossRef] [PubMed]
  2. R. R. Alfano, S. G. Demos, P. Galland, S. K. Gayen, Yici Guo, P. P. Ho, X. Liang, F. Liu, L. Wang, Q. Z. Wang, W. B. Wang, “Time-resolved and nonlinear optical imaging for medical applications,” Ann. N. Y. Acad. Sci. 838, 14–28 (1998).
    [CrossRef] [PubMed]
  3. M. Paciaroni, M. Linne, “Single-shot, two-dimensional ballistic imaging through scattering media,” Appl. Opt. 43(26), 5100–5109 (2004).
    [CrossRef] [PubMed]
  4. M. Paciaroni, Time-gated Ballistic Imaging Through Scattering Media with Applications to Liquid Spray Combustion (Ph.D. thesis, Division of Engineering, Colorado School of Mines, 2004).
  5. M. Linne, M. Paciaroni, T. Hall, T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40(6), 836–846 (2006).
    [CrossRef]
  6. M. Linne, M. Paciaroni, E. Berrocal, D. Sedarsky, “Ballistic imaging of liquid breakup processes in dense sprays,” Proc. Comb. Inst. 32(2), 2147–2161 (2009).
    [CrossRef]
  7. D. Sedarsky, Ballistic Imaging of Transient Phenomena in Turbid Media (Ph.D. thesis, Division of Combustion Physics, Lund University, 2009).
  8. M. Linne, D. Sedarsky, T. Meyer, J. Gord, C. Carter, “Ballistic imaging in the near field of an effervescent spray,” Exp. Fluids 49(4), 911–923 (2009).
    [CrossRef]
  9. D. Sedarsky, E. Berrocal, M. Linne, “Quantitative image contrast enhancement in time-gated transillumination of scattering media,” Opt. Express 19(3), 1866–1883 (2011).
    [CrossRef] [PubMed]
  10. S. Idlahcen, L. Méès, C. Rozé, T. Girasole, J.-B. Blaisot, “Time gate, optical layout, and wavelength effects on ballistic imaging,” J. Opt. Soc. Am. A 26(9), 1995–2004 (2009).
    [CrossRef]
  11. K. Sala, M. C. Richardson, “Optical Kerr effect induced by ultrashort laser pulses,” Phys. Rev. A 12(3), 1036–1047 (1975).
    [CrossRef]
  12. P. P. Ho, R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20(5), 2170–2187 (1979).
    [CrossRef]
  13. A. Samoc, “Dispersion of refractive properties of solvents: Chloroform, Toluene, Benzene, and Carbon Disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94(9), 6167–6174 (2003).
    [CrossRef]
  14. J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena, 2nd Edition (Elsevier, 2006).
  15. D. Sedarsky, M. Paciaroni, J. Zelina, M. Linne, “Near field fluid structure analysis for jets in crossflow with ballistic imaging,” 20th ILASS Americas, Chicago, IL (2007).
  16. C. Torres-Torres, A. V. Khomenko, L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, W. H. Watson, “Measurements of nonlinear optical refraction and absorption in an amino-triazole push-pull derivative by a vectorial self-diffraction method,” Opt. Commun. 281(12), 3369–3374 (2008).
    [CrossRef]
  17. G. S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer, 2001).
    [CrossRef]
  18. E. Hecht, Optics, 4th Edition (Addison Wesley Longman, 2002).
  19. R. R. Alfano, eds, Semiconductors Probed by Ultrafast Laser Spectroscopy, Volume II (Academic, 1984).
  20. E. R. Ippen, C. V. Shank, “Picosecond response of a high-repetition-rate CS2 optical Kerr gate,” Appl. Phys. Lett. 26(3), 92–93 (1974).
    [CrossRef]

2011 (1)

2009 (3)

S. Idlahcen, L. Méès, C. Rozé, T. Girasole, J.-B. Blaisot, “Time gate, optical layout, and wavelength effects on ballistic imaging,” J. Opt. Soc. Am. A 26(9), 1995–2004 (2009).
[CrossRef]

M. Linne, M. Paciaroni, E. Berrocal, D. Sedarsky, “Ballistic imaging of liquid breakup processes in dense sprays,” Proc. Comb. Inst. 32(2), 2147–2161 (2009).
[CrossRef]

M. Linne, D. Sedarsky, T. Meyer, J. Gord, C. Carter, “Ballistic imaging in the near field of an effervescent spray,” Exp. Fluids 49(4), 911–923 (2009).
[CrossRef]

2008 (1)

C. Torres-Torres, A. V. Khomenko, L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, W. H. Watson, “Measurements of nonlinear optical refraction and absorption in an amino-triazole push-pull derivative by a vectorial self-diffraction method,” Opt. Commun. 281(12), 3369–3374 (2008).
[CrossRef]

2006 (1)

M. Linne, M. Paciaroni, T. Hall, T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40(6), 836–846 (2006).
[CrossRef]

2004 (1)

2003 (1)

A. Samoc, “Dispersion of refractive properties of solvents: Chloroform, Toluene, Benzene, and Carbon Disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94(9), 6167–6174 (2003).
[CrossRef]

1998 (1)

R. R. Alfano, S. G. Demos, P. Galland, S. K. Gayen, Yici Guo, P. P. Ho, X. Liang, F. Liu, L. Wang, Q. Z. Wang, W. B. Wang, “Time-resolved and nonlinear optical imaging for medical applications,” Ann. N. Y. Acad. Sci. 838, 14–28 (1998).
[CrossRef] [PubMed]

1991 (1)

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

1979 (1)

P. P. Ho, R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20(5), 2170–2187 (1979).
[CrossRef]

1975 (1)

K. Sala, M. C. Richardson, “Optical Kerr effect induced by ultrashort laser pulses,” Phys. Rev. A 12(3), 1036–1047 (1975).
[CrossRef]

1974 (1)

E. R. Ippen, C. V. Shank, “Picosecond response of a high-repetition-rate CS2 optical Kerr gate,” Appl. Phys. Lett. 26(3), 92–93 (1974).
[CrossRef]

Alfano, R. R.

R. R. Alfano, S. G. Demos, P. Galland, S. K. Gayen, Yici Guo, P. P. Ho, X. Liang, F. Liu, L. Wang, Q. Z. Wang, W. B. Wang, “Time-resolved and nonlinear optical imaging for medical applications,” Ann. N. Y. Acad. Sci. 838, 14–28 (1998).
[CrossRef] [PubMed]

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

P. P. Ho, R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20(5), 2170–2187 (1979).
[CrossRef]

Berrocal, E.

D. Sedarsky, E. Berrocal, M. Linne, “Quantitative image contrast enhancement in time-gated transillumination of scattering media,” Opt. Express 19(3), 1866–1883 (2011).
[CrossRef] [PubMed]

M. Linne, M. Paciaroni, E. Berrocal, D. Sedarsky, “Ballistic imaging of liquid breakup processes in dense sprays,” Proc. Comb. Inst. 32(2), 2147–2161 (2009).
[CrossRef]

Blaisot, J.-B.

Carter, C.

M. Linne, D. Sedarsky, T. Meyer, J. Gord, C. Carter, “Ballistic imaging in the near field of an effervescent spray,” Exp. Fluids 49(4), 911–923 (2009).
[CrossRef]

Demos, S. G.

R. R. Alfano, S. G. Demos, P. Galland, S. K. Gayen, Yici Guo, P. P. Ho, X. Liang, F. Liu, L. Wang, Q. Z. Wang, W. B. Wang, “Time-resolved and nonlinear optical imaging for medical applications,” Ann. N. Y. Acad. Sci. 838, 14–28 (1998).
[CrossRef] [PubMed]

Diels, J.-C.

J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena, 2nd Edition (Elsevier, 2006).

Galland, P.

R. R. Alfano, S. G. Demos, P. Galland, S. K. Gayen, Yici Guo, P. P. Ho, X. Liang, F. Liu, L. Wang, Q. Z. Wang, W. B. Wang, “Time-resolved and nonlinear optical imaging for medical applications,” Ann. N. Y. Acad. Sci. 838, 14–28 (1998).
[CrossRef] [PubMed]

Gayen, S. K.

R. R. Alfano, S. G. Demos, P. Galland, S. K. Gayen, Yici Guo, P. P. Ho, X. Liang, F. Liu, L. Wang, Q. Z. Wang, W. B. Wang, “Time-resolved and nonlinear optical imaging for medical applications,” Ann. N. Y. Acad. Sci. 838, 14–28 (1998).
[CrossRef] [PubMed]

Girasole, T.

Gord, J.

M. Linne, D. Sedarsky, T. Meyer, J. Gord, C. Carter, “Ballistic imaging in the near field of an effervescent spray,” Exp. Fluids 49(4), 911–923 (2009).
[CrossRef]

Guo, Yici

R. R. Alfano, S. G. Demos, P. Galland, S. K. Gayen, Yici Guo, P. P. Ho, X. Liang, F. Liu, L. Wang, Q. Z. Wang, W. B. Wang, “Time-resolved and nonlinear optical imaging for medical applications,” Ann. N. Y. Acad. Sci. 838, 14–28 (1998).
[CrossRef] [PubMed]

Hall, T.

M. Linne, M. Paciaroni, T. Hall, T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40(6), 836–846 (2006).
[CrossRef]

Hecht, E.

E. Hecht, Optics, 4th Edition (Addison Wesley Longman, 2002).

Ho, P. P.

R. R. Alfano, S. G. Demos, P. Galland, S. K. Gayen, Yici Guo, P. P. Ho, X. Liang, F. Liu, L. Wang, Q. Z. Wang, W. B. Wang, “Time-resolved and nonlinear optical imaging for medical applications,” Ann. N. Y. Acad. Sci. 838, 14–28 (1998).
[CrossRef] [PubMed]

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

P. P. Ho, R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20(5), 2170–2187 (1979).
[CrossRef]

Idlahcen, S.

Ippen, E. R.

E. R. Ippen, C. V. Shank, “Picosecond response of a high-repetition-rate CS2 optical Kerr gate,” Appl. Phys. Lett. 26(3), 92–93 (1974).
[CrossRef]

Khomenko, A. V.

C. Torres-Torres, A. V. Khomenko, L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, W. H. Watson, “Measurements of nonlinear optical refraction and absorption in an amino-triazole push-pull derivative by a vectorial self-diffraction method,” Opt. Commun. 281(12), 3369–3374 (2008).
[CrossRef]

Liang, X.

R. R. Alfano, S. G. Demos, P. Galland, S. K. Gayen, Yici Guo, P. P. Ho, X. Liang, F. Liu, L. Wang, Q. Z. Wang, W. B. Wang, “Time-resolved and nonlinear optical imaging for medical applications,” Ann. N. Y. Acad. Sci. 838, 14–28 (1998).
[CrossRef] [PubMed]

Linne, M.

D. Sedarsky, E. Berrocal, M. Linne, “Quantitative image contrast enhancement in time-gated transillumination of scattering media,” Opt. Express 19(3), 1866–1883 (2011).
[CrossRef] [PubMed]

M. Linne, M. Paciaroni, E. Berrocal, D. Sedarsky, “Ballistic imaging of liquid breakup processes in dense sprays,” Proc. Comb. Inst. 32(2), 2147–2161 (2009).
[CrossRef]

M. Linne, D. Sedarsky, T. Meyer, J. Gord, C. Carter, “Ballistic imaging in the near field of an effervescent spray,” Exp. Fluids 49(4), 911–923 (2009).
[CrossRef]

M. Linne, M. Paciaroni, T. Hall, T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40(6), 836–846 (2006).
[CrossRef]

M. Paciaroni, M. Linne, “Single-shot, two-dimensional ballistic imaging through scattering media,” Appl. Opt. 43(26), 5100–5109 (2004).
[CrossRef] [PubMed]

D. Sedarsky, M. Paciaroni, J. Zelina, M. Linne, “Near field fluid structure analysis for jets in crossflow with ballistic imaging,” 20th ILASS Americas, Chicago, IL (2007).

Liu, C.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Liu, F.

R. R. Alfano, S. G. Demos, P. Galland, S. K. Gayen, Yici Guo, P. P. Ho, X. Liang, F. Liu, L. Wang, Q. Z. Wang, W. B. Wang, “Time-resolved and nonlinear optical imaging for medical applications,” Ann. N. Y. Acad. Sci. 838, 14–28 (1998).
[CrossRef] [PubMed]

Mao, Y.

C. Torres-Torres, A. V. Khomenko, L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, W. H. Watson, “Measurements of nonlinear optical refraction and absorption in an amino-triazole push-pull derivative by a vectorial self-diffraction method,” Opt. Commun. 281(12), 3369–3374 (2008).
[CrossRef]

Méès, L.

Meyer, T.

M. Linne, D. Sedarsky, T. Meyer, J. Gord, C. Carter, “Ballistic imaging in the near field of an effervescent spray,” Exp. Fluids 49(4), 911–923 (2009).
[CrossRef]

Paciaroni, M.

M. Linne, M. Paciaroni, E. Berrocal, D. Sedarsky, “Ballistic imaging of liquid breakup processes in dense sprays,” Proc. Comb. Inst. 32(2), 2147–2161 (2009).
[CrossRef]

M. Linne, M. Paciaroni, T. Hall, T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40(6), 836–846 (2006).
[CrossRef]

M. Paciaroni, M. Linne, “Single-shot, two-dimensional ballistic imaging through scattering media,” Appl. Opt. 43(26), 5100–5109 (2004).
[CrossRef] [PubMed]

M. Paciaroni, Time-gated Ballistic Imaging Through Scattering Media with Applications to Liquid Spray Combustion (Ph.D. thesis, Division of Engineering, Colorado School of Mines, 2004).

D. Sedarsky, M. Paciaroni, J. Zelina, M. Linne, “Near field fluid structure analysis for jets in crossflow with ballistic imaging,” 20th ILASS Americas, Chicago, IL (2007).

Parker, T.

M. Linne, M. Paciaroni, T. Hall, T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40(6), 836–846 (2006).
[CrossRef]

Rangel-Rojo, R.

C. Torres-Torres, A. V. Khomenko, L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, W. H. Watson, “Measurements of nonlinear optical refraction and absorption in an amino-triazole push-pull derivative by a vectorial self-diffraction method,” Opt. Commun. 281(12), 3369–3374 (2008).
[CrossRef]

Richardson, M. C.

K. Sala, M. C. Richardson, “Optical Kerr effect induced by ultrashort laser pulses,” Phys. Rev. A 12(3), 1036–1047 (1975).
[CrossRef]

Rozé, C.

Rudolph, W.

J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena, 2nd Edition (Elsevier, 2006).

Sala, K.

K. Sala, M. C. Richardson, “Optical Kerr effect induced by ultrashort laser pulses,” Phys. Rev. A 12(3), 1036–1047 (1975).
[CrossRef]

Samoc, A.

A. Samoc, “Dispersion of refractive properties of solvents: Chloroform, Toluene, Benzene, and Carbon Disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94(9), 6167–6174 (2003).
[CrossRef]

Sedarsky, D.

D. Sedarsky, E. Berrocal, M. Linne, “Quantitative image contrast enhancement in time-gated transillumination of scattering media,” Opt. Express 19(3), 1866–1883 (2011).
[CrossRef] [PubMed]

M. Linne, M. Paciaroni, E. Berrocal, D. Sedarsky, “Ballistic imaging of liquid breakup processes in dense sprays,” Proc. Comb. Inst. 32(2), 2147–2161 (2009).
[CrossRef]

M. Linne, D. Sedarsky, T. Meyer, J. Gord, C. Carter, “Ballistic imaging in the near field of an effervescent spray,” Exp. Fluids 49(4), 911–923 (2009).
[CrossRef]

D. Sedarsky, M. Paciaroni, J. Zelina, M. Linne, “Near field fluid structure analysis for jets in crossflow with ballistic imaging,” 20th ILASS Americas, Chicago, IL (2007).

D. Sedarsky, Ballistic Imaging of Transient Phenomena in Turbid Media (Ph.D. thesis, Division of Combustion Physics, Lund University, 2009).

Settles, G. S.

G. S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer, 2001).
[CrossRef]

Shank, C. V.

E. R. Ippen, C. V. Shank, “Picosecond response of a high-repetition-rate CS2 optical Kerr gate,” Appl. Phys. Lett. 26(3), 92–93 (1974).
[CrossRef]

Tamayo-Rivera, L.

C. Torres-Torres, A. V. Khomenko, L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, W. H. Watson, “Measurements of nonlinear optical refraction and absorption in an amino-triazole push-pull derivative by a vectorial self-diffraction method,” Opt. Commun. 281(12), 3369–3374 (2008).
[CrossRef]

Torres-Torres, C.

C. Torres-Torres, A. V. Khomenko, L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, W. H. Watson, “Measurements of nonlinear optical refraction and absorption in an amino-triazole push-pull derivative by a vectorial self-diffraction method,” Opt. Commun. 281(12), 3369–3374 (2008).
[CrossRef]

Wang, L.

R. R. Alfano, S. G. Demos, P. Galland, S. K. Gayen, Yici Guo, P. P. Ho, X. Liang, F. Liu, L. Wang, Q. Z. Wang, W. B. Wang, “Time-resolved and nonlinear optical imaging for medical applications,” Ann. N. Y. Acad. Sci. 838, 14–28 (1998).
[CrossRef] [PubMed]

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Wang, Q. Z.

R. R. Alfano, S. G. Demos, P. Galland, S. K. Gayen, Yici Guo, P. P. Ho, X. Liang, F. Liu, L. Wang, Q. Z. Wang, W. B. Wang, “Time-resolved and nonlinear optical imaging for medical applications,” Ann. N. Y. Acad. Sci. 838, 14–28 (1998).
[CrossRef] [PubMed]

Wang, W. B.

R. R. Alfano, S. G. Demos, P. Galland, S. K. Gayen, Yici Guo, P. P. Ho, X. Liang, F. Liu, L. Wang, Q. Z. Wang, W. B. Wang, “Time-resolved and nonlinear optical imaging for medical applications,” Ann. N. Y. Acad. Sci. 838, 14–28 (1998).
[CrossRef] [PubMed]

Watson, W. H.

C. Torres-Torres, A. V. Khomenko, L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, W. H. Watson, “Measurements of nonlinear optical refraction and absorption in an amino-triazole push-pull derivative by a vectorial self-diffraction method,” Opt. Commun. 281(12), 3369–3374 (2008).
[CrossRef]

Zelina, J.

D. Sedarsky, M. Paciaroni, J. Zelina, M. Linne, “Near field fluid structure analysis for jets in crossflow with ballistic imaging,” 20th ILASS Americas, Chicago, IL (2007).

Zhang, G.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Ann. N. Y. Acad. Sci. (1)

R. R. Alfano, S. G. Demos, P. Galland, S. K. Gayen, Yici Guo, P. P. Ho, X. Liang, F. Liu, L. Wang, Q. Z. Wang, W. B. Wang, “Time-resolved and nonlinear optical imaging for medical applications,” Ann. N. Y. Acad. Sci. 838, 14–28 (1998).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. R. Ippen, C. V. Shank, “Picosecond response of a high-repetition-rate CS2 optical Kerr gate,” Appl. Phys. Lett. 26(3), 92–93 (1974).
[CrossRef]

Exp. Fluids (2)

M. Linne, M. Paciaroni, T. Hall, T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40(6), 836–846 (2006).
[CrossRef]

M. Linne, D. Sedarsky, T. Meyer, J. Gord, C. Carter, “Ballistic imaging in the near field of an effervescent spray,” Exp. Fluids 49(4), 911–923 (2009).
[CrossRef]

J. Appl. Phys. (1)

A. Samoc, “Dispersion of refractive properties of solvents: Chloroform, Toluene, Benzene, and Carbon Disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94(9), 6167–6174 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

C. Torres-Torres, A. V. Khomenko, L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, W. H. Watson, “Measurements of nonlinear optical refraction and absorption in an amino-triazole push-pull derivative by a vectorial self-diffraction method,” Opt. Commun. 281(12), 3369–3374 (2008).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (2)

K. Sala, M. C. Richardson, “Optical Kerr effect induced by ultrashort laser pulses,” Phys. Rev. A 12(3), 1036–1047 (1975).
[CrossRef]

P. P. Ho, R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20(5), 2170–2187 (1979).
[CrossRef]

Proc. Comb. Inst. (1)

M. Linne, M. Paciaroni, E. Berrocal, D. Sedarsky, “Ballistic imaging of liquid breakup processes in dense sprays,” Proc. Comb. Inst. 32(2), 2147–2161 (2009).
[CrossRef]

Science (1)

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Other (7)

D. Sedarsky, Ballistic Imaging of Transient Phenomena in Turbid Media (Ph.D. thesis, Division of Combustion Physics, Lund University, 2009).

M. Paciaroni, Time-gated Ballistic Imaging Through Scattering Media with Applications to Liquid Spray Combustion (Ph.D. thesis, Division of Engineering, Colorado School of Mines, 2004).

J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena, 2nd Edition (Elsevier, 2006).

D. Sedarsky, M. Paciaroni, J. Zelina, M. Linne, “Near field fluid structure analysis for jets in crossflow with ballistic imaging,” 20th ILASS Americas, Chicago, IL (2007).

G. S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer, 2001).
[CrossRef]

E. Hecht, Optics, 4th Edition (Addison Wesley Longman, 2002).

R. R. Alfano, eds, Semiconductors Probed by Ultrafast Laser Spectroscopy, Volume II (Academic, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Sketch of an optical Kerr gate with axes definition used in this study.

Fig. 2
Fig. 2

Calculated temporal behavior of phase shift experienced by the imaging pulse and transmission of the optical Kerr gate according to Eqs. (15) neglecting spatial dependencies. Δϕe: electronic contribution to phase shift, Δϕo: molecular contribution to phase shift, Δϕtot = Δϕe + Δϕo. Calculation parameters: E 0 = 2.231 10 8 V m, τl = 42fs, λ = 800nm, θ = 45°, L = 10mm. Error bars were computed assuming fluctuations in pulse energy and pulse duration of 5%.

Fig. 3
Fig. 3

Spatial and temporal behavior of phase shift experienced by an imaging pulse according to Eqs. (15). The drawn horizontal line represents an arbitrary imaging pulse which experiences a phase shift only from y = 1.5 to 5.5 mm (phase shift profiles given in Fig. 4(a). Calculation parameters: E 0 = 2.231 10 8 V m, R = 9.5mm, τl = 42fs, α = 18.8°, λ = 800nm, θ = 45°, L = 10mm, n = 1.6056. (also compare [10])

Fig. 4
Fig. 4

Spatial phase shift behavior derived from simulation. a) Induced phase shift in radial direction for various synchronization timings between imaging and switching pulse, b) peak phase shift Δϕpeak (left ordinate) as function of synchronization timing and width at half maximum of the radial profiles ΔyFWHM (right ordinate).

Fig. 5
Fig. 5

Imaging setup and optical path of the 1f-system. The magnification of the system is M = f 2 f 1.

Fig. 6
Fig. 6

Optical path differences at the image plane for the 1f-system from Fig. 5 including polarizers and Kerr cell calculated with a commercial ray-trace code.

Fig. 7
Fig. 7

Experimental setup: the femtosecond pulse is initially split into imaging and switching pulse before they overlap in the Kerr cell with a characteristic angle α. The image is formed by two lenses (L1 and L2) surrounding the optical Kerr gate that consists of the Kerr Cell (KC) placed between two crossed polarizers (P1, P2).

Fig. 8
Fig. 8

Images of the transmitted pulse and related transmission curves without imaging optics. a) Cross section of raw pulse with both gate polarizers being parallel (no switching). b) An early imaging pulse at time step t0 leads to transmission at the edge of the Kerr cell. Delaying the imaging pulse, c) t0 + 4.7ps, d) t0 + 7.3ps, leads to transmission windows crossing the Kerr cell. Governing parameters according to Fig. 3.

Fig. 9
Fig. 9

Comparison of experimental and simulated transmission of the optical Kerr gate: a) temporal transmission profiles, b) peak values of the temporal profiles for various switching beam energies and intersection angles α. The error bars mark standard deviations of measured data from 50 consecutive repetitions.

Fig. 10
Fig. 10

Comparison of standard (no switching) and switched shadowgraph of the test target through pure water (no turbid medium).

Fig. 11
Fig. 11

Images of the test target for various turbid media.

Fig. 12
Fig. 12

Influence of optical density (OD) on image contrast for standard and ballistic shadowgraphs

Fig. 13
Fig. 13

Image sequence of the resolution test target for different synchronization timings: a) reference image (no switching), b) schlieren image (no switching, vertical knife edge inserted), c) transmitted image by Kerr switching at t0 and transmitted images for continuously delayed switching pulses: d) t0 − 2.7ps, e) t0 − 6ps, f) t0 − 6.7ps, g) t0 − 7.3ps, h) t0 − 8.7ps.

Tables (2)

Tables Icon

Table 1 Stop sizes D and diffraction limits Δlmin for the 1f-system employing the first lens (L1) with clear aperture of 23mm and focal length f1 of 150mm. Stop sizes for the Kerr cell are derived from simulation and thus denote their extent in y-direction (Fig. 4).

Tables Icon

Table 2: Part listing of the setup shown in Fig. 7, which was used in this study unless otherwise noted.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δ n = Δ n e + Δ n o
Δ n e = n 2 e E 2 ( r , t ) = 1 2 n 2 e E 0 2 exp [ ( t s / v τ 1 ) 2 ] exp [ 2 ( r R ) 2 ]
Δ n o = n 2 o E 0 2 τ 1 τ o π 4 erfc [ τ 1 2 τ o t s / v τ 1 ] exp [ ( τ 1 2 τ o ) 2 t s / v τ o ] exp [ 2 ( r R ) 2 ]
Δ ϕ = 0 L 2 π λ Δ n ( x ) d x
T = I T I 0 = sin 2 ( Δ ϕ 2 ) sin 2 ( 2 θ )
v = c n λ n λ = 1.809 10 8 m s
W = A t I ( r , t ) d t d A = ε 0 c n π 8 ln 2 E 0 2 τ p A cs
Δ l min = 1.22 λ f 1 D
O D = μ l = ln ( T )
μ = 13.346 1 g cm c susp
MTF = C ( f ) C ref , where : C ( f ) = I max I min I max + I min .

Metrics