Abstract

We demonstrate the proof-of-concept for developing a multi-color fluorescence imaging system based on plasmonic wavelength selection and double illumination by white light source. This technique is associated with fluorescence excitation by transmitted light via a diffraction of propagating surface plasmons. Since double illumination through both sides of isosceles triangle prism in the Kretschmann configuration enables multiple transmission beams of different wavelengths to interact with the specimen, our approach can be an alternative to conventional fluorescence detection owing to alignment stability and functional expandability. After fabricating a plasmonic wavelength splitter and integrating it with microscopic imaging system, we successfully confirm the performance by visualizing in vitro neuron cells labeled with green and red fluorescence dyes. The suggested method has a potential that it could be combined with plasmonic biosensor scheme to realize a multi-functional platform which allows imaging and sensing of biological samples at the same time.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Lichtman, J.-A. Conchello, “Fluorescence microscopy,” Nat. Methods 2(12), 910–919 (2005).
    [CrossRef] [PubMed]
  2. P. T. Tran, F. Chang, “Transmitted light fluorescence microscopy revisited,” Biol. Bull. 201(2), 235–236 (2001).
    [CrossRef] [PubMed]
  3. S. E. Raza, A. Humayun, S. Abouna, T. W. Nattkemper, D. B. A. Epstein, M. Khan, N. M. Rajpoot, “RAMTaB: Robust alignment of multi-tag bioimages,” PLoS ONE 7(2), e30894 (2012).
    [CrossRef] [PubMed]
  4. P. Matula, M. Kozubek, F. Staier, M. Hausmann, “Precise 3D image alignment in micro-axial tomography,” J. Microsc. 209(2), 126–142 (2003).
    [CrossRef] [PubMed]
  5. J.-C. Song, W. K. Jung, N.-H. Kim, K. M. Byun, “Plasmonic wavelength splitter based on a large-area dielectric grating and white light illumination,” Opt. Lett. 37(18), 3915–3917 (2012).
    [CrossRef] [PubMed]
  6. W. K. Jung, N.-H. Kim, K. M. Byun, “Development of a large-area plasmonic sensor substrate with dielectric subwavelength gratings using nanoimprint lithography,” J. Biomed. Nanotechnol. 9(4), 685–688 (2013).
    [CrossRef] [PubMed]
  7. M. G. Moharam, D. A. Pommet, E. B. Grann, T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995).
    [CrossRef]
  8. Y. Kanamori, K. Hane, H. Sai, H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78(2), 142 (2001).
    [CrossRef]
  9. Q. Cao, P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
    [CrossRef] [PubMed]
  10. K. M. Byun, S. J. Yoon, D. Kim, S. J. Kim, “Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires,” Opt. Lett. 32(13), 1902–1904 (2007).
    [CrossRef] [PubMed]
  11. L. Li, C. W. Haggans, “Convergence of the coupled-wave method for metallic lamellar diffraction gratings,” J. Opt. Soc. Am. A 10(6), 1184–1189 (1993).
    [CrossRef]
  12. S. H. Jeong, S. B. Jun, J. K. Song, S. J. Kim, “Activity-dependent neuronal cell migration induced by electrical stimulation,” Med. Biol. Eng. Comput. 47(1), 93–99 (2009).
    [CrossRef] [PubMed]
  13. T. L. Fletcher, P. Cameron, P. De Camilli, G. Banker, “The distribution of synapsin I and synaptophysin in hippocampal neurons developing in culture,” J. Neurosci. 11(6), 1617–1626 (1991).
    [PubMed]
  14. S. H. Choi, S. J. Kim, K. M. Byun, “Design study for transmission improvement of resonant surface plasmons using dielectric diffraction gratings,” Appl. Opt. 48(15), 2924–2931 (2009).
    [CrossRef] [PubMed]
  15. K. M. Byun, S. J. Kim, D. Kim, “Grating-coupled transmission-type surface plasmon resonance sensors based on dielectric and metallic gratings,” Appl. Opt. 46(23), 5703–5708 (2007).
    [CrossRef] [PubMed]

2013 (1)

W. K. Jung, N.-H. Kim, K. M. Byun, “Development of a large-area plasmonic sensor substrate with dielectric subwavelength gratings using nanoimprint lithography,” J. Biomed. Nanotechnol. 9(4), 685–688 (2013).
[CrossRef] [PubMed]

2012 (2)

J.-C. Song, W. K. Jung, N.-H. Kim, K. M. Byun, “Plasmonic wavelength splitter based on a large-area dielectric grating and white light illumination,” Opt. Lett. 37(18), 3915–3917 (2012).
[CrossRef] [PubMed]

S. E. Raza, A. Humayun, S. Abouna, T. W. Nattkemper, D. B. A. Epstein, M. Khan, N. M. Rajpoot, “RAMTaB: Robust alignment of multi-tag bioimages,” PLoS ONE 7(2), e30894 (2012).
[CrossRef] [PubMed]

2009 (2)

S. H. Jeong, S. B. Jun, J. K. Song, S. J. Kim, “Activity-dependent neuronal cell migration induced by electrical stimulation,” Med. Biol. Eng. Comput. 47(1), 93–99 (2009).
[CrossRef] [PubMed]

S. H. Choi, S. J. Kim, K. M. Byun, “Design study for transmission improvement of resonant surface plasmons using dielectric diffraction gratings,” Appl. Opt. 48(15), 2924–2931 (2009).
[CrossRef] [PubMed]

2007 (2)

2005 (1)

J. W. Lichtman, J.-A. Conchello, “Fluorescence microscopy,” Nat. Methods 2(12), 910–919 (2005).
[CrossRef] [PubMed]

2003 (1)

P. Matula, M. Kozubek, F. Staier, M. Hausmann, “Precise 3D image alignment in micro-axial tomography,” J. Microsc. 209(2), 126–142 (2003).
[CrossRef] [PubMed]

2002 (1)

Q. Cao, P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

2001 (2)

P. T. Tran, F. Chang, “Transmitted light fluorescence microscopy revisited,” Biol. Bull. 201(2), 235–236 (2001).
[CrossRef] [PubMed]

Y. Kanamori, K. Hane, H. Sai, H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78(2), 142 (2001).
[CrossRef]

1995 (1)

1993 (1)

1991 (1)

T. L. Fletcher, P. Cameron, P. De Camilli, G. Banker, “The distribution of synapsin I and synaptophysin in hippocampal neurons developing in culture,” J. Neurosci. 11(6), 1617–1626 (1991).
[PubMed]

Abouna, S.

S. E. Raza, A. Humayun, S. Abouna, T. W. Nattkemper, D. B. A. Epstein, M. Khan, N. M. Rajpoot, “RAMTaB: Robust alignment of multi-tag bioimages,” PLoS ONE 7(2), e30894 (2012).
[CrossRef] [PubMed]

Banker, G.

T. L. Fletcher, P. Cameron, P. De Camilli, G. Banker, “The distribution of synapsin I and synaptophysin in hippocampal neurons developing in culture,” J. Neurosci. 11(6), 1617–1626 (1991).
[PubMed]

Byun, K. M.

Cameron, P.

T. L. Fletcher, P. Cameron, P. De Camilli, G. Banker, “The distribution of synapsin I and synaptophysin in hippocampal neurons developing in culture,” J. Neurosci. 11(6), 1617–1626 (1991).
[PubMed]

Cao, Q.

Q. Cao, P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

Chang, F.

P. T. Tran, F. Chang, “Transmitted light fluorescence microscopy revisited,” Biol. Bull. 201(2), 235–236 (2001).
[CrossRef] [PubMed]

Choi, S. H.

Conchello, J.-A.

J. W. Lichtman, J.-A. Conchello, “Fluorescence microscopy,” Nat. Methods 2(12), 910–919 (2005).
[CrossRef] [PubMed]

De Camilli, P.

T. L. Fletcher, P. Cameron, P. De Camilli, G. Banker, “The distribution of synapsin I and synaptophysin in hippocampal neurons developing in culture,” J. Neurosci. 11(6), 1617–1626 (1991).
[PubMed]

Epstein, D. B. A.

S. E. Raza, A. Humayun, S. Abouna, T. W. Nattkemper, D. B. A. Epstein, M. Khan, N. M. Rajpoot, “RAMTaB: Robust alignment of multi-tag bioimages,” PLoS ONE 7(2), e30894 (2012).
[CrossRef] [PubMed]

Fletcher, T. L.

T. L. Fletcher, P. Cameron, P. De Camilli, G. Banker, “The distribution of synapsin I and synaptophysin in hippocampal neurons developing in culture,” J. Neurosci. 11(6), 1617–1626 (1991).
[PubMed]

Gaylord, T. K.

Grann, E. B.

Haggans, C. W.

Hane, K.

Y. Kanamori, K. Hane, H. Sai, H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78(2), 142 (2001).
[CrossRef]

Hausmann, M.

P. Matula, M. Kozubek, F. Staier, M. Hausmann, “Precise 3D image alignment in micro-axial tomography,” J. Microsc. 209(2), 126–142 (2003).
[CrossRef] [PubMed]

Humayun, A.

S. E. Raza, A. Humayun, S. Abouna, T. W. Nattkemper, D. B. A. Epstein, M. Khan, N. M. Rajpoot, “RAMTaB: Robust alignment of multi-tag bioimages,” PLoS ONE 7(2), e30894 (2012).
[CrossRef] [PubMed]

Jeong, S. H.

S. H. Jeong, S. B. Jun, J. K. Song, S. J. Kim, “Activity-dependent neuronal cell migration induced by electrical stimulation,” Med. Biol. Eng. Comput. 47(1), 93–99 (2009).
[CrossRef] [PubMed]

Jun, S. B.

S. H. Jeong, S. B. Jun, J. K. Song, S. J. Kim, “Activity-dependent neuronal cell migration induced by electrical stimulation,” Med. Biol. Eng. Comput. 47(1), 93–99 (2009).
[CrossRef] [PubMed]

Jung, W. K.

W. K. Jung, N.-H. Kim, K. M. Byun, “Development of a large-area plasmonic sensor substrate with dielectric subwavelength gratings using nanoimprint lithography,” J. Biomed. Nanotechnol. 9(4), 685–688 (2013).
[CrossRef] [PubMed]

J.-C. Song, W. K. Jung, N.-H. Kim, K. M. Byun, “Plasmonic wavelength splitter based on a large-area dielectric grating and white light illumination,” Opt. Lett. 37(18), 3915–3917 (2012).
[CrossRef] [PubMed]

Kanamori, Y.

Y. Kanamori, K. Hane, H. Sai, H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78(2), 142 (2001).
[CrossRef]

Khan, M.

S. E. Raza, A. Humayun, S. Abouna, T. W. Nattkemper, D. B. A. Epstein, M. Khan, N. M. Rajpoot, “RAMTaB: Robust alignment of multi-tag bioimages,” PLoS ONE 7(2), e30894 (2012).
[CrossRef] [PubMed]

Kim, D.

Kim, N.-H.

W. K. Jung, N.-H. Kim, K. M. Byun, “Development of a large-area plasmonic sensor substrate with dielectric subwavelength gratings using nanoimprint lithography,” J. Biomed. Nanotechnol. 9(4), 685–688 (2013).
[CrossRef] [PubMed]

J.-C. Song, W. K. Jung, N.-H. Kim, K. M. Byun, “Plasmonic wavelength splitter based on a large-area dielectric grating and white light illumination,” Opt. Lett. 37(18), 3915–3917 (2012).
[CrossRef] [PubMed]

Kim, S. J.

Kozubek, M.

P. Matula, M. Kozubek, F. Staier, M. Hausmann, “Precise 3D image alignment in micro-axial tomography,” J. Microsc. 209(2), 126–142 (2003).
[CrossRef] [PubMed]

Lalanne, P.

Q. Cao, P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

Li, L.

Lichtman, J. W.

J. W. Lichtman, J.-A. Conchello, “Fluorescence microscopy,” Nat. Methods 2(12), 910–919 (2005).
[CrossRef] [PubMed]

Matula, P.

P. Matula, M. Kozubek, F. Staier, M. Hausmann, “Precise 3D image alignment in micro-axial tomography,” J. Microsc. 209(2), 126–142 (2003).
[CrossRef] [PubMed]

Moharam, M. G.

Nattkemper, T. W.

S. E. Raza, A. Humayun, S. Abouna, T. W. Nattkemper, D. B. A. Epstein, M. Khan, N. M. Rajpoot, “RAMTaB: Robust alignment of multi-tag bioimages,” PLoS ONE 7(2), e30894 (2012).
[CrossRef] [PubMed]

Pommet, D. A.

Rajpoot, N. M.

S. E. Raza, A. Humayun, S. Abouna, T. W. Nattkemper, D. B. A. Epstein, M. Khan, N. M. Rajpoot, “RAMTaB: Robust alignment of multi-tag bioimages,” PLoS ONE 7(2), e30894 (2012).
[CrossRef] [PubMed]

Raza, S. E.

S. E. Raza, A. Humayun, S. Abouna, T. W. Nattkemper, D. B. A. Epstein, M. Khan, N. M. Rajpoot, “RAMTaB: Robust alignment of multi-tag bioimages,” PLoS ONE 7(2), e30894 (2012).
[CrossRef] [PubMed]

Sai, H.

Y. Kanamori, K. Hane, H. Sai, H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78(2), 142 (2001).
[CrossRef]

Song, J. K.

S. H. Jeong, S. B. Jun, J. K. Song, S. J. Kim, “Activity-dependent neuronal cell migration induced by electrical stimulation,” Med. Biol. Eng. Comput. 47(1), 93–99 (2009).
[CrossRef] [PubMed]

Song, J.-C.

Staier, F.

P. Matula, M. Kozubek, F. Staier, M. Hausmann, “Precise 3D image alignment in micro-axial tomography,” J. Microsc. 209(2), 126–142 (2003).
[CrossRef] [PubMed]

Tran, P. T.

P. T. Tran, F. Chang, “Transmitted light fluorescence microscopy revisited,” Biol. Bull. 201(2), 235–236 (2001).
[CrossRef] [PubMed]

Yoon, S. J.

Yugami, H.

Y. Kanamori, K. Hane, H. Sai, H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78(2), 142 (2001).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Y. Kanamori, K. Hane, H. Sai, H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78(2), 142 (2001).
[CrossRef]

Biol. Bull. (1)

P. T. Tran, F. Chang, “Transmitted light fluorescence microscopy revisited,” Biol. Bull. 201(2), 235–236 (2001).
[CrossRef] [PubMed]

J. Biomed. Nanotechnol. (1)

W. K. Jung, N.-H. Kim, K. M. Byun, “Development of a large-area plasmonic sensor substrate with dielectric subwavelength gratings using nanoimprint lithography,” J. Biomed. Nanotechnol. 9(4), 685–688 (2013).
[CrossRef] [PubMed]

J. Microsc. (1)

P. Matula, M. Kozubek, F. Staier, M. Hausmann, “Precise 3D image alignment in micro-axial tomography,” J. Microsc. 209(2), 126–142 (2003).
[CrossRef] [PubMed]

J. Neurosci. (1)

T. L. Fletcher, P. Cameron, P. De Camilli, G. Banker, “The distribution of synapsin I and synaptophysin in hippocampal neurons developing in culture,” J. Neurosci. 11(6), 1617–1626 (1991).
[PubMed]

J. Opt. Soc. Am. A (2)

Med. Biol. Eng. Comput. (1)

S. H. Jeong, S. B. Jun, J. K. Song, S. J. Kim, “Activity-dependent neuronal cell migration induced by electrical stimulation,” Med. Biol. Eng. Comput. 47(1), 93–99 (2009).
[CrossRef] [PubMed]

Nat. Methods (1)

J. W. Lichtman, J.-A. Conchello, “Fluorescence microscopy,” Nat. Methods 2(12), 910–919 (2005).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

Q. Cao, P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

PLoS ONE (1)

S. E. Raza, A. Humayun, S. Abouna, T. W. Nattkemper, D. B. A. Epstein, M. Khan, N. M. Rajpoot, “RAMTaB: Robust alignment of multi-tag bioimages,” PLoS ONE 7(2), e30894 (2012).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Perspective image of the plasmonic wavelength splitter and its cross-sectional view. Dielectric SiO2 gratings are regularly patterned on a 45-nm thick planar gold film. The grating structure of a rectangular profile has a period of Λ, a width of w, and a thickness of d. When a TM-polarized white light is incident through a gold/titanium/SF10 substrate with an angle of θ, the resonant surface plasmon waves radiate into the air environment by diffraction gratings and the color of transmitted light is determined by the wavelength-dependence of SPR. As the high-order diffraction beams are suppressed for given grating period and thickness, only the first-order diffraction is considered as a transmission mode.

Fig. 2
Fig. 2

Experimental setup of multi-color fluorescence imaging system combined with a plasmonic wavelength splitter. Optical elements for double illumination include linear polarizer, 50:50 beam-splitter, mirrors, and electromechanical shutters. The image detection part consists of objective lens, emission filter, and CCD camera. Diameter of the transmitted beam is equal to 10 mm.

Fig. 3
Fig. 3

(a) Calculated relationship between incidence wavelength and resonance angle. (b) Resonance angle contrast and diffraction efficiency at λ = 600 nm, when a thickness of SiO2 grating varies from 0 to 150 nm in a step of 10 nm. With an increasing thickness, diffraction efficiency gradually grows over 20%, while SPR angle contrast between red and blue colors is decreased.

Fig. 4
Fig. 4

(a) Top-view and (b) cross-sectional scanning electron microscope images of a large-area grating pattern of the fabricated plasmonic wavelength splitter. Scale bar is 1 μm for (a) and 100 nm for (b). (c) Measured transmission spectra when an incidence angle of white light is varied. Illumination angle is 57° for blue, 55° for green, 49° for yellow, and 46° for red, respectively. (d) Comparison between experimental data and RCWA simulations for d = 100 nm. Error bars denote the FWHM values of transmission curves in Fig. 4(c).

Fig. 5
Fig. 5

Fluorescence intensity spectra obtained for (a) Alexa Fluor 488 and (b) Texas Red, depending on the polarization of white light. For TM-polarization, transmission light generated excites the given fluorescence sample effectively, while TE-polarized beam does not produce any fluorescence signal due to no excitation of surface plasmons.

Fig. 6
Fig. 6

Microscope images of neuron cells fixed on a glass substrate. (a) Bright field image. (b) Distribution of the presynaptic protein synaptophysin labeled by Alexa Fluor 488. (c) Labeling of dendrites and cell bodies using Texas Red with MAP-2 primary antibodies. Scale bar = 50 μm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k q = k SPR q K = k 0 ε p sin θ SPR q 2 π Λ .
θ q T = sin 1 ( k q / k 0 ) .

Metrics