C. Liu, R. L. Panetta, P. Yang, “Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200,” J. Quant. Spectrosc. Ra. 113, 1728–1740 (2012).

[CrossRef]

G. J. P. Corrêa, M. Spiegelman, S. Carbotte, J. C. C. Mutter, “Centered and staggered Fourier derivatives and Hilbert transforms,” Geophysics 67, 1558–1563 (2012).

[CrossRef]

J. Virieux, S. Operto, “An overview of full-waveform inversion
in exploration geophysics,”
Geophysics 74, WCC127 (2009).

[CrossRef]

Z. Lin, L. Thylen, “An analytical derivation of the optimum source patterns for the pseudospectral time-domain method,” J. Comput. Phys. 228, 7375–7387 (2009).

[CrossRef]

P. Török, P. R. T. Munro, E. E. Kriezis, “High numerical aperture vectorial
imaging in coherent optical microscopes,”
Opt. Express 16, 507–523
(2008).

G. Chen, P. Yang, G. Kattawar, “Application of the pseudospectral time-domain method to the scattering of light by nonspherical particles,” J. Opt. Soc. Am. A 25, 785–789 (2008).

[CrossRef]

S. H. Tseng, J. H. Greene, A. Taflove, D. Maitland, V. Backman, J. T. Walsh, “Exact solution of Maxwell’s equations for optical interactions with a macroscopic random medium: addendum,” Opt. Lett. 30, 56–57 (2005).

[CrossRef]
[PubMed]

S. H. Tseng, Y. L. Kim, A. Taflove, D. Maitland, V. Backman, J. T. Walsh, “Simulation of enhanced backscattering of light by numerically solving Maxwell’s equations without heuristic approximations,” Opt. Express 13, 3666–3672 (2005).

[CrossRef]
[PubMed]

S. H. Tseng, J. H. Greene, A. Taflove, D. Maitland, V. Backman, J. T. Walsh, “Exact solution of Maxwell’s
equations for optical interactions with a macroscopic random
medium,” Opt. Lett. 29, 1393–1395
(2004).

[CrossRef]
[PubMed]

T. -W. Lee, S. C. Hagness, “A compact wave source condition for the pseudospectral time-domain method,” IEEE Antenn. Wirel. Pr. 3, 253–256 (2004).

[CrossRef]

X. Gao, M. Mirotznik, D. Prather, “A method for introducing soft sources in the PSTD algorithm,” IEEE T. Antenn. Propag. 52, 1665–1671 (2004).

[CrossRef]

Q. Li, Y. Chen, C. Li, “Hybrid PSTD-FDTD technique for scattering analysis,” Microw. Opt. Techn. Lett. 34, 19–24 (2002).

[CrossRef]

Q. Liu, “Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm,” IEEE T. Geosci. Remote 37, 917–926 (1999).

[CrossRef]

Q. Liu, “The PSTD algorithm: A time-domain method requiring only two cells per wavelength,” Microw. Opt. Techn. Lett. 15, 158–165 (1997).

[CrossRef]

T. Özdenvar, G. A. McMechan, “Causes and reduction of numerical artefacts in pseudo-spectral wavefield extrapolation,” Geophy. J. Int. 126, 819–828 (1996).

[CrossRef]

H. -W. Chen, “Staggered-grid pseudospectral viscoacoustic wave field simulation in two-dimensional media,” J. Acoust. Soc. Am. 100, 120–131 (1996).

[CrossRef]

P. Petre, T. Sarkar, “Planar near-field to far-field transformation using an equivalent magnetic current approach,” IEEE T. Antenn. Propag. 40, 1348–1356 (1992).

[CrossRef]

D. Kosloff, E. Baysal, “Forward modeling by a Fourier method,” Geophysics 47, 1402–1412 (1982).

[CrossRef]

D. Merewether, R. Fisher, F. Smith, “On implementing a numeric Huygen’s source scheme in a finite difference program to illuminate scattering bodies,” IEEE T. Nucl. Sci. 27, 1829–1833 (1980).

[CrossRef]

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE T. Antenn. Propag. 14, 302–307 (1966).

[CrossRef]

B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems ii. Structure of the image field in an aplanatic system,” P. R. Soc. A 253, 358–379 (1959).

[CrossRef]

H. Levine, J. Schwinger, “On the theory of electromagnetic wave diffraction by an aperture in an infinite plane conducting screen,” Commun. Pur. Appl. Math. 3, 355–391 (1950).

[CrossRef]

J. A. Stratton, L. J. Chu, “Diffraction theory of electromagnetic waves,” Phys. Rev. 56, 99–107 (1939).

[CrossRef]

S. H. Tseng, Y. L. Kim, A. Taflove, D. Maitland, V. Backman, J. T. Walsh, “Simulation of enhanced backscattering of light by numerically solving Maxwell’s equations without heuristic approximations,” Opt. Express 13, 3666–3672 (2005).

[CrossRef]
[PubMed]

S. H. Tseng, J. H. Greene, A. Taflove, D. Maitland, V. Backman, J. T. Walsh, “Exact solution of Maxwell’s equations for optical interactions with a macroscopic random medium: addendum,” Opt. Lett. 30, 56–57 (2005).

[CrossRef]
[PubMed]

S. H. Tseng, J. H. Greene, A. Taflove, D. Maitland, V. Backman, J. T. Walsh, “Exact solution of Maxwell’s
equations for optical interactions with a macroscopic random
medium,” Opt. Lett. 29, 1393–1395
(2004).

[CrossRef]
[PubMed]

C. Balanis, Advanced Engineering Electromagnetics (John Wiley and Sons, 1989).

D. Kosloff, E. Baysal, “Forward modeling by a Fourier method,” Geophysics 47, 1402–1412 (1982).

[CrossRef]

G. J. P. Corrêa, M. Spiegelman, S. Carbotte, J. C. C. Mutter, “Centered and staggered Fourier derivatives and Hilbert transforms,” Geophysics 67, 1558–1563 (2012).

[CrossRef]

H. -W. Chen, “Staggered-grid pseudospectral viscoacoustic wave field simulation in two-dimensional media,” J. Acoust. Soc. Am. 100, 120–131 (1996).

[CrossRef]

Q. Li, Y. Chen, C. Li, “Hybrid PSTD-FDTD technique for scattering analysis,” Microw. Opt. Techn. Lett. 34, 19–24 (2002).

[CrossRef]

J. A. Stratton, L. J. Chu, “Diffraction theory of electromagnetic waves,” Phys. Rev. 56, 99–107 (1939).

[CrossRef]

V. Čížek, Discrete Fourier Transforms and Their Applications (Adam Hilger, 1986).

G. J. P. Corrêa, M. Spiegelman, S. Carbotte, J. C. C. Mutter, “Centered and staggered Fourier derivatives and Hilbert transforms,” Geophysics 67, 1558–1563 (2012).

[CrossRef]

D. Merewether, R. Fisher, F. Smith, “On implementing a numeric Huygen’s source scheme in a finite difference program to illuminate scattering bodies,” IEEE T. Nucl. Sci. 27, 1829–1833 (1980).

[CrossRef]

X. Gao, M. Mirotznik, D. Prather, “A method for introducing soft sources in the PSTD algorithm,” IEEE T. Antenn. Propag. 52, 1665–1671 (2004).

[CrossRef]

S. H. Tseng, J. H. Greene, A. Taflove, D. Maitland, V. Backman, J. T. Walsh, “Exact solution of Maxwell’s equations for optical interactions with a macroscopic random medium: addendum,” Opt. Lett. 30, 56–57 (2005).

[CrossRef]
[PubMed]

S. H. Tseng, J. H. Greene, A. Taflove, D. Maitland, V. Backman, J. T. Walsh, “Exact solution of Maxwell’s
equations for optical interactions with a macroscopic random
medium,” Opt. Lett. 29, 1393–1395
(2004).

[CrossRef]
[PubMed]

A. Taflove, S. Hagness, Computational Electrodynamics, Third Edition (Artech House, 2005).

T. -W. Lee, S. C. Hagness, “A compact wave source condition for the pseudospectral time-domain method,” IEEE Antenn. Wirel. Pr. 3, 253–256 (2004).

[CrossRef]

R. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, 1961).

A. Oskooi, S. G. Johnson, “Electromagnetic wave source conditions,” in Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology, A. Taflove, A. Oskooi, S. G. Johnson, eds. (Artech House, 2013), pp. 65–100.

D. Kosloff, E. Baysal, “Forward modeling by a Fourier method,” Geophysics 47, 1402–1412 (1982).

[CrossRef]

T. -W. Lee, S. C. Hagness, “A compact wave source condition for the pseudospectral time-domain method,” IEEE Antenn. Wirel. Pr. 3, 253–256 (2004).

[CrossRef]

H. Levine, J. Schwinger, “On the theory of electromagnetic wave diffraction by an aperture in an infinite plane conducting screen,” Commun. Pur. Appl. Math. 3, 355–391 (1950).

[CrossRef]

Q. Li, Y. Chen, C. Li, “Hybrid PSTD-FDTD technique for scattering analysis,” Microw. Opt. Techn. Lett. 34, 19–24 (2002).

[CrossRef]

Q. Li, Y. Chen, C. Li, “Hybrid PSTD-FDTD technique for scattering analysis,” Microw. Opt. Techn. Lett. 34, 19–24 (2002).

[CrossRef]

Z. Lin, L. Thylen, “An analytical derivation of the optimum source patterns for the pseudospectral time-domain method,” J. Comput. Phys. 228, 7375–7387 (2009).

[CrossRef]

C. Liu, R. L. Panetta, P. Yang, “Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200,” J. Quant. Spectrosc. Ra. 113, 1728–1740 (2012).

[CrossRef]

Q. Liu, “Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm,” IEEE T. Geosci. Remote 37, 917–926 (1999).

[CrossRef]

Q. Liu, “The PSTD algorithm: A time-domain method requiring only two cells per wavelength,” Microw. Opt. Techn. Lett. 15, 158–165 (1997).

[CrossRef]

S. H. Tseng, J. H. Greene, A. Taflove, D. Maitland, V. Backman, J. T. Walsh, “Exact solution of Maxwell’s equations for optical interactions with a macroscopic random medium: addendum,” Opt. Lett. 30, 56–57 (2005).

[CrossRef]
[PubMed]

S. H. Tseng, Y. L. Kim, A. Taflove, D. Maitland, V. Backman, J. T. Walsh, “Simulation of enhanced backscattering of light by numerically solving Maxwell’s equations without heuristic approximations,” Opt. Express 13, 3666–3672 (2005).

[CrossRef]
[PubMed]

S. H. Tseng, J. H. Greene, A. Taflove, D. Maitland, V. Backman, J. T. Walsh, “Exact solution of Maxwell’s
equations for optical interactions with a macroscopic random
medium,” Opt. Lett. 29, 1393–1395
(2004).

[CrossRef]
[PubMed]

T. Özdenvar, G. A. McMechan, “Causes and reduction of numerical artefacts in pseudo-spectral wavefield extrapolation,” Geophy. J. Int. 126, 819–828 (1996).

[CrossRef]

D. Merewether, R. Fisher, F. Smith, “On implementing a numeric Huygen’s source scheme in a finite difference program to illuminate scattering bodies,” IEEE T. Nucl. Sci. 27, 1829–1833 (1980).

[CrossRef]

X. Gao, M. Mirotznik, D. Prather, “A method for introducing soft sources in the PSTD algorithm,” IEEE T. Antenn. Propag. 52, 1665–1671 (2004).

[CrossRef]

G. J. P. Corrêa, M. Spiegelman, S. Carbotte, J. C. C. Mutter, “Centered and staggered Fourier derivatives and Hilbert transforms,” Geophysics 67, 1558–1563 (2012).

[CrossRef]

J. Virieux, S. Operto, “An overview of full-waveform inversion
in exploration geophysics,”
Geophysics 74, WCC127 (2009).

[CrossRef]

A. Oskooi, S. G. Johnson, “Electromagnetic wave source conditions,” in Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology, A. Taflove, A. Oskooi, S. G. Johnson, eds. (Artech House, 2013), pp. 65–100.

T. Özdenvar, G. A. McMechan, “Causes and reduction of numerical artefacts in pseudo-spectral wavefield extrapolation,” Geophy. J. Int. 126, 819–828 (1996).

[CrossRef]

C. Liu, R. L. Panetta, P. Yang, “Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200,” J. Quant. Spectrosc. Ra. 113, 1728–1740 (2012).

[CrossRef]

P. Petre, T. Sarkar, “Planar near-field to far-field transformation using an equivalent magnetic current approach,” IEEE T. Antenn. Propag. 40, 1348–1356 (1992).

[CrossRef]

X. Gao, M. Mirotznik, D. Prather, “A method for introducing soft sources in the PSTD algorithm,” IEEE T. Antenn. Propag. 52, 1665–1671 (2004).

[CrossRef]

B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems ii. Structure of the image field in an aplanatic system,” P. R. Soc. A 253, 358–379 (1959).

[CrossRef]

P. Petre, T. Sarkar, “Planar near-field to far-field transformation using an equivalent magnetic current approach,” IEEE T. Antenn. Propag. 40, 1348–1356 (1992).

[CrossRef]

H. Levine, J. Schwinger, “On the theory of electromagnetic wave diffraction by an aperture in an infinite plane conducting screen,” Commun. Pur. Appl. Math. 3, 355–391 (1950).

[CrossRef]

D. Merewether, R. Fisher, F. Smith, “On implementing a numeric Huygen’s source scheme in a finite difference program to illuminate scattering bodies,” IEEE T. Nucl. Sci. 27, 1829–1833 (1980).

[CrossRef]

G. J. P. Corrêa, M. Spiegelman, S. Carbotte, J. C. C. Mutter, “Centered and staggered Fourier derivatives and Hilbert transforms,” Geophysics 67, 1558–1563 (2012).

[CrossRef]

J. A. Stratton, L. J. Chu, “Diffraction theory of electromagnetic waves,” Phys. Rev. 56, 99–107 (1939).

[CrossRef]

S. H. Tseng, Y. L. Kim, A. Taflove, D. Maitland, V. Backman, J. T. Walsh, “Simulation of enhanced backscattering of light by numerically solving Maxwell’s equations without heuristic approximations,” Opt. Express 13, 3666–3672 (2005).

[CrossRef]
[PubMed]

S. H. Tseng, J. H. Greene, A. Taflove, D. Maitland, V. Backman, J. T. Walsh, “Exact solution of Maxwell’s equations for optical interactions with a macroscopic random medium: addendum,” Opt. Lett. 30, 56–57 (2005).

[CrossRef]
[PubMed]

S. H. Tseng, J. H. Greene, A. Taflove, D. Maitland, V. Backman, J. T. Walsh, “Exact solution of Maxwell’s
equations for optical interactions with a macroscopic random
medium,” Opt. Lett. 29, 1393–1395
(2004).

[CrossRef]
[PubMed]

A. Taflove, S. Hagness, Computational Electrodynamics, Third Edition (Artech House, 2005).

Z. Lin, L. Thylen, “An analytical derivation of the optimum source patterns for the pseudospectral time-domain method,” J. Comput. Phys. 228, 7375–7387 (2009).

[CrossRef]

S. H. Tseng, Y. L. Kim, A. Taflove, D. Maitland, V. Backman, J. T. Walsh, “Simulation of enhanced backscattering of light by numerically solving Maxwell’s equations without heuristic approximations,” Opt. Express 13, 3666–3672 (2005).

[CrossRef]
[PubMed]

S. H. Tseng, J. H. Greene, A. Taflove, D. Maitland, V. Backman, J. T. Walsh, “Exact solution of Maxwell’s equations for optical interactions with a macroscopic random medium: addendum,” Opt. Lett. 30, 56–57 (2005).

[CrossRef]
[PubMed]

S. H. Tseng, J. H. Greene, A. Taflove, D. Maitland, V. Backman, J. T. Walsh, “Exact solution of Maxwell’s
equations for optical interactions with a macroscopic random
medium,” Opt. Lett. 29, 1393–1395
(2004).

[CrossRef]
[PubMed]

J. Virieux, S. Operto, “An overview of full-waveform inversion
in exploration geophysics,”
Geophysics 74, WCC127 (2009).

[CrossRef]

S. H. Tseng, J. H. Greene, A. Taflove, D. Maitland, V. Backman, J. T. Walsh, “Exact solution of Maxwell’s equations for optical interactions with a macroscopic random medium: addendum,” Opt. Lett. 30, 56–57 (2005).

[CrossRef]
[PubMed]

S. H. Tseng, Y. L. Kim, A. Taflove, D. Maitland, V. Backman, J. T. Walsh, “Simulation of enhanced backscattering of light by numerically solving Maxwell’s equations without heuristic approximations,” Opt. Express 13, 3666–3672 (2005).

[CrossRef]
[PubMed]

S. H. Tseng, J. H. Greene, A. Taflove, D. Maitland, V. Backman, J. T. Walsh, “Exact solution of Maxwell’s
equations for optical interactions with a macroscopic random
medium,” Opt. Lett. 29, 1393–1395
(2004).

[CrossRef]
[PubMed]

B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems ii. Structure of the image field in an aplanatic system,” P. R. Soc. A 253, 358–379 (1959).

[CrossRef]

C. Liu, R. L. Panetta, P. Yang, “Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200,” J. Quant. Spectrosc. Ra. 113, 1728–1740 (2012).

[CrossRef]

G. Chen, P. Yang, G. Kattawar, “Application of the pseudospectral time-domain method to the scattering of light by nonspherical particles,” J. Opt. Soc. Am. A 25, 785–789 (2008).

[CrossRef]

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE T. Antenn. Propag. 14, 302–307 (1966).

[CrossRef]

H. Levine, J. Schwinger, “On the theory of electromagnetic wave diffraction by an aperture in an infinite plane conducting screen,” Commun. Pur. Appl. Math. 3, 355–391 (1950).

[CrossRef]

T. Özdenvar, G. A. McMechan, “Causes and reduction of numerical artefacts in pseudo-spectral wavefield extrapolation,” Geophy. J. Int. 126, 819–828 (1996).

[CrossRef]

G. J. P. Corrêa, M. Spiegelman, S. Carbotte, J. C. C. Mutter, “Centered and staggered Fourier derivatives and Hilbert transforms,” Geophysics 67, 1558–1563 (2012).

[CrossRef]

D. Kosloff, E. Baysal, “Forward modeling by a Fourier method,” Geophysics 47, 1402–1412 (1982).

[CrossRef]

J. Virieux, S. Operto, “An overview of full-waveform inversion
in exploration geophysics,”
Geophysics 74, WCC127 (2009).

[CrossRef]

T. -W. Lee, S. C. Hagness, “A compact wave source condition for the pseudospectral time-domain method,” IEEE Antenn. Wirel. Pr. 3, 253–256 (2004).

[CrossRef]

X. Gao, M. Mirotznik, D. Prather, “A method for introducing soft sources in the PSTD algorithm,” IEEE T. Antenn. Propag. 52, 1665–1671 (2004).

[CrossRef]

P. Petre, T. Sarkar, “Planar near-field to far-field transformation using an equivalent magnetic current approach,” IEEE T. Antenn. Propag. 40, 1348–1356 (1992).

[CrossRef]

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE T. Antenn. Propag. 14, 302–307 (1966).

[CrossRef]

Q. Liu, “Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm,” IEEE T. Geosci. Remote 37, 917–926 (1999).

[CrossRef]

D. Merewether, R. Fisher, F. Smith, “On implementing a numeric Huygen’s source scheme in a finite difference program to illuminate scattering bodies,” IEEE T. Nucl. Sci. 27, 1829–1833 (1980).

[CrossRef]

H. -W. Chen, “Staggered-grid pseudospectral viscoacoustic wave field simulation in two-dimensional media,” J. Acoust. Soc. Am. 100, 120–131 (1996).

[CrossRef]

Z. Lin, L. Thylen, “An analytical derivation of the optimum source patterns for the pseudospectral time-domain method,” J. Comput. Phys. 228, 7375–7387 (2009).

[CrossRef]

C. Liu, R. L. Panetta, P. Yang, “Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200,” J. Quant. Spectrosc. Ra. 113, 1728–1740 (2012).

[CrossRef]

Q. Li, Y. Chen, C. Li, “Hybrid PSTD-FDTD technique for scattering analysis,” Microw. Opt. Techn. Lett. 34, 19–24 (2002).

[CrossRef]

Q. Liu, “The PSTD algorithm: A time-domain method requiring only two cells per wavelength,” Microw. Opt. Techn. Lett. 15, 158–165 (1997).

[CrossRef]

M. Ding, K. Chen, “Staggered-grid PSTD on local Fourier basis and its applications to surface tissue modeling,” Opt. Express 18, 9236–9250 (2010).

[CrossRef]
[PubMed]

S. H. Tseng, Y. L. Kim, A. Taflove, D. Maitland, V. Backman, J. T. Walsh, “Simulation of enhanced backscattering of light by numerically solving Maxwell’s equations without heuristic approximations,” Opt. Express 13, 3666–3672 (2005).

[CrossRef]
[PubMed]

P. Török, P. R. T. Munro, E. E. Kriezis, “High numerical aperture vectorial
imaging in coherent optical microscopes,”
Opt. Express 16, 507–523
(2008).

S. H. Tseng, J. H. Greene, A. Taflove, D. Maitland, V. Backman, J. T. Walsh, “Exact solution of Maxwell’s
equations for optical interactions with a macroscopic random
medium,” Opt. Lett. 29, 1393–1395
(2004).

[CrossRef]
[PubMed]

S. H. Tseng, J. H. Greene, A. Taflove, D. Maitland, V. Backman, J. T. Walsh, “Exact solution of Maxwell’s equations for optical interactions with a macroscopic random medium: addendum,” Opt. Lett. 30, 56–57 (2005).

[CrossRef]
[PubMed]

B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems ii. Structure of the image field in an aplanatic system,” P. R. Soc. A 253, 358–379 (1959).

[CrossRef]

J. A. Stratton, L. J. Chu, “Diffraction theory of electromagnetic waves,” Phys. Rev. 56, 99–107 (1939).

[CrossRef]

R. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, 1961).

A. Taflove, S. Hagness, Computational Electrodynamics, Third Edition (Artech House, 2005).

A. Taflove, A. Oskooi, S. Johnson, eds., Advances in FDTD Computational Electrodynamics. Photonics and Nanotechnology (Artech House, 2013).

A. Oskooi, S. G. Johnson, “Electromagnetic wave source conditions,” in Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology, A. Taflove, A. Oskooi, S. G. Johnson, eds. (Artech House, 2013), pp. 65–100.

V. Čížek, Discrete Fourier Transforms and Their Applications (Adam Hilger, 1986).

C. Balanis, Advanced Engineering Electromagnetics (John Wiley and Sons, 1989).