Abstract

As a scanning microscope, STimulated Emission Depletion (STED) nanoscopy needs parallelization for fast wide-field imaging. Using well-designed optical lattices for depletion together with wide-field excitation and a fast camera for detection, we achieve large parallelization of STED nanoscopy. Wide field of view super-resolved images are acquired by scanning over a single unit cell of the optical lattice, which can be as small as 290 nm * 290 nm. Optical Lattice STED (OL-STED) imaging is demonstrated with a resolution down to 70 nm at 12.5 frames per second.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell, “Microscopy and its focal switch,” Nat. Methods 6(1), 24–32 (2009).
    [CrossRef] [PubMed]
  2. S. W. Hell, J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [CrossRef] [PubMed]
  3. M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
    [CrossRef] [PubMed]
  4. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [CrossRef] [PubMed]
  5. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
    [CrossRef] [PubMed]
  6. S. T. Hess, T. P. K. Girirajan, M. D. Mason, “Ultra-High resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
    [CrossRef] [PubMed]
  7. M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem. Int. Ed. Engl. 47(33), 6172–6176 (2008).
    [CrossRef] [PubMed]
  8. A. Sharonov, R. M. Hochstrasser, “Wide-field subdiffraction imaging by accumulated binding of diffusing probes,” Proc. Natl. Acad. Sci. U.S.A. 103(50), 18911–18916 (2006).
    [CrossRef] [PubMed]
  9. G. Giannone, E. Hosy, F. Levet, A. Constals, K. Schulze, A. I. Sobolevsky, M. P. Rosconi, E. Gouaux, R. Tampé, D. Choquet, L. Cognet, “Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density,” Biophys. J. 99(4), 1303–1310 (2010).
    [CrossRef] [PubMed]
  10. J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
    [CrossRef] [PubMed]
  11. R. Heintzmann, T. M. Jovin, C. Cremer, “Saturated patterned excitation microscopy--a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19(8), 1599–1609 (2002).
    [CrossRef] [PubMed]
  12. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U. S. A. 102(37), 13081–13086 (2005).
    [CrossRef] [PubMed]
  13. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
    [CrossRef] [PubMed]
  14. E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U. S. A. 109(3), E135–E143 (2012).
    [CrossRef] [PubMed]
  15. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
    [CrossRef]
  16. G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U. S. A. 103(31), 11440–11445 (2006).
    [CrossRef] [PubMed]
  17. U. V. Nägerl, K. I. Willig, B. Hein, S. W. Hell, T. Bonhoeffer, “Live-cell imaging of dendritic spines by STED microscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(48), 18982–18987 (2008).
    [CrossRef] [PubMed]
  18. V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
    [CrossRef] [PubMed]
  19. S. W. Hell, M. Kroug, “Ground-state-depletion fluorescence microscopy: A concept for breaking the diffraction resolution limit,” Appl. Phys. B 60(5), 495–497 (1995).
    [CrossRef]
  20. M. Hofmann, C. Eggeling, S. Jakobs, S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U. S. A. 102(49), 17565–17569 (2005).
    [CrossRef] [PubMed]
  21. T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012).
  22. P. Bingen, M. Reuss, J. Engelhardt, S. W. Hell, “Parallelized STED fluorescence nanoscopy,” Opt. Express 19(24), 23716–23726 (2011).
    [CrossRef] [PubMed]
  23. A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, S. W. Hell, “Nanoscopy with more than 100,000 ‘doughnuts’,” Nat. Methods 10(8), 737–740 (2013).
    [CrossRef] [PubMed]
  24. B. Yang, F. Przybilla, M. Mestre, J.-B. Trebbia, and B. Lounis, “Massive parallelization of STED nanoscopy using optical lattices,” arXiv:1307.3833 [physics] (2013).
  25. A. Hemmerich, T. W. Hänsch, “Two-dimesional atomic crystal bound by light,” Phys. Rev. Lett. 70(4), 410–413 (1993).
    [CrossRef] [PubMed]
  26. G. Grynberg, B. Lounis, P. Verkerk, J.-Y. Courtois, C. Salomon, “Quantized motion of cold cesium atoms in two- and three-dimensional optical potentials,” Phys. Rev. Lett. 70(15), 2249–2252 (1993).
    [CrossRef] [PubMed]
  27. J. I. Cirac, P. Zoller, “Physics. How to manipulate cold atoms,” Science 301(5630), 176–177 (2003).
    [CrossRef] [PubMed]
  28. M. P. MacDonald, G. C. Spalding, K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
    [CrossRef] [PubMed]
  29. B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16(6), 4154–4162 (2008).
    [CrossRef] [PubMed]
  30. J. L. Stay, T. K. Gaylord, “Three-beam-interference lithography: contrast and crystallography,” Appl. Opt. 47(18), 3221–3230 (2008).
    [CrossRef] [PubMed]
  31. D. Wildanger, J. Bückers, V. Westphal, S. W. Hell, L. Kastrup, “A STED microscope aligned by design,” Opt. Express 17(18), 16100–16110 (2009).
    [CrossRef] [PubMed]
  32. G. Donnert, C. Eggeling, S. W. Hell, “Major signal increase in fluorescence microscopy through dark-state relaxation,” Nat. Methods 4(1), 81–86 (2007).
    [CrossRef] [PubMed]
  33. J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, P. Tinnefeld, “A Reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Angew. Chem. Int. Ed. Engl. 47(29), 5465–5469 (2008).
    [CrossRef] [PubMed]
  34. V. Westphal, S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
    [CrossRef] [PubMed]
  35. D. Wildanger, E. Rittweger, L. Kastrup, S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16(13), 9614–9621 (2008).
    [CrossRef] [PubMed]

2013 (1)

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, S. W. Hell, “Nanoscopy with more than 100,000 ‘doughnuts’,” Nat. Methods 10(8), 737–740 (2013).
[CrossRef] [PubMed]

2012 (2)

T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012).

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U. S. A. 109(3), E135–E143 (2012).
[CrossRef] [PubMed]

2011 (1)

2010 (1)

G. Giannone, E. Hosy, F. Levet, A. Constals, K. Schulze, A. I. Sobolevsky, M. P. Rosconi, E. Gouaux, R. Tampé, D. Choquet, L. Cognet, “Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density,” Biophys. J. 99(4), 1303–1310 (2010).
[CrossRef] [PubMed]

2009 (4)

S. W. Hell, “Microscopy and its focal switch,” Nat. Methods 6(1), 24–32 (2009).
[CrossRef] [PubMed]

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[CrossRef]

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[CrossRef] [PubMed]

D. Wildanger, J. Bückers, V. Westphal, S. W. Hell, L. Kastrup, “A STED microscope aligned by design,” Opt. Express 17(18), 16100–16110 (2009).
[CrossRef] [PubMed]

2008 (8)

J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, P. Tinnefeld, “A Reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Angew. Chem. Int. Ed. Engl. 47(29), 5465–5469 (2008).
[CrossRef] [PubMed]

D. Wildanger, E. Rittweger, L. Kastrup, S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16(13), 9614–9621 (2008).
[CrossRef] [PubMed]

B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16(6), 4154–4162 (2008).
[CrossRef] [PubMed]

J. L. Stay, T. K. Gaylord, “Three-beam-interference lithography: contrast and crystallography,” Appl. Opt. 47(18), 3221–3230 (2008).
[CrossRef] [PubMed]

U. V. Nägerl, K. I. Willig, B. Hein, S. W. Hell, T. Bonhoeffer, “Live-cell imaging of dendritic spines by STED microscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(48), 18982–18987 (2008).
[CrossRef] [PubMed]

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[CrossRef] [PubMed]

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[CrossRef] [PubMed]

M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem. Int. Ed. Engl. 47(33), 6172–6176 (2008).
[CrossRef] [PubMed]

2007 (1)

G. Donnert, C. Eggeling, S. W. Hell, “Major signal increase in fluorescence microscopy through dark-state relaxation,” Nat. Methods 4(1), 81–86 (2007).
[CrossRef] [PubMed]

2006 (5)

A. Sharonov, R. M. Hochstrasser, “Wide-field subdiffraction imaging by accumulated binding of diffusing probes,” Proc. Natl. Acad. Sci. U.S.A. 103(50), 18911–18916 (2006).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U. S. A. 103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

S. T. Hess, T. P. K. Girirajan, M. D. Mason, “Ultra-High resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

2005 (3)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U. S. A. 102(37), 13081–13086 (2005).
[CrossRef] [PubMed]

M. Hofmann, C. Eggeling, S. Jakobs, S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U. S. A. 102(49), 17565–17569 (2005).
[CrossRef] [PubMed]

V. Westphal, S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
[CrossRef] [PubMed]

2003 (2)

J. I. Cirac, P. Zoller, “Physics. How to manipulate cold atoms,” Science 301(5630), 176–177 (2003).
[CrossRef] [PubMed]

M. P. MacDonald, G. C. Spalding, K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[CrossRef] [PubMed]

2002 (1)

2000 (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[CrossRef] [PubMed]

1995 (1)

S. W. Hell, M. Kroug, “Ground-state-depletion fluorescence microscopy: A concept for breaking the diffraction resolution limit,” Appl. Phys. B 60(5), 495–497 (1995).
[CrossRef]

1994 (1)

1993 (2)

A. Hemmerich, T. W. Hänsch, “Two-dimesional atomic crystal bound by light,” Phys. Rev. Lett. 70(4), 410–413 (1993).
[CrossRef] [PubMed]

G. Grynberg, B. Lounis, P. Verkerk, J.-Y. Courtois, C. Salomon, “Quantized motion of cold cesium atoms in two- and three-dimensional optical potentials,” Phys. Rev. Lett. 70(15), 2249–2252 (1993).
[CrossRef] [PubMed]

Andrei, M. A.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U. S. A. 103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

Bates, M.

M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[CrossRef] [PubMed]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Bingen, P.

Bock, H.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[CrossRef] [PubMed]

Bonhoeffer, T.

U. V. Nägerl, K. I. Willig, B. Hein, S. W. Hell, T. Bonhoeffer, “Live-cell imaging of dendritic spines by STED microscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(48), 18982–18987 (2008).
[CrossRef] [PubMed]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Bossi, M.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[CrossRef] [PubMed]

Brakemann, T.

T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012).

Bückers, J.

Chhun, B. B.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[CrossRef] [PubMed]

Chmyrov, A.

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, S. W. Hell, “Nanoscopy with more than 100,000 ‘doughnuts’,” Nat. Methods 10(8), 737–740 (2013).
[CrossRef] [PubMed]

Choquet, D.

G. Giannone, E. Hosy, F. Levet, A. Constals, K. Schulze, A. I. Sobolevsky, M. P. Rosconi, E. Gouaux, R. Tampé, D. Choquet, L. Cognet, “Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density,” Biophys. J. 99(4), 1303–1310 (2010).
[CrossRef] [PubMed]

Cirac, J. I.

J. I. Cirac, P. Zoller, “Physics. How to manipulate cold atoms,” Science 301(5630), 176–177 (2003).
[CrossRef] [PubMed]

Cognet, L.

G. Giannone, E. Hosy, F. Levet, A. Constals, K. Schulze, A. I. Sobolevsky, M. P. Rosconi, E. Gouaux, R. Tampé, D. Choquet, L. Cognet, “Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density,” Biophys. J. 99(4), 1303–1310 (2010).
[CrossRef] [PubMed]

Constals, A.

G. Giannone, E. Hosy, F. Levet, A. Constals, K. Schulze, A. I. Sobolevsky, M. P. Rosconi, E. Gouaux, R. Tampé, D. Choquet, L. Cognet, “Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density,” Biophys. J. 99(4), 1303–1310 (2010).
[CrossRef] [PubMed]

Courtois, J.-Y.

G. Grynberg, B. Lounis, P. Verkerk, J.-Y. Courtois, C. Salomon, “Quantized motion of cold cesium atoms in two- and three-dimensional optical potentials,” Phys. Rev. Lett. 70(15), 2249–2252 (1993).
[CrossRef] [PubMed]

Cremer, C.

d’Este, E.

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, S. W. Hell, “Nanoscopy with more than 100,000 ‘doughnuts’,” Nat. Methods 10(8), 737–740 (2013).
[CrossRef] [PubMed]

Davidson, M. W.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U. S. A. 109(3), E135–E143 (2012).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Dholakia, K.

M. P. MacDonald, G. C. Spalding, K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[CrossRef] [PubMed]

Donnert, G.

G. Donnert, C. Eggeling, S. W. Hell, “Major signal increase in fluorescence microscopy through dark-state relaxation,” Nat. Methods 4(1), 81–86 (2007).
[CrossRef] [PubMed]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U. S. A. 103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

Eggeling, C.

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, S. W. Hell, “Nanoscopy with more than 100,000 ‘doughnuts’,” Nat. Methods 10(8), 737–740 (2013).
[CrossRef] [PubMed]

T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012).

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[CrossRef]

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[CrossRef] [PubMed]

G. Donnert, C. Eggeling, S. W. Hell, “Major signal increase in fluorescence microscopy through dark-state relaxation,” Nat. Methods 4(1), 81–86 (2007).
[CrossRef] [PubMed]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U. S. A. 103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

M. Hofmann, C. Eggeling, S. Jakobs, S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U. S. A. 102(49), 17565–17569 (2005).
[CrossRef] [PubMed]

Engelhardt, J.

Fölling, J.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[CrossRef] [PubMed]

Gaylord, T. K.

Giannone, G.

G. Giannone, E. Hosy, F. Levet, A. Constals, K. Schulze, A. I. Sobolevsky, M. P. Rosconi, E. Gouaux, R. Tampé, D. Choquet, L. Cognet, “Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density,” Biophys. J. 99(4), 1303–1310 (2010).
[CrossRef] [PubMed]

Girirajan, T. P. K.

S. T. Hess, T. P. K. Girirajan, M. D. Mason, “Ultra-High resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

Gouaux, E.

G. Giannone, E. Hosy, F. Levet, A. Constals, K. Schulze, A. I. Sobolevsky, M. P. Rosconi, E. Gouaux, R. Tampé, D. Choquet, L. Cognet, “Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density,” Biophys. J. 99(4), 1303–1310 (2010).
[CrossRef] [PubMed]

Griffis, E. R.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[CrossRef] [PubMed]

Grotjohann, T.

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, S. W. Hell, “Nanoscopy with more than 100,000 ‘doughnuts’,” Nat. Methods 10(8), 737–740 (2013).
[CrossRef] [PubMed]

T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012).

Grynberg, G.

G. Grynberg, B. Lounis, P. Verkerk, J.-Y. Courtois, C. Salomon, “Quantized motion of cold cesium atoms in two- and three-dimensional optical potentials,” Phys. Rev. Lett. 70(15), 2249–2252 (1993).
[CrossRef] [PubMed]

Gustafsson, M. G. L.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U. S. A. 109(3), E135–E143 (2012).
[CrossRef] [PubMed]

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[CrossRef] [PubMed]

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U. S. A. 102(37), 13081–13086 (2005).
[CrossRef] [PubMed]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[CrossRef] [PubMed]

Han, K. Y.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[CrossRef]

Hänsch, T. W.

A. Hemmerich, T. W. Hänsch, “Two-dimesional atomic crystal bound by light,” Phys. Rev. Lett. 70(4), 410–413 (1993).
[CrossRef] [PubMed]

Harke, B.

Heilemann, M.

M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem. Int. Ed. Engl. 47(33), 6172–6176 (2008).
[CrossRef] [PubMed]

J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, P. Tinnefeld, “A Reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Angew. Chem. Int. Ed. Engl. 47(29), 5465–5469 (2008).
[CrossRef] [PubMed]

Hein, B.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[CrossRef] [PubMed]

U. V. Nägerl, K. I. Willig, B. Hein, S. W. Hell, T. Bonhoeffer, “Live-cell imaging of dendritic spines by STED microscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(48), 18982–18987 (2008).
[CrossRef] [PubMed]

Heintzmann, R.

Hell, S. W.

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, S. W. Hell, “Nanoscopy with more than 100,000 ‘doughnuts’,” Nat. Methods 10(8), 737–740 (2013).
[CrossRef] [PubMed]

T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012).

P. Bingen, M. Reuss, J. Engelhardt, S. W. Hell, “Parallelized STED fluorescence nanoscopy,” Opt. Express 19(24), 23716–23726 (2011).
[CrossRef] [PubMed]

D. Wildanger, J. Bückers, V. Westphal, S. W. Hell, L. Kastrup, “A STED microscope aligned by design,” Opt. Express 17(18), 16100–16110 (2009).
[CrossRef] [PubMed]

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[CrossRef]

S. W. Hell, “Microscopy and its focal switch,” Nat. Methods 6(1), 24–32 (2009).
[CrossRef] [PubMed]

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[CrossRef] [PubMed]

B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16(6), 4154–4162 (2008).
[CrossRef] [PubMed]

U. V. Nägerl, K. I. Willig, B. Hein, S. W. Hell, T. Bonhoeffer, “Live-cell imaging of dendritic spines by STED microscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(48), 18982–18987 (2008).
[CrossRef] [PubMed]

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[CrossRef] [PubMed]

D. Wildanger, E. Rittweger, L. Kastrup, S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16(13), 9614–9621 (2008).
[CrossRef] [PubMed]

G. Donnert, C. Eggeling, S. W. Hell, “Major signal increase in fluorescence microscopy through dark-state relaxation,” Nat. Methods 4(1), 81–86 (2007).
[CrossRef] [PubMed]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U. S. A. 103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

M. Hofmann, C. Eggeling, S. Jakobs, S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U. S. A. 102(49), 17565–17569 (2005).
[CrossRef] [PubMed]

V. Westphal, S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
[CrossRef] [PubMed]

S. W. Hell, M. Kroug, “Ground-state-depletion fluorescence microscopy: A concept for breaking the diffraction resolution limit,” Appl. Phys. B 60(5), 495–497 (1995).
[CrossRef]

S. W. Hell, J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[CrossRef] [PubMed]

Hemmerich, A.

A. Hemmerich, T. W. Hänsch, “Two-dimesional atomic crystal bound by light,” Phys. Rev. Lett. 70(4), 410–413 (1993).
[CrossRef] [PubMed]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Hess, S. T.

S. T. Hess, T. P. K. Girirajan, M. D. Mason, “Ultra-High resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

Hochstrasser, R. M.

A. Sharonov, R. M. Hochstrasser, “Wide-field subdiffraction imaging by accumulated binding of diffusing probes,” Proc. Natl. Acad. Sci. U.S.A. 103(50), 18911–18916 (2006).
[CrossRef] [PubMed]

Hofmann, M.

M. Hofmann, C. Eggeling, S. Jakobs, S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U. S. A. 102(49), 17565–17569 (2005).
[CrossRef] [PubMed]

Hosy, E.

G. Giannone, E. Hosy, F. Levet, A. Constals, K. Schulze, A. I. Sobolevsky, M. P. Rosconi, E. Gouaux, R. Tampé, D. Choquet, L. Cognet, “Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density,” Biophys. J. 99(4), 1303–1310 (2010).
[CrossRef] [PubMed]

Irvine, S. E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[CrossRef]

Jahn, R.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[CrossRef] [PubMed]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U. S. A. 103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

Jakobs, S.

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, S. W. Hell, “Nanoscopy with more than 100,000 ‘doughnuts’,” Nat. Methods 10(8), 737–740 (2013).
[CrossRef] [PubMed]

T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012).

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[CrossRef] [PubMed]

M. Hofmann, C. Eggeling, S. Jakobs, S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U. S. A. 102(49), 17565–17569 (2005).
[CrossRef] [PubMed]

Johansson, G. A.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U. S. A. 109(3), E135–E143 (2012).
[CrossRef] [PubMed]

Jovin, T. M.

Kamin, D.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[CrossRef] [PubMed]

Kamps-Hughes, N.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U. S. A. 109(3), E135–E143 (2012).
[CrossRef] [PubMed]

Kasper, R.

M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem. Int. Ed. Engl. 47(33), 6172–6176 (2008).
[CrossRef] [PubMed]

J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, P. Tinnefeld, “A Reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Angew. Chem. Int. Ed. Engl. 47(29), 5465–5469 (2008).
[CrossRef] [PubMed]

Kastrup, L.

Keller, J.

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, S. W. Hell, “Nanoscopy with more than 100,000 ‘doughnuts’,” Nat. Methods 10(8), 737–740 (2013).
[CrossRef] [PubMed]

B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16(6), 4154–4162 (2008).
[CrossRef] [PubMed]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U. S. A. 103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

Kner, P.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[CrossRef] [PubMed]

Kroug, M.

S. W. Hell, M. Kroug, “Ground-state-depletion fluorescence microscopy: A concept for breaking the diffraction resolution limit,” Appl. Phys. B 60(5), 495–497 (1995).
[CrossRef]

Lauterbach, M. A.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[CrossRef] [PubMed]

Levet, F.

G. Giannone, E. Hosy, F. Levet, A. Constals, K. Schulze, A. I. Sobolevsky, M. P. Rosconi, E. Gouaux, R. Tampé, D. Choquet, L. Cognet, “Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density,” Biophys. J. 99(4), 1303–1310 (2010).
[CrossRef] [PubMed]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Lounis, B.

G. Grynberg, B. Lounis, P. Verkerk, J.-Y. Courtois, C. Salomon, “Quantized motion of cold cesium atoms in two- and three-dimensional optical potentials,” Phys. Rev. Lett. 70(15), 2249–2252 (1993).
[CrossRef] [PubMed]

Lührmann, R.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U. S. A. 103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[CrossRef] [PubMed]

Macklin, J. J.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U. S. A. 109(3), E135–E143 (2012).
[CrossRef] [PubMed]

Mason, M. D.

S. T. Hess, T. P. K. Girirajan, M. D. Mason, “Ultra-High resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

Medda, R.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[CrossRef] [PubMed]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U. S. A. 103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

Mukherjee, A.

M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem. Int. Ed. Engl. 47(33), 6172–6176 (2008).
[CrossRef] [PubMed]

Nägerl, U. V.

U. V. Nägerl, K. I. Willig, B. Hein, S. W. Hell, T. Bonhoeffer, “Live-cell imaging of dendritic spines by STED microscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(48), 18982–18987 (2008).
[CrossRef] [PubMed]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Person, B.

J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, P. Tinnefeld, “A Reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Angew. Chem. Int. Ed. Engl. 47(29), 5465–5469 (2008).
[CrossRef] [PubMed]

Ratz, M.

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, S. W. Hell, “Nanoscopy with more than 100,000 ‘doughnuts’,” Nat. Methods 10(8), 737–740 (2013).
[CrossRef] [PubMed]

Rego, E. H.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U. S. A. 109(3), E135–E143 (2012).
[CrossRef] [PubMed]

Reuss, M.

T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012).

P. Bingen, M. Reuss, J. Engelhardt, S. W. Hell, “Parallelized STED fluorescence nanoscopy,” Opt. Express 19(24), 23716–23726 (2011).
[CrossRef] [PubMed]

Rittweger, E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[CrossRef]

D. Wildanger, E. Rittweger, L. Kastrup, S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16(13), 9614–9621 (2008).
[CrossRef] [PubMed]

Rizzoli, S. O.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[CrossRef] [PubMed]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U. S. A. 103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

Rosconi, M. P.

G. Giannone, E. Hosy, F. Levet, A. Constals, K. Schulze, A. I. Sobolevsky, M. P. Rosconi, E. Gouaux, R. Tampé, D. Choquet, L. Cognet, “Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density,” Biophys. J. 99(4), 1303–1310 (2010).
[CrossRef] [PubMed]

Rust, M. J.

M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[CrossRef] [PubMed]

Salomon, C.

G. Grynberg, B. Lounis, P. Verkerk, J.-Y. Courtois, C. Salomon, “Quantized motion of cold cesium atoms in two- and three-dimensional optical potentials,” Phys. Rev. Lett. 70(15), 2249–2252 (1993).
[CrossRef] [PubMed]

Sauer, M.

M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem. Int. Ed. Engl. 47(33), 6172–6176 (2008).
[CrossRef] [PubMed]

J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, P. Tinnefeld, “A Reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Angew. Chem. Int. Ed. Engl. 47(29), 5465–5469 (2008).
[CrossRef] [PubMed]

Schönle, A.

Schulze, K.

G. Giannone, E. Hosy, F. Levet, A. Constals, K. Schulze, A. I. Sobolevsky, M. P. Rosconi, E. Gouaux, R. Tampé, D. Choquet, L. Cognet, “Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density,” Biophys. J. 99(4), 1303–1310 (2010).
[CrossRef] [PubMed]

Schüttpelz, M.

M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem. Int. Ed. Engl. 47(33), 6172–6176 (2008).
[CrossRef] [PubMed]

Seefeldt, B.

M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem. Int. Ed. Engl. 47(33), 6172–6176 (2008).
[CrossRef] [PubMed]

Shao, L.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U. S. A. 109(3), E135–E143 (2012).
[CrossRef] [PubMed]

Sharonov, A.

A. Sharonov, R. M. Hochstrasser, “Wide-field subdiffraction imaging by accumulated binding of diffusing probes,” Proc. Natl. Acad. Sci. U.S.A. 103(50), 18911–18916 (2006).
[CrossRef] [PubMed]

Sobolevsky, A. I.

G. Giannone, E. Hosy, F. Levet, A. Constals, K. Schulze, A. I. Sobolevsky, M. P. Rosconi, E. Gouaux, R. Tampé, D. Choquet, L. Cognet, “Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density,” Biophys. J. 99(4), 1303–1310 (2010).
[CrossRef] [PubMed]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Spalding, G. C.

M. P. MacDonald, G. C. Spalding, K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[CrossRef] [PubMed]

Stay, J. L.

Steinhauer, C.

J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, P. Tinnefeld, “A Reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Angew. Chem. Int. Ed. Engl. 47(29), 5465–5469 (2008).
[CrossRef] [PubMed]

Tampé, R.

G. Giannone, E. Hosy, F. Levet, A. Constals, K. Schulze, A. I. Sobolevsky, M. P. Rosconi, E. Gouaux, R. Tampé, D. Choquet, L. Cognet, “Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density,” Biophys. J. 99(4), 1303–1310 (2010).
[CrossRef] [PubMed]

Testa, I.

T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012).

Tinnefeld, P.

M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem. Int. Ed. Engl. 47(33), 6172–6176 (2008).
[CrossRef] [PubMed]

J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, P. Tinnefeld, “A Reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Angew. Chem. Int. Ed. Engl. 47(29), 5465–5469 (2008).
[CrossRef] [PubMed]

Ullal, C. K.

van de Linde, S.

M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem. Int. Ed. Engl. 47(33), 6172–6176 (2008).
[CrossRef] [PubMed]

Verkerk, P.

G. Grynberg, B. Lounis, P. Verkerk, J.-Y. Courtois, C. Salomon, “Quantized motion of cold cesium atoms in two- and three-dimensional optical potentials,” Phys. Rev. Lett. 70(15), 2249–2252 (1993).
[CrossRef] [PubMed]

Vogelsang, J.

J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, P. Tinnefeld, “A Reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Angew. Chem. Int. Ed. Engl. 47(29), 5465–5469 (2008).
[CrossRef] [PubMed]

Westphal, V.

D. Wildanger, J. Bückers, V. Westphal, S. W. Hell, L. Kastrup, “A STED microscope aligned by design,” Opt. Express 17(18), 16100–16110 (2009).
[CrossRef] [PubMed]

B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16(6), 4154–4162 (2008).
[CrossRef] [PubMed]

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[CrossRef] [PubMed]

V. Westphal, S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
[CrossRef] [PubMed]

Wichmann, J.

Wildanger, D.

Willig, K. I.

U. V. Nägerl, K. I. Willig, B. Hein, S. W. Hell, T. Bonhoeffer, “Live-cell imaging of dendritic spines by STED microscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(48), 18982–18987 (2008).
[CrossRef] [PubMed]

Winoto, L.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U. S. A. 109(3), E135–E143 (2012).
[CrossRef] [PubMed]

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[CrossRef] [PubMed]

Wurm, C. A.

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[CrossRef] [PubMed]

Zhuang, X.

M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[CrossRef] [PubMed]

Zoller, P.

J. I. Cirac, P. Zoller, “Physics. How to manipulate cold atoms,” Science 301(5630), 176–177 (2003).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (2)

M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem. Int. Ed. Engl. 47(33), 6172–6176 (2008).
[CrossRef] [PubMed]

J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, P. Tinnefeld, “A Reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Angew. Chem. Int. Ed. Engl. 47(29), 5465–5469 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

S. W. Hell, M. Kroug, “Ground-state-depletion fluorescence microscopy: A concept for breaking the diffraction resolution limit,” Appl. Phys. B 60(5), 495–497 (1995).
[CrossRef]

Biophys. J. (2)

S. T. Hess, T. P. K. Girirajan, M. D. Mason, “Ultra-High resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

G. Giannone, E. Hosy, F. Levet, A. Constals, K. Schulze, A. I. Sobolevsky, M. P. Rosconi, E. Gouaux, R. Tampé, D. Choquet, L. Cognet, “Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density,” Biophys. J. 99(4), 1303–1310 (2010).
[CrossRef] [PubMed]

eLife (1)

T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012).

J. Microsc. (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Nat. Methods (6)

J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008).
[CrossRef] [PubMed]

S. W. Hell, “Microscopy and its focal switch,” Nat. Methods 6(1), 24–32 (2009).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[CrossRef] [PubMed]

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, S. W. Hell, “Nanoscopy with more than 100,000 ‘doughnuts’,” Nat. Methods 10(8), 737–740 (2013).
[CrossRef] [PubMed]

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[CrossRef] [PubMed]

G. Donnert, C. Eggeling, S. W. Hell, “Major signal increase in fluorescence microscopy through dark-state relaxation,” Nat. Methods 4(1), 81–86 (2007).
[CrossRef] [PubMed]

Nat. Photonics (1)

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[CrossRef]

Nature (1)

M. P. MacDonald, G. C. Spalding, K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. Lett. (3)

V. Westphal, S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
[CrossRef] [PubMed]

A. Hemmerich, T. W. Hänsch, “Two-dimesional atomic crystal bound by light,” Phys. Rev. Lett. 70(4), 410–413 (1993).
[CrossRef] [PubMed]

G. Grynberg, B. Lounis, P. Verkerk, J.-Y. Courtois, C. Salomon, “Quantized motion of cold cesium atoms in two- and three-dimensional optical potentials,” Phys. Rev. Lett. 70(15), 2249–2252 (1993).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U. S. A. (4)

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U. S. A. 109(3), E135–E143 (2012).
[CrossRef] [PubMed]

M. Hofmann, C. Eggeling, S. Jakobs, S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U. S. A. 102(49), 17565–17569 (2005).
[CrossRef] [PubMed]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U. S. A. 103(31), 11440–11445 (2006).
[CrossRef] [PubMed]

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U. S. A. 102(37), 13081–13086 (2005).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

U. V. Nägerl, K. I. Willig, B. Hein, S. W. Hell, T. Bonhoeffer, “Live-cell imaging of dendritic spines by STED microscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(48), 18982–18987 (2008).
[CrossRef] [PubMed]

A. Sharonov, R. M. Hochstrasser, “Wide-field subdiffraction imaging by accumulated binding of diffusing probes,” Proc. Natl. Acad. Sci. U.S.A. 103(50), 18911–18916 (2006).
[CrossRef] [PubMed]

Science (3)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[CrossRef] [PubMed]

J. I. Cirac, P. Zoller, “Physics. How to manipulate cold atoms,” Science 301(5630), 176–177 (2003).
[CrossRef] [PubMed]

Other (1)

B. Yang, F. Przybilla, M. Mestre, J.-B. Trebbia, and B. Lounis, “Massive parallelization of STED nanoscopy using optical lattices,” arXiv:1307.3833 [physics] (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

OL-STED experimental setup. A depletion beam (red) is split with an SLM into 3 or 4 beams, or with a combination of two Wollaston prisms into 4 beams. The beams sent through an objective interfere at the sample plane to form an optical lattice. An excitation beam (green) of ~10 µm * 10 µm size is overlaid with the lattice. A CMOS camera conjugated with the sample plane records the wide-field fluorescence images.

Fig. 2
Fig. 2

Design of the optical lattices. Top left panel, 3 beams, parallel to the optical axis of the objective, intersect its back focal plane at the vertices of a centered equilateral triangle. The beams have the same linear polarization, parallel to one of the three sides of the triangle. After passing through the objective they are deviated by an angle towards the focal region where they interfere. (a) Intensity profile of the hexagonal optical lattice calculated for θ = 60° showing a suitable depletion pattern for STED parallelization. (b) Fluorescence depletion pattern recorded with a 100 nm fluorescent bead scanned in the interference pattern (2.8 µm * 2.8 µm) in the presence of the excitation beam. Bottom left panel, The 4 beam configuration obtained with two pairs of beams (one pair of beams polarized along the x axis and the other pair along the y axis) interfering independently. (c) Intensity profile of the obtained square optical lattice calculated for the same θ as in (a). (d) The corresponding depletion pattern.

Fig. 3
Fig. 3

OL-STED Images Acquisition. (a) a stack of a CMOS camera frames is acquired while the sample is scanned over a 290 nm x 290 nm optical lattice unit cell. A binary mask is applied to the frames. The “point-detectors” correspond to the white crosses on the mask, each of which records a unit cell image of the sample. (b) diffraction limited image of 20 nm fluorescent beads recorded without the depletion beam at an excitation power of 2 mW (15 x 15 points per unit cell). (c) Super-resolved OL-STED image of the same region in the presence of the depletion beam (total depletion power ~400 mW). (d) Normalized fluorescence intensity profiles measured from a single bead. (e) diffraction limited image of microtubules in a fixed cell (10 x 10 points per scan area, integration time 800 µs per point). (f) OL-STED image of the same region. (g) Normalized fluorescence intensity profiles (Cut along the dashed lines).

Fig. 4
Fig. 4

Structured excitation and depletion patterns for OL-STED super-resolved imaging of diffusing particles. 2D intensity profiles (calculated) of the structured excitation pattern (a), and the corresponding depletion pattern (b). The interference patterns are complementary i.e. (a) displays maxima where (b) has minima, and vice versa. (c) Fluorescence signal decays recorded for the same maximum excitation intensity in the case of structured excitation (red) and homogeneous excitation (blue). An exponential fit gives a decay time of 44.1 s for the structured illumination two times longer than that for the homogeneous case 20.7 s. (d) Diffraction limited (left side) and OL-STED (right side) successive images of 20 nm fluorescent beads in carbopol gel (concentration 2%). Images are taken at the rate of 80 ms per image with P S T E D = 280 m W , P e x c = 2 m W . The squares indicate the region where one bead is moving around another one.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ r d o u g 2 λ π N A 1 I d o u g m a x / I s a t
I O L ( x , y ) = I O L m a x 2 [ sin 2 ( 2 π n x sin θ λ ) + sin 2 ( 2 π n y sin θ λ ) ]
Δ r O L λ π n sin θ 1 I O L m a x / I s a t

Metrics