Abstract

A theoretical analysis of detection limits in swept-frequency whispering gallery mode biosensing modalities is presented based on application of the Cramér-Rao lower bound. Measurement acuity factors are derived assuming the presence of uncoloured and 1/ f Gaussian technical noise. Frequency fluctuations, for example arising from laser jitter or thermorefractive noise, are also considered. Determination of acuity factors for arbitrary coloured noise by means of the asymptotic Fisher information matrix is highlighted. Quantification and comparison of detection sensitivity for both resonance shift and broadening sensing modalities are subsequently given. Optimal cavity and coupling geometries are furthermore identified, whereby it is found that slightly under-coupled cavities outperform critically and over coupled ones.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Baaske, F. Vollmer, “Optical Resonator Biosensors: Molecular Diagnostic and Nanoparticle Detection on an Integrated Platform,” ChemPhysChem 13, 427–436 (2012).
    [CrossRef] [PubMed]
  2. K. J. Vahala, “Optical microcavities” Nature 424, 839–846 (2003).
    [CrossRef] [PubMed]
  3. F. Vollmer, S. Arnold, D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
    [CrossRef] [PubMed]
  4. M. Noto, F. Vollmer, D. Keng, I. Teraoka, S. Arnold, “Nanolayer characterization through wavelength multiplexing of a microsphere resonator,” Opt. Lett 30, 510–512 (2005).
    [CrossRef] [PubMed]
  5. F. Vollmer, S. Arnold, D. Braun, I. Teraoka, A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974–1979 (2003).
    [CrossRef] [PubMed]
  6. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
    [CrossRef]
  7. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, F. Vollmer., “Shift of whispering-gallery modes in micro-spheres by protein adsorption,” Opt. Lett. 28, 272–274, (2003).
    [CrossRef] [PubMed]
  8. W. Ahn, S. V. Boriskina, Y. Hong, B. M. Reinhard, “Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules,” ACS Nano. 6, 951–960 (2012).
    [CrossRef]
  9. F. Vollmer, L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophot. 1, 267–291 (2012).
    [CrossRef]
  10. M. L. Gorodetsky, A. A. Savchenkov, V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
    [CrossRef] [PubMed]
  11. M. R. Foreman, F. Vollmer, “Theory of resonance shifts of whispering gallery mode sensors by arbitrary plasmonic nanoparticles,” New. J. Phys. 15, 083006 (2013).
    [CrossRef]
  12. M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).
    [CrossRef]
  13. V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano. Lett. 13, 3347–3351 (2013).
    [CrossRef] [PubMed]
  14. J. Zhu, S. J Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Phot. 4, 46–49 (2010).
    [CrossRef]
  15. J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci. Rep. 3, 2974 (2013).
    [CrossRef] [PubMed]
  16. L. Xu, H. Li, X. Wu, L. Shang, L. Liu, “Ultra-sensitive label-free biosensing by using single-mode coupled microcavity laser,” Proc. SPIE, 7682, 76820C (2010).
    [CrossRef]
  17. T. McGarvey, A. Conjusteau, H. Mabuchi, “Finesse and sensitivity gain in cavity-enhanced absorption spectroscopy of biomolecules in solution,” Opt. Express, 14, 10441–10451 (2006).
    [CrossRef] [PubMed]
  18. J. D. Swaim, J. Knittel, W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett. 99, 243109 (2011).
    [CrossRef]
  19. L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mat. 25, 5616–5620 (2013).
    [CrossRef]
  20. S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, I. Teraoka, “Microparticle photophysics illuminates viral biosensing,” Faraday Disc. 137, 65–83, (2008).
    [CrossRef]
  21. J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172 (2002).
    [CrossRef]
  22. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
    [CrossRef]
  23. X. Lopez-Yglesias, J. M. Gamba, R. C. Flagan, “The physics of extreme sensitivity in whispering gallery mode optical biosensors,” J. Appl. Phys. 111, 084701 (2012).
    [CrossRef]
  24. A. B. Matsko, A. A. Savchenkov, N. Yu, L. Maleki, “Whispering gallery mode resonators as frequency references. I. Fundamental limitations,” J. Opt. Soc. Am. B 24, 1324–1335 (2007).
    [CrossRef]
  25. M. L. Gorodetsky, I. S. Grudinin, “Fundamental thermal fluctuations in microspheres,” J. Opt. Soc. Am. B 21, 697–705 (2004).
    [CrossRef]
  26. W.-L. Jin, X. Yi, Y. Hu, B. Li, Y. Xiao, “Temperature-insensitive detection of low-concentration nanoparticles using a functionalized high-Q microcavity,” Appl. Opt. 52, 155–161 (2013).
    [CrossRef] [PubMed]
  27. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, N. Yu, L. Maleki, “Whispering-gallery-mode resonators as frequency references. II. Stabilization,” J. Opt. Soc. Am. B. 24, 2099–2997 (2007).
    [CrossRef]
  28. T. Carmon, L. Yang, K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
    [CrossRef] [PubMed]
  29. I. Teraoka, “Analysis of thermal stabilization of whispering gallery mode resonance,” Opt. Commun. 310212–216 (2014).
    [CrossRef]
  30. L. L. Scharf, Statistical Signal Processing: Detection, Estimation, and Time Series Analysis, (Addison-Wesley Publishing Co., USA, 1991).
  31. C. Vignet, J.-F. Bercher, “Analysis of signals in the Fisher-Shannon information plane,” Phys. Lett. A 312, 27–33 (2003).
    [CrossRef]
  32. H. Cramér, Mathematical Methods of Statistics, (Princeton University Press, USA, 1946).
  33. M. R. Foreman, P. Török, “Information and resolution in electromagnetic optical systems,” Phys. Rev. A 82, 043835 (2010).
    [CrossRef]
  34. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, (Dover Publications, New York, 1970).
  35. T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
    [CrossRef] [PubMed]
  36. A. Zeira, A. Nehorai, “Frequency domain Cramer-Rao bound for Gaussian Processes,” IEEE Trans. Acoust. Speech. Sig. Proc. 381063–1066 (1990).
    [CrossRef]
  37. Y.-F. Xiao, “Optical cavity QED in Solid-State Systems - Theory to Realization,” PhD thesis (University of Science and Technology of China, 2007).
  38. M. L. Gorodetsky, V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16, 147–154 (1999).
    [CrossRef]
  39. M. Bass, C. M. DeCusatis, J. M. Enoch, Handbook of Optics, 3rd ed., Vol. 4. (McGraw-Hill, USA2009).
  40. G. M. Hale, M. R. Querry, “Optical Constants of Water in the 200-nm to 200-μm Wavelength Region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef] [PubMed]
  41. M. Cai, O. Painter, K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85, 74–77 (2000).
    [CrossRef] [PubMed]
  42. J. Topolancik, F. Vollmer, “Photoinduced transformations in bacteriorhodopsin membrane monitored with optical microcavities,” Biophys. J. 92, 2223–2229 (2007).
    [CrossRef] [PubMed]
  43. D. Q. Chowdhury, S. C. Hill, P.W. Barber, “Morphology-dependent resonances in radially inhomogeneous spheres,” J. Opt. Soc. Am. A 8, 1702–1705 (1991).
    [CrossRef]
  44. I. Teraoka, S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B 23, 1381–1389 (2006).
    [CrossRef]
  45. S. Arnold, S. I. Shopova, S. Holler, “Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism,” Opt. Express 18, 281–287 (2010).
    [CrossRef] [PubMed]
  46. A. Mazzei A, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, V. Sandoghdar, “Controlled Coupling of Counterpropagating Whispering-Gallery Modes by a Single Rayleigh Scatterer: A Classical Problem in a Quantum Optical Light,” Phys. Rev. Lett. 99, 173603 (2007).
    [CrossRef] [PubMed]
  47. X. Yi, Y.-F. Xiao, Y. Feng, D.-Y. Qiu, J.-Y. Fan, Y. Li, Q. Gong, “Mode-splitting-based optical label-free biosensing with a biorecognition-covered microcavity,” J. Appl. Phys. 111, 114702 (2012).
    [CrossRef]
  48. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
    [CrossRef] [PubMed]
  49. M. R. Foreman, F. Vollmer, “Level repulsion in hybrid photonic-plasmonic microresonators for enhanced biodetection,” Phys. Rev. A 88, 023831 (2013).
    [CrossRef]
  50. D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Opt. Lett. 20, 1835–1837 (1995).
    [CrossRef] [PubMed]
  51. Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85, 031805 (2012).
    [CrossRef]
  52. A. N. Bashkatov, E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” Proc. SPIE 5068, 393–395 (2003).
    [CrossRef]
  53. C. Lam, P. T. Leung, K. Young, “Explicit asymptotic formulas for the positions, widths, and strengths of resonances in mie scattering,” J. Opt. Soc. Am. B, 9, 1585–1592 (1992).
    [CrossRef]

2014 (1)

I. Teraoka, “Analysis of thermal stabilization of whispering gallery mode resonance,” Opt. Commun. 310212–216 (2014).
[CrossRef]

2013 (6)

W.-L. Jin, X. Yi, Y. Hu, B. Li, Y. Xiao, “Temperature-insensitive detection of low-concentration nanoparticles using a functionalized high-Q microcavity,” Appl. Opt. 52, 155–161 (2013).
[CrossRef] [PubMed]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mat. 25, 5616–5620 (2013).
[CrossRef]

M. R. Foreman, F. Vollmer, “Theory of resonance shifts of whispering gallery mode sensors by arbitrary plasmonic nanoparticles,” New. J. Phys. 15, 083006 (2013).
[CrossRef]

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano. Lett. 13, 3347–3351 (2013).
[CrossRef] [PubMed]

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci. Rep. 3, 2974 (2013).
[CrossRef] [PubMed]

M. R. Foreman, F. Vollmer, “Level repulsion in hybrid photonic-plasmonic microresonators for enhanced biodetection,” Phys. Rev. A 88, 023831 (2013).
[CrossRef]

2012 (6)

X. Yi, Y.-F. Xiao, Y. Feng, D.-Y. Qiu, J.-Y. Fan, Y. Li, Q. Gong, “Mode-splitting-based optical label-free biosensing with a biorecognition-covered microcavity,” J. Appl. Phys. 111, 114702 (2012).
[CrossRef]

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85, 031805 (2012).
[CrossRef]

M. Baaske, F. Vollmer, “Optical Resonator Biosensors: Molecular Diagnostic and Nanoparticle Detection on an Integrated Platform,” ChemPhysChem 13, 427–436 (2012).
[CrossRef] [PubMed]

W. Ahn, S. V. Boriskina, Y. Hong, B. M. Reinhard, “Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules,” ACS Nano. 6, 951–960 (2012).
[CrossRef]

F. Vollmer, L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophot. 1, 267–291 (2012).
[CrossRef]

X. Lopez-Yglesias, J. M. Gamba, R. C. Flagan, “The physics of extreme sensitivity in whispering gallery mode optical biosensors,” J. Appl. Phys. 111, 084701 (2012).
[CrossRef]

2011 (3)

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[CrossRef] [PubMed]

J. D. Swaim, J. Knittel, W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett. 99, 243109 (2011).
[CrossRef]

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).
[CrossRef]

2010 (4)

J. Zhu, S. J Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Phot. 4, 46–49 (2010).
[CrossRef]

L. Xu, H. Li, X. Wu, L. Shang, L. Liu, “Ultra-sensitive label-free biosensing by using single-mode coupled microcavity laser,” Proc. SPIE, 7682, 76820C (2010).
[CrossRef]

M. R. Foreman, P. Török, “Information and resolution in electromagnetic optical systems,” Phys. Rev. A 82, 043835 (2010).
[CrossRef]

S. Arnold, S. I. Shopova, S. Holler, “Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism,” Opt. Express 18, 281–287 (2010).
[CrossRef] [PubMed]

2008 (3)

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[CrossRef] [PubMed]

S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, I. Teraoka, “Microparticle photophysics illuminates viral biosensing,” Faraday Disc. 137, 65–83, (2008).
[CrossRef]

F. Vollmer, S. Arnold, D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[CrossRef] [PubMed]

2007 (4)

A. B. Matsko, A. A. Savchenkov, N. Yu, L. Maleki, “Whispering gallery mode resonators as frequency references. I. Fundamental limitations,” J. Opt. Soc. Am. B 24, 1324–1335 (2007).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, N. Yu, L. Maleki, “Whispering-gallery-mode resonators as frequency references. II. Stabilization,” J. Opt. Soc. Am. B. 24, 2099–2997 (2007).
[CrossRef]

J. Topolancik, F. Vollmer, “Photoinduced transformations in bacteriorhodopsin membrane monitored with optical microcavities,” Biophys. J. 92, 2223–2229 (2007).
[CrossRef] [PubMed]

A. Mazzei A, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, V. Sandoghdar, “Controlled Coupling of Counterpropagating Whispering-Gallery Modes by a Single Rayleigh Scatterer: A Classical Problem in a Quantum Optical Light,” Phys. Rev. Lett. 99, 173603 (2007).
[CrossRef] [PubMed]

2006 (2)

2005 (2)

M. Noto, F. Vollmer, D. Keng, I. Teraoka, S. Arnold, “Nanolayer characterization through wavelength multiplexing of a microsphere resonator,” Opt. Lett 30, 510–512 (2005).
[CrossRef] [PubMed]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

2004 (2)

2003 (5)

C. Vignet, J.-F. Bercher, “Analysis of signals in the Fisher-Shannon information plane,” Phys. Lett. A 312, 27–33 (2003).
[CrossRef]

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974–1979 (2003).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, F. Vollmer., “Shift of whispering-gallery modes in micro-spheres by protein adsorption,” Opt. Lett. 28, 272–274, (2003).
[CrossRef] [PubMed]

A. N. Bashkatov, E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” Proc. SPIE 5068, 393–395 (2003).
[CrossRef]

2002 (2)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[CrossRef]

J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172 (2002).
[CrossRef]

2000 (1)

M. Cai, O. Painter, K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

1999 (1)

1996 (1)

1995 (1)

1992 (1)

C. Lam, P. T. Leung, K. Young, “Explicit asymptotic formulas for the positions, widths, and strengths of resonances in mie scattering,” J. Opt. Soc. Am. B, 9, 1585–1592 (1992).
[CrossRef]

1991 (1)

1990 (1)

A. Zeira, A. Nehorai, “Frequency domain Cramer-Rao bound for Gaussian Processes,” IEEE Trans. Acoust. Speech. Sig. Proc. 381063–1066 (1990).
[CrossRef]

1973 (1)

Abramowitz, M.

M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, (Dover Publications, New York, 1970).

Ahn, W.

W. Ahn, S. V. Boriskina, Y. Hong, B. M. Reinhard, “Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules,” ACS Nano. 6, 951–960 (2012).
[CrossRef]

Arnold, S.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano. Lett. 13, 3347–3351 (2013).
[CrossRef] [PubMed]

S. Arnold, S. I. Shopova, S. Holler, “Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism,” Opt. Express 18, 281–287 (2010).
[CrossRef] [PubMed]

F. Vollmer, S. Arnold, D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[CrossRef] [PubMed]

S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, I. Teraoka, “Microparticle photophysics illuminates viral biosensing,” Faraday Disc. 137, 65–83, (2008).
[CrossRef]

I. Teraoka, S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B 23, 1381–1389 (2006).
[CrossRef]

M. Noto, F. Vollmer, D. Keng, I. Teraoka, S. Arnold, “Nanolayer characterization through wavelength multiplexing of a microsphere resonator,” Opt. Lett 30, 510–512 (2005).
[CrossRef] [PubMed]

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974–1979 (2003).
[CrossRef] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, F. Vollmer., “Shift of whispering-gallery modes in micro-spheres by protein adsorption,” Opt. Lett. 28, 272–274, (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[CrossRef]

Baaske, M.

M. Baaske, F. Vollmer, “Optical Resonator Biosensors: Molecular Diagnostic and Nanoparticle Detection on an Integrated Platform,” ChemPhysChem 13, 427–436 (2012).
[CrossRef] [PubMed]

Barber, P.W.

Barbre, C.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano. Lett. 13, 3347–3351 (2013).
[CrossRef] [PubMed]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” Proc. SPIE 5068, 393–395 (2003).
[CrossRef]

Bass, M.

M. Bass, C. M. DeCusatis, J. M. Enoch, Handbook of Optics, 3rd ed., Vol. 4. (McGraw-Hill, USA2009).

Bearman, G. H.

J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172 (2002).
[CrossRef]

Benson, O.

A. Mazzei A, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, V. Sandoghdar, “Controlled Coupling of Counterpropagating Whispering-Gallery Modes by a Single Rayleigh Scatterer: A Classical Problem in a Quantum Optical Light,” Phys. Rev. Lett. 99, 173603 (2007).
[CrossRef] [PubMed]

Bercher, J.-F.

C. Vignet, J.-F. Bercher, “Analysis of signals in the Fisher-Shannon information plane,” Phys. Lett. A 312, 27–33 (2003).
[CrossRef]

Boriskina, S. V.

W. Ahn, S. V. Boriskina, Y. Hong, B. M. Reinhard, “Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules,” ACS Nano. 6, 951–960 (2012).
[CrossRef]

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).
[CrossRef]

Bowen, W. P.

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci. Rep. 3, 2974 (2013).
[CrossRef] [PubMed]

J. D. Swaim, J. Knittel, W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett. 99, 243109 (2011).
[CrossRef]

Braun, D.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974–1979 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[CrossRef]

Brawley, G. A.

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci. Rep. 3, 2974 (2013).
[CrossRef] [PubMed]

Cai, M.

M. Cai, O. Painter, K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

Carmon, T.

Cavaliere-Jaricot, S.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[CrossRef] [PubMed]

Chen, D.-R.

J. Zhu, S. J Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Phot. 4, 46–49 (2010).
[CrossRef]

Chen, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[CrossRef] [PubMed]

Chen, Y.-L.

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85, 031805 (2012).
[CrossRef]

Chowdhury, D. Q.

Clements, W. R.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mat. 25, 5616–5620 (2013).
[CrossRef]

Conjusteau, A.

Cramér, H.

H. Cramér, Mathematical Methods of Statistics, (Princeton University Press, USA, 1946).

Dantham, V. R.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano. Lett. 13, 3347–3351 (2013).
[CrossRef] [PubMed]

DeCusatis, C. M.

M. Bass, C. M. DeCusatis, J. M. Enoch, Handbook of Optics, 3rd ed., Vol. 4. (McGraw-Hill, USA2009).

Demirel, M. C.

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).
[CrossRef]

Enoch, J. M.

M. Bass, C. M. DeCusatis, J. M. Enoch, Handbook of Optics, 3rd ed., Vol. 4. (McGraw-Hill, USA2009).

Fan, J.-Y.

X. Yi, Y.-F. Xiao, Y. Feng, D.-Y. Qiu, J.-Y. Fan, Y. Li, Q. Gong, “Mode-splitting-based optical label-free biosensing with a biorecognition-covered microcavity,” J. Appl. Phys. 111, 114702 (2012).
[CrossRef]

Fan, X.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Feng, Y.

X. Yi, Y.-F. Xiao, Y. Feng, D.-Y. Qiu, J.-Y. Fan, Y. Li, Q. Gong, “Mode-splitting-based optical label-free biosensing with a biorecognition-covered microcavity,” J. Appl. Phys. 111, 114702 (2012).
[CrossRef]

Flagan, R. C.

X. Lopez-Yglesias, J. M. Gamba, R. C. Flagan, “The physics of extreme sensitivity in whispering gallery mode optical biosensors,” J. Appl. Phys. 111, 084701 (2012).
[CrossRef]

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[CrossRef] [PubMed]

Foreman, M. R.

M. R. Foreman, F. Vollmer, “Theory of resonance shifts of whispering gallery mode sensors by arbitrary plasmonic nanoparticles,” New. J. Phys. 15, 083006 (2013).
[CrossRef]

M. R. Foreman, F. Vollmer, “Level repulsion in hybrid photonic-plasmonic microresonators for enhanced biodetection,” Phys. Rev. A 88, 023831 (2013).
[CrossRef]

M. R. Foreman, P. Török, “Information and resolution in electromagnetic optical systems,” Phys. Rev. A 82, 043835 (2010).
[CrossRef]

Fraser, S. E.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[CrossRef] [PubMed]

Gamba, J. M.

X. Lopez-Yglesias, J. M. Gamba, R. C. Flagan, “The physics of extreme sensitivity in whispering gallery mode optical biosensors,” J. Appl. Phys. 111, 084701 (2012).
[CrossRef]

Genina, E. A.

A. N. Bashkatov, E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” Proc. SPIE 5068, 393–395 (2003).
[CrossRef]

Gong, Q.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mat. 25, 5616–5620 (2013).
[CrossRef]

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85, 031805 (2012).
[CrossRef]

X. Yi, Y.-F. Xiao, Y. Feng, D.-Y. Qiu, J.-Y. Fan, Y. Li, Q. Gong, “Mode-splitting-based optical label-free biosensing with a biorecognition-covered microcavity,” J. Appl. Phys. 111, 114702 (2012).
[CrossRef]

Gorodetsky, M. L.

Götzinger, S.

A. Mazzei A, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, V. Sandoghdar, “Controlled Coupling of Counterpropagating Whispering-Gallery Modes by a Single Rayleigh Scatterer: A Classical Problem in a Quantum Optical Light,” Phys. Rev. Lett. 99, 173603 (2007).
[CrossRef] [PubMed]

Grabolle, M.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[CrossRef] [PubMed]

Grudinin, I. S.

Hale, G. M.

Hanumegowda, N. M.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Hare, J.

Haroche, S.

He, L.

J. Zhu, S. J Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Phot. 4, 46–49 (2010).
[CrossRef]

Herchak, S.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[CrossRef] [PubMed]

Hill, S. C.

Holler, S.

Hong, Y.

W. Ahn, S. V. Boriskina, Y. Hong, B. M. Reinhard, “Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules,” ACS Nano. 6, 951–960 (2012).
[CrossRef]

Hu, Y.

Ilchenko, V. S.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, N. Yu, L. Maleki, “Whispering-gallery-mode resonators as frequency references. II. Stabilization,” J. Opt. Soc. Am. B. 24, 2099–2997 (2007).
[CrossRef]

J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172 (2002).
[CrossRef]

M. L. Gorodetsky, V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16, 147–154 (1999).
[CrossRef]

M. L. Gorodetsky, A. A. Savchenkov, V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
[CrossRef] [PubMed]

Jiang, X.-F.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mat. 25, 5616–5620 (2013).
[CrossRef]

Jin, W.-L.

Keng, D.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano. Lett. 13, 3347–3351 (2013).
[CrossRef] [PubMed]

F. Vollmer, S. Arnold, D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[CrossRef] [PubMed]

S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, I. Teraoka, “Microparticle photophysics illuminates viral biosensing,” Faraday Disc. 137, 65–83, (2008).
[CrossRef]

M. Noto, F. Vollmer, D. Keng, I. Teraoka, S. Arnold, “Nanolayer characterization through wavelength multiplexing of a microsphere resonator,” Opt. Lett 30, 510–512 (2005).
[CrossRef] [PubMed]

Khoshsima, M.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, F. Vollmer., “Shift of whispering-gallery modes in micro-spheres by protein adsorption,” Opt. Lett. 28, 272–274, (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[CrossRef]

Kim, J.-H.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[CrossRef] [PubMed]

Knittel, J.

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci. Rep. 3, 2974 (2013).
[CrossRef] [PubMed]

J. D. Swaim, J. Knittel, W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett. 99, 243109 (2011).
[CrossRef]

Kolchenko, V.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano. Lett. 13, 3347–3351 (2013).
[CrossRef] [PubMed]

S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, I. Teraoka, “Microparticle photophysics illuminates viral biosensing,” Faraday Disc. 137, 65–83, (2008).
[CrossRef]

Kossakovski, D.

J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172 (2002).
[CrossRef]

Lam, C.

C. Lam, P. T. Leung, K. Young, “Explicit asymptotic formulas for the positions, widths, and strengths of resonances in mie scattering,” J. Opt. Soc. Am. B, 9, 1585–1592 (1992).
[CrossRef]

Lee, H.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[CrossRef] [PubMed]

Lefèvre-Seguin, V.

Leung, P. T.

C. Lam, P. T. Leung, K. Young, “Explicit asymptotic formulas for the positions, widths, and strengths of resonances in mie scattering,” J. Opt. Soc. Am. B, 9, 1585–1592 (1992).
[CrossRef]

Li, B.

Li, B.-B.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mat. 25, 5616–5620 (2013).
[CrossRef]

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85, 031805 (2012).
[CrossRef]

Li, H.

L. Xu, H. Li, X. Wu, L. Shang, L. Liu, “Ultra-sensitive label-free biosensing by using single-mode coupled microcavity laser,” Proc. SPIE, 7682, 76820C (2010).
[CrossRef]

Li, L.

J. Zhu, S. J Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Phot. 4, 46–49 (2010).
[CrossRef]

Li, Y.

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85, 031805 (2012).
[CrossRef]

X. Yi, Y.-F. Xiao, Y. Feng, D.-Y. Qiu, J.-Y. Fan, Y. Li, Q. Gong, “Mode-splitting-based optical label-free biosensing with a biorecognition-covered microcavity,” J. Appl. Phys. 111, 114702 (2012).
[CrossRef]

Libchaber, A.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974–1979 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[CrossRef]

Liu, L.

L. Xu, H. Li, X. Wu, L. Shang, L. Liu, “Ultra-sensitive label-free biosensing by using single-mode coupled microcavity laser,” Proc. SPIE, 7682, 76820C (2010).
[CrossRef]

Liu, Y.-C.

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85, 031805 (2012).
[CrossRef]

Lopez-Yglesias, X.

X. Lopez-Yglesias, J. M. Gamba, R. C. Flagan, “The physics of extreme sensitivity in whispering gallery mode optical biosensors,” J. Appl. Phys. 111, 084701 (2012).
[CrossRef]

Lu, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[CrossRef] [PubMed]

Mabuchi, H.

Maleki, L.

A. B. Matsko, A. A. Savchenkov, N. Yu, L. Maleki, “Whispering gallery mode resonators as frequency references. I. Fundamental limitations,” J. Opt. Soc. Am. B 24, 1324–1335 (2007).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, N. Yu, L. Maleki, “Whispering-gallery-mode resonators as frequency references. II. Stabilization,” J. Opt. Soc. Am. B. 24, 2099–2997 (2007).
[CrossRef]

J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172 (2002).
[CrossRef]

Matsko, A. B.

A. B. Matsko, A. A. Savchenkov, N. Yu, L. Maleki, “Whispering gallery mode resonators as frequency references. I. Fundamental limitations,” J. Opt. Soc. Am. B 24, 1324–1335 (2007).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, N. Yu, L. Maleki, “Whispering-gallery-mode resonators as frequency references. II. Stabilization,” J. Opt. Soc. Am. B. 24, 2099–2997 (2007).
[CrossRef]

Mazzei A, A.

A. Mazzei A, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, V. Sandoghdar, “Controlled Coupling of Counterpropagating Whispering-Gallery Modes by a Single Rayleigh Scatterer: A Classical Problem in a Quantum Optical Light,” Phys. Rev. Lett. 99, 173603 (2007).
[CrossRef] [PubMed]

McAuslan, D. L.

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci. Rep. 3, 2974 (2013).
[CrossRef] [PubMed]

McGarvey, T.

Menezes, L. de S.

A. Mazzei A, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, V. Sandoghdar, “Controlled Coupling of Counterpropagating Whispering-Gallery Modes by a Single Rayleigh Scatterer: A Classical Problem in a Quantum Optical Light,” Phys. Rev. Lett. 99, 173603 (2007).
[CrossRef] [PubMed]

Nadeau, J. L.

J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172 (2002).
[CrossRef]

Nann, T.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[CrossRef] [PubMed]

Nehorai, A.

A. Zeira, A. Nehorai, “Frequency domain Cramer-Rao bound for Gaussian Processes,” IEEE Trans. Acoust. Speech. Sig. Proc. 381063–1066 (1990).
[CrossRef]

Nitschke, R.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[CrossRef] [PubMed]

Noto, M.

M. Noto, F. Vollmer, D. Keng, I. Teraoka, S. Arnold, “Nanolayer characterization through wavelength multiplexing of a microsphere resonator,” Opt. Lett 30, 510–512 (2005).
[CrossRef] [PubMed]

Ozdemir, S. J

J. Zhu, S. J Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Phot. 4, 46–49 (2010).
[CrossRef]

Painter, O.

M. Cai, O. Painter, K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

Patel, B. C.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Qiu, D.-Y.

X. Yi, Y.-F. Xiao, Y. Feng, D.-Y. Qiu, J.-Y. Fan, Y. Li, Q. Gong, “Mode-splitting-based optical label-free biosensing with a biorecognition-covered microcavity,” J. Appl. Phys. 111, 114702 (2012).
[CrossRef]

Querry, M. R.

Raimond, J. M.

Ramjit, R.

S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, I. Teraoka, “Microparticle photophysics illuminates viral biosensing,” Faraday Disc. 137, 65–83, (2008).
[CrossRef]

Reinhard, B. M.

W. Ahn, S. V. Boriskina, Y. Hong, B. M. Reinhard, “Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules,” ACS Nano. 6, 951–960 (2012).
[CrossRef]

Resch-Genger, U.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[CrossRef] [PubMed]

Sandoghdar, V.

A. Mazzei A, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, V. Sandoghdar, “Controlled Coupling of Counterpropagating Whispering-Gallery Modes by a Single Rayleigh Scatterer: A Classical Problem in a Quantum Optical Light,” Phys. Rev. Lett. 99, 173603 (2007).
[CrossRef] [PubMed]

D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Opt. Lett. 20, 1835–1837 (1995).
[CrossRef] [PubMed]

Santiago-Cordoba, M. A.

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).
[CrossRef]

Savchenkov, A. A.

Scharf, L. L.

L. L. Scharf, Statistical Signal Processing: Detection, Estimation, and Time Series Analysis, (Addison-Wesley Publishing Co., USA, 1991).

Shang, L.

L. Xu, H. Li, X. Wu, L. Shang, L. Liu, “Ultra-sensitive label-free biosensing by using single-mode coupled microcavity laser,” Proc. SPIE, 7682, 76820C (2010).
[CrossRef]

Shao, L.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mat. 25, 5616–5620 (2013).
[CrossRef]

Shopova, S. I.

Stegun, I.

M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, (Dover Publications, New York, 1970).

Stica, C. J.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Swaim, J. D.

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci. Rep. 3, 2974 (2013).
[CrossRef] [PubMed]

J. D. Swaim, J. Knittel, W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett. 99, 243109 (2011).
[CrossRef]

Teraoka, I.

I. Teraoka, “Analysis of thermal stabilization of whispering gallery mode resonance,” Opt. Commun. 310212–216 (2014).
[CrossRef]

S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, I. Teraoka, “Microparticle photophysics illuminates viral biosensing,” Faraday Disc. 137, 65–83, (2008).
[CrossRef]

I. Teraoka, S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B 23, 1381–1389 (2006).
[CrossRef]

M. Noto, F. Vollmer, D. Keng, I. Teraoka, S. Arnold, “Nanolayer characterization through wavelength multiplexing of a microsphere resonator,” Opt. Lett 30, 510–512 (2005).
[CrossRef] [PubMed]

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974–1979 (2003).
[CrossRef] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, F. Vollmer., “Shift of whispering-gallery modes in micro-spheres by protein adsorption,” Opt. Lett. 28, 272–274, (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[CrossRef]

Topolancik, J.

J. Topolancik, F. Vollmer, “Photoinduced transformations in bacteriorhodopsin membrane monitored with optical microcavities,” Biophys. J. 92, 2223–2229 (2007).
[CrossRef] [PubMed]

Török, P.

M. R. Foreman, P. Török, “Information and resolution in electromagnetic optical systems,” Phys. Rev. A 82, 043835 (2010).
[CrossRef]

Vahala, K.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[CrossRef] [PubMed]

Vahala, K. J.

T. Carmon, L. Yang, K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

M. Cai, O. Painter, K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

Vignet, C.

C. Vignet, J.-F. Bercher, “Analysis of signals in the Fisher-Shannon information plane,” Phys. Lett. A 312, 27–33 (2003).
[CrossRef]

Vollmer, F.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mat. 25, 5616–5620 (2013).
[CrossRef]

M. R. Foreman, F. Vollmer, “Theory of resonance shifts of whispering gallery mode sensors by arbitrary plasmonic nanoparticles,” New. J. Phys. 15, 083006 (2013).
[CrossRef]

M. R. Foreman, F. Vollmer, “Level repulsion in hybrid photonic-plasmonic microresonators for enhanced biodetection,” Phys. Rev. A 88, 023831 (2013).
[CrossRef]

M. Baaske, F. Vollmer, “Optical Resonator Biosensors: Molecular Diagnostic and Nanoparticle Detection on an Integrated Platform,” ChemPhysChem 13, 427–436 (2012).
[CrossRef] [PubMed]

F. Vollmer, L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophot. 1, 267–291 (2012).
[CrossRef]

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).
[CrossRef]

F. Vollmer, S. Arnold, D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[CrossRef] [PubMed]

J. Topolancik, F. Vollmer, “Photoinduced transformations in bacteriorhodopsin membrane monitored with optical microcavities,” Biophys. J. 92, 2223–2229 (2007).
[CrossRef] [PubMed]

M. Noto, F. Vollmer, D. Keng, I. Teraoka, S. Arnold, “Nanolayer characterization through wavelength multiplexing of a microsphere resonator,” Opt. Lett 30, 510–512 (2005).
[CrossRef] [PubMed]

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974–1979 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[CrossRef]

Vollmer., F.

Wang, W.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mat. 25, 5616–5620 (2013).
[CrossRef]

Weiss, D. S.

White, I.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Wu, X.

L. Xu, H. Li, X. Wu, L. Shang, L. Liu, “Ultra-sensitive label-free biosensing by using single-mode coupled microcavity laser,” Proc. SPIE, 7682, 76820C (2010).
[CrossRef]

Xiao, Y.

Xiao, Y.-F.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mat. 25, 5616–5620 (2013).
[CrossRef]

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85, 031805 (2012).
[CrossRef]

X. Yi, Y.-F. Xiao, Y. Feng, D.-Y. Qiu, J.-Y. Fan, Y. Li, Q. Gong, “Mode-splitting-based optical label-free biosensing with a biorecognition-covered microcavity,” J. Appl. Phys. 111, 114702 (2012).
[CrossRef]

J. Zhu, S. J Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Phot. 4, 46–49 (2010).
[CrossRef]

Y.-F. Xiao, “Optical cavity QED in Solid-State Systems - Theory to Realization,” PhD thesis (University of Science and Technology of China, 2007).

Xu, L.

L. Xu, H. Li, X. Wu, L. Shang, L. Liu, “Ultra-sensitive label-free biosensing by using single-mode coupled microcavity laser,” Proc. SPIE, 7682, 76820C (2010).
[CrossRef]

Yang, L.

F. Vollmer, L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophot. 1, 267–291 (2012).
[CrossRef]

J. Zhu, S. J Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Phot. 4, 46–49 (2010).
[CrossRef]

T. Carmon, L. Yang, K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[CrossRef] [PubMed]

Yi, X.

W.-L. Jin, X. Yi, Y. Hu, B. Li, Y. Xiao, “Temperature-insensitive detection of low-concentration nanoparticles using a functionalized high-Q microcavity,” Appl. Opt. 52, 155–161 (2013).
[CrossRef] [PubMed]

X. Yi, Y.-F. Xiao, Y. Feng, D.-Y. Qiu, J.-Y. Fan, Y. Li, Q. Gong, “Mode-splitting-based optical label-free biosensing with a biorecognition-covered microcavity,” J. Appl. Phys. 111, 114702 (2012).
[CrossRef]

Young, K.

C. Lam, P. T. Leung, K. Young, “Explicit asymptotic formulas for the positions, widths, and strengths of resonances in mie scattering,” J. Opt. Soc. Am. B, 9, 1585–1592 (1992).
[CrossRef]

Yu, N.

A. B. Matsko, A. A. Savchenkov, N. Yu, L. Maleki, “Whispering gallery mode resonators as frequency references. I. Fundamental limitations,” J. Opt. Soc. Am. B 24, 1324–1335 (2007).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, N. Yu, L. Maleki, “Whispering-gallery-mode resonators as frequency references. II. Stabilization,” J. Opt. Soc. Am. B. 24, 2099–2997 (2007).
[CrossRef]

Yu, X.-C.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mat. 25, 5616–5620 (2013).
[CrossRef]

Zeira, A.

A. Zeira, A. Nehorai, “Frequency domain Cramer-Rao bound for Gaussian Processes,” IEEE Trans. Acoust. Speech. Sig. Proc. 381063–1066 (1990).
[CrossRef]

Zhu, J.

J. Zhu, S. J Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Phot. 4, 46–49 (2010).
[CrossRef]

Zumofen, G.

A. Mazzei A, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, V. Sandoghdar, “Controlled Coupling of Counterpropagating Whispering-Gallery Modes by a Single Rayleigh Scatterer: A Classical Problem in a Quantum Optical Light,” Phys. Rev. Lett. 99, 173603 (2007).
[CrossRef] [PubMed]

ACS Nano. (1)

W. Ahn, S. V. Boriskina, Y. Hong, B. M. Reinhard, “Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules,” ACS Nano. 6, 951–960 (2012).
[CrossRef]

Adv. Mat. (1)

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mat. 25, 5616–5620 (2013).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[CrossRef]

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).
[CrossRef]

J. D. Swaim, J. Knittel, W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett. 99, 243109 (2011).
[CrossRef]

Biophys. J. (2)

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974–1979 (2003).
[CrossRef] [PubMed]

J. Topolancik, F. Vollmer, “Photoinduced transformations in bacteriorhodopsin membrane monitored with optical microcavities,” Biophys. J. 92, 2223–2229 (2007).
[CrossRef] [PubMed]

ChemPhysChem (1)

M. Baaske, F. Vollmer, “Optical Resonator Biosensors: Molecular Diagnostic and Nanoparticle Detection on an Integrated Platform,” ChemPhysChem 13, 427–436 (2012).
[CrossRef] [PubMed]

Faraday Disc. (1)

S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, I. Teraoka, “Microparticle photophysics illuminates viral biosensing,” Faraday Disc. 137, 65–83, (2008).
[CrossRef]

IEEE Trans. Acoust. Speech. Sig. Proc. (1)

A. Zeira, A. Nehorai, “Frequency domain Cramer-Rao bound for Gaussian Processes,” IEEE Trans. Acoust. Speech. Sig. Proc. 381063–1066 (1990).
[CrossRef]

J. Appl. Phys. (2)

X. Lopez-Yglesias, J. M. Gamba, R. C. Flagan, “The physics of extreme sensitivity in whispering gallery mode optical biosensors,” J. Appl. Phys. 111, 084701 (2012).
[CrossRef]

X. Yi, Y.-F. Xiao, Y. Feng, D.-Y. Qiu, J.-Y. Fan, Y. Li, Q. Gong, “Mode-splitting-based optical label-free biosensing with a biorecognition-covered microcavity,” J. Appl. Phys. 111, 114702 (2012).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (4)

J. Opt. Soc. Am. B, (1)

C. Lam, P. T. Leung, K. Young, “Explicit asymptotic formulas for the positions, widths, and strengths of resonances in mie scattering,” J. Opt. Soc. Am. B, 9, 1585–1592 (1992).
[CrossRef]

J. Opt. Soc. Am. B. (1)

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, N. Yu, L. Maleki, “Whispering-gallery-mode resonators as frequency references. II. Stabilization,” J. Opt. Soc. Am. B. 24, 2099–2997 (2007).
[CrossRef]

Nano. Lett. (1)

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano. Lett. 13, 3347–3351 (2013).
[CrossRef] [PubMed]

Nanophot. (1)

F. Vollmer, L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophot. 1, 267–291 (2012).
[CrossRef]

Nat. Methods (1)

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[CrossRef] [PubMed]

Nat. Phot. (1)

J. Zhu, S. J Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Phot. 4, 46–49 (2010).
[CrossRef]

Nature (1)

K. J. Vahala, “Optical microcavities” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

New. J. Phys. (1)

M. R. Foreman, F. Vollmer, “Theory of resonance shifts of whispering gallery mode sensors by arbitrary plasmonic nanoparticles,” New. J. Phys. 15, 083006 (2013).
[CrossRef]

Opt. Commun. (1)

I. Teraoka, “Analysis of thermal stabilization of whispering gallery mode resonance,” Opt. Commun. 310212–216 (2014).
[CrossRef]

Opt. Express (3)

Opt. Lett (1)

M. Noto, F. Vollmer, D. Keng, I. Teraoka, S. Arnold, “Nanolayer characterization through wavelength multiplexing of a microsphere resonator,” Opt. Lett 30, 510–512 (2005).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Lett. A (1)

C. Vignet, J.-F. Bercher, “Analysis of signals in the Fisher-Shannon information plane,” Phys. Lett. A 312, 27–33 (2003).
[CrossRef]

Phys. Rev. A (3)

M. R. Foreman, P. Török, “Information and resolution in electromagnetic optical systems,” Phys. Rev. A 82, 043835 (2010).
[CrossRef]

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85, 031805 (2012).
[CrossRef]

M. R. Foreman, F. Vollmer, “Level repulsion in hybrid photonic-plasmonic microresonators for enhanced biodetection,” Phys. Rev. A 88, 023831 (2013).
[CrossRef]

Phys. Rev. Lett. (2)

A. Mazzei A, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, V. Sandoghdar, “Controlled Coupling of Counterpropagating Whispering-Gallery Modes by a Single Rayleigh Scatterer: A Classical Problem in a Quantum Optical Light,” Phys. Rev. Lett. 99, 173603 (2007).
[CrossRef] [PubMed]

M. Cai, O. Painter, K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (2)

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[CrossRef] [PubMed]

F. Vollmer, S. Arnold, D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[CrossRef] [PubMed]

Proc. SPIE (3)

L. Xu, H. Li, X. Wu, L. Shang, L. Liu, “Ultra-sensitive label-free biosensing by using single-mode coupled microcavity laser,” Proc. SPIE, 7682, 76820C (2010).
[CrossRef]

J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172 (2002).
[CrossRef]

A. N. Bashkatov, E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” Proc. SPIE 5068, 393–395 (2003).
[CrossRef]

Sci. Rep. (1)

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci. Rep. 3, 2974 (2013).
[CrossRef] [PubMed]

Other (5)

M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, (Dover Publications, New York, 1970).

Y.-F. Xiao, “Optical cavity QED in Solid-State Systems - Theory to Realization,” PhD thesis (University of Science and Technology of China, 2007).

H. Cramér, Mathematical Methods of Statistics, (Princeton University Press, USA, 1946).

L. L. Scharf, Statistical Signal Processing: Detection, Estimation, and Time Series Analysis, (Addison-Wesley Publishing Co., USA, 1991).

M. Bass, C. M. DeCusatis, J. M. Enoch, Handbook of Optics, 3rd ed., Vol. 4. (McGraw-Hill, USA2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of observed transmission lineshape, induced red shift and line broadening upon binding of biomolecules to the microcavity surface, illustrating definitions of quantities used in this work.

Fig. 2
Fig. 2

(a) Variation of intrinsic quality factor Q0 of a fused silica WGM resonance in water with microcavity radius R. (b) Variation of detection limits Δωd,t and ΔΓ d,t (normalised to resonance linewidth) with WGM Q factor.

Fig. 3
Fig. 3

(a) Minimum detectable number of influenza A (InfA) virons, N as a function of microcavity radius R as set by detector noise for different coupling distances, d. Solid blue curve corresponds to the optimal coupling distance. (b) As (a) for the optimal coupling distance albeit with the addition of thermorefractive noise of varying magnitude as set by the temperature fluctuations ΔT. Solid blue curve corresponds to detector noise only. Dashed curves show detection limits associated with the presence of thermorefractive noise alone. Solid blue lines in (a) and (b) are equivalent.

Fig. 4
Fig. 4

(a) Variation of (1 + Qc/Q0)3/(Qc/Q0)2 factor, describing coupling loss dependence of minimum number of detectable particles, with Qc/Q0. A clear minimum is exhibited at Qc = 2Q0. (b) Variation of (1 + Qc/Q0)3/(Qc/Q0)2 with transmission depth A in the over- and under-coupled regime. Dashed black line corresponds to A = 0.89, i.e. Qc = 2Q0

Fig. 5
Fig. 5

As Fig. 3, but for detection of a monolayer of BSA molecules.

Fig. 6
Fig. 6

(a) Comparison of minimum detectable number of influenza virons, N as a function of microcavity radius R when monitoring linewidth changes (blue and green) or resonance frequency shift (red). Blue curves depict detection limits when broadening is dominated by particle induced scattering losses for different noise sources. Green curves show detection limits for broadening considering all particle induced broadening mechanisms. (b) As (a) albeit for a 60 nm radius gold-silica nanoshells with resonance tuned to match the probing WGM frequency. (inset) Dependence of dN/dT with respect to microcavity radius.

Tables (1)

Tables Icon

Table 1 Calculated optimal parameters for differing wavelengths. Optimal parameters for detection of BSA monolayer for λ = 1550 nm and 1300 nm were beyond computational bounds.

Equations (46)

Equations on this page are rendered with MathJax. Learn more.

I ( ω ) = I 0 [ 1 A Γ 2 / 4 ( ω ω 0 ) 2 + Γ 2 / 4 ] ,
p I d ( I d , j ; ω 0 , Γ , A ) = 1 2 π σ d 2 exp [ 1 2 ( I d , j I j σ d ) 2 ] ,
p ω t ( ω t ) = 1 2 π σ t 2 exp [ 1 2 ω t 2 σ t 2 ] ,
p I d ( I d , j ; ω 0 , Γ , A ) = δ ( I d , j I j ) p ω t ( ω t ) d ω t
= 1 2 π σ t 2 I 0 A Γ j 2 4 Λ j ( I 0 I d , j ) 2 exp [ 1 2 Δ j 2 σ t 2 ] exp [ 1 2 Λ j 2 σ t 2 ] cosh [ Λ j Δ j σ t 2 ] ,
𝕂 w 𝕁 w 1 ,
[ 𝕁 I ] i j = δ i , j p I d , j ( I d , j ) ( ln p I d , j ( I d , j ; ω 0 , Γ , A ) I j ) 2 d I d , j ,
J ω 0 , ω 0 = j = 1 N Ω 1 σ d 2 ( I j ω 0 ) 2 A 2 I 0 2 4 σ d 2 Δ Ω Γ 4 ( ω 0 ω ) 2 [ ( ω 0 ω ) 2 + Γ 2 / 4 ] 4 d ω = A 2 I 0 2 2 σ d 2 Δ Ω π Γ .
𝕁 w = π I 0 2 8 σ d 2 Δ Ω ( 4 A 2 / Γ 0 0 0 A 2 / Γ A 0 A 2 Γ ) .
𝕁 w = ( J ω 0 , ω 0 J ω 0 , A 2 J A , A J ω 0 , Γ J Γ , A J ω 0 , A J A , A J ω 0 , Γ J Γ , A J ω 0 , A J A , A J Γ , Γ J Γ , A 2 J A , A ) = A 2 I 0 2 16 σ d 2 Δ Ω π Γ ( 8 0 0 1 ) .
Δ ω d = Δ Γ d 2 = 2 β π σ d I 0 A Γ .
J ω 0 , ω 0 = j = 1 N Ω 0 [ 1 σ t 2 Λ j 2 σ t 4 sech 2 ( Λ j Δ j σ t 2 ) ] p I d , j d I d , j .
J ω 0 , ω 0 N Ω σ t 2 1 Δ Ω σ t 5 2 π 0 Λ 2 exp ( Λ 2 2 σ t 2 ) sech ( Λ Δ σ t 2 ) exp ( Δ 2 2 σ t 2 ) d Δ d Λ ,
J ω 0 , ω 0 1 σ t [ N Ω σ t π Δ Ω U ( 1 2 , 0 , 1 2 ) ] = 1 σ t Δ Ω [ Ω σ t 1.416 ] ,
Δ ω t = β Γ σ t W Γ / σ t 1.416 σ t β W ,
J Γ , Γ 2 σ t 3 Γ 2 Δ Ω Ω 2 σ t [ 3 + ( Ω 2 σ t ) 2 ] ,
Δ Γ t = 2 σ t 3 β W Γ 2 24 σ t 2 + W 2 Γ 2 2 σ t 3 β W 3 ,
[ 𝕁 I ] j k 1 2 π π π 1 Φ ( s ) exp [ i s ( j k ) ] d s ,
[ 𝕁 I ] j k π A p 2 ( cos p + p sin p 1 ) ,
δ ω ω 0 = ε 0 ε s Re [ α ] | E ( r p ) | 2 4 U ,
N = Δ ω | δ ω | = ( n c 2 n s 2 ) Re [ α ] R 3 | Y l l ( π / 2 ) | 2 F Q ,
| Y l l ( θ ) | 2 1 4 π 3 / 2 2 l + 1 l 1 / 2 sin 2 l θ
Q c = 2 π 5 n c n p 2 n c 2 ( n c 2 n s 2 ) ( R λ ) 3 / 2 exp [ 2 γ d ] ,
N = ( n c 2 n s 2 ) Re [ α ] R 3 | Y l l ( π / 2 ) | 2 F 0 Q 0 ( 1 + Q c / Q 0 ) 3 4 Q c 2 / Q 0 2 .
N = σ t ( n c 2 n s 2 ) Re [ α ] ω 0 R 3 | Y l l ( π / 2 ) | 2 β W .
δ ω ω 0 = ε s ( ε c ε s ) R Re [ α ] σ s .
δ Γ abs ω 0 = ε s | Y l l ( π / 2 ) | 2 ( ε c ε s ) R 3 Im [ α ] ,
δ Γ sca ω 0 = ω 0 3 n s 5 | Y l l ( π / 2 ) | 2 3 π c 3 ( ε c ε s ) R 3 | α | 2 ,
N = Δ Γ δ Γ sca = 6 π c 3 ( n c 2 n s 2 ) | α | 2 n s 5 ω 0 3 R 3 | Y l l ( π / 2 ) | 2 F 0 Q 0 ( 1 + Q c / Q 0 ) 3 4 Q c 2 / Q 0 2
N = σ t 6 π c 3 ( n c 2 n s 2 ) | α | 2 n s 5 ω 0 4 R 3 | Y l l ( π / 2 ) | 2 3 β W 3
Q c Q 0 = 1 2 [ 1 + 1 + 9 Q m 1 + Q m ] 2 2 3 Q m ,
δ R 2 C ( R opt ) Q 0 Q m Q m R [ ( 3 Q m + 2 ) 2 [ C ( R ) / Q 0 ] R 2 | R = R opt ] 1 .
[ n s z h l ( n s z ) ] h l ( n s z ) = N [ n c z j l ( n c z ) ] j l ( n c z ) ,
z 0 l + 1 / 2 n c +
Γ 2 c a ( n c 2 n s 2 ) 1 n s z 0 2 y l 2 ( n s z 0 )
ρ = d Γ / d T d ω 0 / d T = d Γ / d n c d ω 0 / d n c = 2 Q ( n s 2 n c 2 n s 2 n s z 0 l y l 1 ( n s z 0 ) ( l + 1 ) y l + 1 ( n s z 0 ) ( 2 l + 1 ) y l ( n s z 0 ) ) .
J Γ , Γ = j = 1 N Ω 0 [ 1 + Λ j 2 σ t 2 Λ j 2 Δ j σ t 4 sech 2 ( Λ j Δ j σ t 2 ) ] 1 Γ 2 p I d , j d I d , j .
J Γ , Γ N Ω Γ 2 + 2 / π Γ 2 Δ Ω σ t { 0 exp ( Λ 2 2 σ t 2 ) Ω / 2 Ω / 2 [ Λ 2 σ t 2 cosh ( Λ Δ σ t 2 ) ] exp ( Δ 2 2 σ t 2 ) d Δ d Λ 0 exp ( Λ 2 2 σ t 2 ) Ω / 2 Ω / 2 [ Λ 2 Δ 2 σ t 4 sech ( Λ Δ σ t 2 ) ] exp ( Δ 2 2 σ t 2 ) d Δ d Λ } .
J Γ , Γ N Ω Γ 2 + 2 / π Γ 2 Δ Ω σ t 0 exp ( Λ 2 2 σ t 2 ) X Ω X Ω cosh x exp ( x 2 2 σ t 2 Λ 2 ) d x d Λ 0.563 σ t Γ 2 Δ Ω
1 Γ 2 Δ Ω σ t 2 0 Λ 2 [ erf ( Z σ t + Λ 2 σ t ) + erf ( Z σ t Λ 2 σ t ) ] d Λ
J Γ , Γ N Ω Γ 2 + 2 σ t 3 Γ 2 Δ Ω Z ( 3 + Z 2 ) 0.563 σ t Γ 2 Δ Ω = Ω Γ 3 6 Z + Z 3 0.845 3 β Z .
C ( R ) = ( n c 2 n s 2 ) Re [ α ] R 3 | Y l l ( π / 2 ) | 2 .
N = C ( R ) F 0 Q 0 ( 1 + Q c / Q 0 ) 2 4 Q c / Q 0 ( 1 + Q c / Q 0 Q c / Q 0 + 1 Q m ) .
d N d R = f 1 R f 2 + f 1 f 2 Q m Q m R + f 1 f 2 x x R ,
f 1 R ( 27 16 + 9 8 Q m ) f 1 Q m R 9 8 Q m 2 = 0 ,
2 f 1 R 2 | R = R opt δ R ( 27 16 + 9 8 Q m ) f 1 ( R opt ) Q m R = 0 ,

Metrics