Abstract

Noise statistics of phase-resolved optical coherence tomography (OCT) imaging are complicated and involve noises of OCT, correlation of signals, and speckles. In this paper, the statistical properties of phase shift between two OCT signals that contain additive random noises and speckle noises are presented. Experimental results obtained with a scattering tissue phantom are in good agreement with theoretical predictions. The performances of the dual-beam method and conventional single-beam method are compared. As expected, phase shift noise in the case of the dual-beam-scan method is less than that for the single-beam method when the transversal sampling step is large.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. d. Boer, J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000).
    [CrossRef]
  2. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, J. F. d. Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography,” Opt. Express 11, 3490–3497 (2003).
    [CrossRef] [PubMed]
  3. R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11, 3116–3121 (2003).
    [CrossRef] [PubMed]
  4. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006).
    [CrossRef] [PubMed]
  5. B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
    [CrossRef] [PubMed]
  6. D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express 2, 1504–1513 (2011).
    [CrossRef] [PubMed]
  7. B. Braaf, K. A. Vermeer, V. A. D. Sicam, E. van Zeeburg, J. C. van Meurs, J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-m for the measurement of blood flow in the human choroid,” Opt. Express 19, 20886–20903 (2011).
    [CrossRef] [PubMed]
  8. R. K. Wang, S. Kirkpatrick, M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90, 164105, 2007).
    [CrossRef]
  9. S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express 18, 25519–25534 (2010).
    [CrossRef] [PubMed]
  10. B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. T. Munro, D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3, 1865–1879 (2012).
    [CrossRef] [PubMed]
  11. T. Akkin, D. P. Dav, J.-I. Youn, S. A. Telenkov, H. G. R., T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33, 219–225 (2003).
    [CrossRef] [PubMed]
  12. S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49, 111–119 (2004).
    [CrossRef] [PubMed]
  13. D. C. Adler, S.-W. Huang, R. Huber, J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16, 4376–4393 (2008).
    [CrossRef] [PubMed]
  14. H. H. Mller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, G. Httmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3, 1025–1046 (2012).
    [CrossRef]
  15. W. Drexler, J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2008).
    [CrossRef]
  16. S. Yazdanfar, C. Yang, M. Sarunic, J. Izatt, “Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound,” Opt. Express 13, 410–416 (2005).
    [CrossRef] [PubMed]
  17. B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, J. F. d. Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm,” Opt. Express 13, 3931–3944 (2005).
    [CrossRef] [PubMed]
  18. B. J. Vakoc, G. J. Tearney, B. E. Bouma, “Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography,” IEEE Trans. Med. Imaging 28, 814–821 (2009).
    [CrossRef] [PubMed]
  19. S. Makita, F. Jaillon, M. Yamanari, M. Miura, Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express 19, 1271–1283 (2011).
    [CrossRef] [PubMed]
  20. S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Gtzinger, R. A. Leitgeb, C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express 19, 1217–1227 (2011).
    [CrossRef] [PubMed]
  21. F. Jaillon, S. Makita, E.-J. Min, B. H. Lee, Y. Yasuno, “Enhanced imaging of choroidal vasculature by high-penetration and dual-velocity optical coherence angiography,” Biomed. Opt. Express 2, 1147–1158 (2011).
    [CrossRef] [PubMed]
  22. L. Jong-Sen, K. Hoppel, S. Mango, A. Miller, “Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery,” IEEE Trans. Geosci. Remote Sens. 32, 1017–1028 (1994).
    [CrossRef]
  23. R. J. A. Tough, D. Blacknell, S. Quegan, “A statistical description of polarimetric and interferometric synthetic aperture radar data,” Proc. R. Soc. Lond. A 449, 567–589 (1995).
    [CrossRef]
  24. J. Walther, E. Koch, “Transverse motion as a source of noise and reduced correlation of the Doppler phase shift in spectral domain OCT,” Opt. Express 17, 19698–19713 (2009).
    [CrossRef] [PubMed]
  25. V. J. Srinivasan, S. Sakadi, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express 18, 2477–2494 (2010).
    [CrossRef] [PubMed]
  26. J. Lee, W. Wu, J. Y. Jiang, B. Zhu, D. A. Boas, “Dynamic light scattering optical coherence tomography,” Opt. Express 20, 22262–22277 (2012).
    [CrossRef] [PubMed]
  27. A. Szkulmowska, M. Szkulmowski, A. Kowalczyk, M. Wojtkowski, “Phase-resolved Doppler optical coherence tomographylimitations and improvements,” Opt. Lett. 33, 1425–1427 (2008).
    [CrossRef] [PubMed]
  28. V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
    [CrossRef]
  29. A. Moreira, “Improved multilook techniques applied to SAR and SCANSAR imagery,” IEEE Trans. Geosci. Remote Sens. 29, 529–534, 1991).
    [CrossRef]
  30. J. S. Bendat, A. G. Piersol, Random Data: Analysis and Measurement Procedures (John Wiley and Sons, 2010).
    [CrossRef]
  31. F. Jaillon, S. Makita, Y. Yasuno, “Variable velocity range imaging of the choroid with dual-beam optical coherence angiography,” Opt. Express 20, 385–396 (2012).
    [CrossRef] [PubMed]
  32. S. Makita, F. Jaillon, M. Yamanari, Y. Yasuno, “Dual-beam-scan Doppler optical coherence angiography for birefringence-artifact-free vasculature imaging,” Opt. Express 20, 2681–2692 (2012).
    [CrossRef] [PubMed]
  33. K. Kurokawa, K. Sasaki, S. Makita, Y.-J. Hong, Y. Yasuno, “Three-dimensional retinal and choroidal capillary imaging by power Doppler optical coherence angiography with adaptive optics,” Opt. Express 20, 22796–22812 (2012).
    [CrossRef] [PubMed]
  34. S. H. Yun, G. J. Tearney, J. F. d. Boer, B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977–2998 (2004).
    [CrossRef] [PubMed]
  35. I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17, 23736–23754 (2009).
    [CrossRef]
  36. L. An, J. Qin, R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18, 8220–8228 (2010).
    [CrossRef] [PubMed]
  37. B. Braaf, K. A. Vermeer, K. V. Vienola, J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched b-scans,” Opt. Express 20, 20516–20534 (2012).
    [CrossRef] [PubMed]

2012

F. Jaillon, S. Makita, Y. Yasuno, “Variable velocity range imaging of the choroid with dual-beam optical coherence angiography,” Opt. Express 20, 385–396 (2012).
[CrossRef] [PubMed]

S. Makita, F. Jaillon, M. Yamanari, Y. Yasuno, “Dual-beam-scan Doppler optical coherence angiography for birefringence-artifact-free vasculature imaging,” Opt. Express 20, 2681–2692 (2012).
[CrossRef] [PubMed]

H. H. Mller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, G. Httmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3, 1025–1046 (2012).
[CrossRef]

B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. T. Munro, D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express 3, 1865–1879 (2012).
[CrossRef] [PubMed]

B. Braaf, K. A. Vermeer, K. V. Vienola, J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched b-scans,” Opt. Express 20, 20516–20534 (2012).
[CrossRef] [PubMed]

J. Lee, W. Wu, J. Y. Jiang, B. Zhu, D. A. Boas, “Dynamic light scattering optical coherence tomography,” Opt. Express 20, 22262–22277 (2012).
[CrossRef] [PubMed]

K. Kurokawa, K. Sasaki, S. Makita, Y.-J. Hong, Y. Yasuno, “Three-dimensional retinal and choroidal capillary imaging by power Doppler optical coherence angiography with adaptive optics,” Opt. Express 20, 22796–22812 (2012).
[CrossRef] [PubMed]

2011

2010

2009

J. Walther, E. Koch, “Transverse motion as a source of noise and reduced correlation of the Doppler phase shift in spectral domain OCT,” Opt. Express 17, 19698–19713 (2009).
[CrossRef] [PubMed]

I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17, 23736–23754 (2009).
[CrossRef]

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

B. J. Vakoc, G. J. Tearney, B. E. Bouma, “Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography,” IEEE Trans. Med. Imaging 28, 814–821 (2009).
[CrossRef] [PubMed]

2008

2007

R. K. Wang, S. Kirkpatrick, M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90, 164105, 2007).
[CrossRef]

2006

2005

2004

S. H. Yun, G. J. Tearney, J. F. d. Boer, B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977–2998 (2004).
[CrossRef] [PubMed]

S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49, 111–119 (2004).
[CrossRef] [PubMed]

2003

2002

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

2000

1995

R. J. A. Tough, D. Blacknell, S. Quegan, “A statistical description of polarimetric and interferometric synthetic aperture radar data,” Proc. R. Soc. Lond. A 449, 567–589 (1995).
[CrossRef]

1994

L. Jong-Sen, K. Hoppel, S. Mango, A. Miller, “Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery,” IEEE Trans. Geosci. Remote Sens. 32, 1017–1028 (1994).
[CrossRef]

1991

A. Moreira, “Improved multilook techniques applied to SAR and SCANSAR imagery,” IEEE Trans. Geosci. Remote Sens. 29, 529–534, 1991).
[CrossRef]

Adie, S. G.

Adler, D. C.

Akkin, T.

S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49, 111–119 (2004).
[CrossRef] [PubMed]

T. Akkin, D. P. Dav, J.-I. Youn, S. A. Telenkov, H. G. R., T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33, 219–225 (2003).
[CrossRef] [PubMed]

An, L.

Bajraszewski, T.

Bartlett, L. A.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Bendat, J. S.

J. S. Bendat, A. G. Piersol, Random Data: Analysis and Measurement Procedures (John Wiley and Sons, 2010).
[CrossRef]

Bever, M.

Birngruber, R.

Blacknell, D.

R. J. A. Tough, D. Blacknell, S. Quegan, “A statistical description of polarimetric and interferometric synthetic aperture radar data,” Proc. R. Soc. Lond. A 449, 567–589 (1995).
[CrossRef]

Boas, D. A.

Boer, J. F. d.

Bonesi, M.

Boppart, S. A.

Bouma, B. E.

Braaf, B.

Brinkmann, R.

Cense, B.

Chen, T. C.

Chen, Z.

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. d. Boer, J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000).
[CrossRef]

Cobbold, R. S.

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

Dav, D. P.

T. Akkin, D. P. Dav, J.-I. Youn, S. A. Telenkov, H. G. R., T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33, 219–225 (2003).
[CrossRef] [PubMed]

Dave, D. P.

S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49, 111–119 (2004).
[CrossRef] [PubMed]

de Boer, J. F.

Debbeler, C.

Drexler, W.

Fercher, A.

Fingler, J.

Fraser, S. E.

Fujimoto, J. G.

Fukumura, D.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Gorczynska, I.

Gordon, M. L.

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

Grulkowski, I.

Gtzinger, E.

H. G. R.,

T. Akkin, D. P. Dav, J.-I. Youn, S. A. Telenkov, H. G. R., T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33, 219–225 (2003).
[CrossRef] [PubMed]

Hinds, M.

R. K. Wang, S. Kirkpatrick, M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90, 164105, 2007).
[CrossRef]

Hitzenberger, C. K.

Hong, Y.

Hong, Y.-J.

Hoppel, K.

L. Jong-Sen, K. Hoppel, S. Mango, A. Miller, “Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery,” IEEE Trans. Geosci. Remote Sens. 32, 1017–1028 (1994).
[CrossRef]

Httmann, G.

Huang, S.-W.

Huber, R.

Izatt, J.

Jaillon, F.

Jain, R. K.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Jiang, J. Y.

John, R.

Jong-Sen, L.

L. Jong-Sen, K. Hoppel, S. Mango, A. Miller, “Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery,” IEEE Trans. Geosci. Remote Sens. 32, 1017–1028 (1994).
[CrossRef]

Kennedy, B. F.

Kennedy, K. M.

Kim, D. Y.

Kirkpatrick, S.

R. K. Wang, S. Kirkpatrick, M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90, 164105, 2007).
[CrossRef]

Koch, E.

Koh, S. H.

Koinzer, S.

Kowalczyk, A.

Kurokawa, K.

Lanning, R. M.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Lee, B. H.

Lee, J.

Leitgeb, R.

Leitgeb, R. A.

Liang, X.

Makita, S.

Mango, S.

L. Jong-Sen, K. Hoppel, S. Mango, A. Miller, “Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery,” IEEE Trans. Geosci. Remote Sens. 32, 1017–1028 (1994).
[CrossRef]

McLaughlin, R. A.

Miller, A.

L. Jong-Sen, K. Hoppel, S. Mango, A. Miller, “Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery,” IEEE Trans. Geosci. Remote Sens. 32, 1017–1028 (1994).
[CrossRef]

Milner, T. E.

S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49, 111–119 (2004).
[CrossRef] [PubMed]

T. Akkin, D. P. Dav, J.-I. Youn, S. A. Telenkov, H. G. R., T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33, 219–225 (2003).
[CrossRef] [PubMed]

Min, E.-J.

Miura, M.

Mller, H. H.

Mok, A.

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

Moreira, A.

A. Moreira, “Improved multilook techniques applied to SAR and SCANSAR imagery,” IEEE Trans. Geosci. Remote Sens. 29, 529–534, 1991).
[CrossRef]

Mujat, M.

Munn, L. L.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Munro, P. R. T.

Nassif, N.

Nelson, J. S.

Padera, T. P.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Park, B. H.

Pierce, M. C.

Piersol, A. G.

J. S. Bendat, A. G. Piersol, Random Data: Analysis and Measurement Procedures (John Wiley and Sons, 2010).
[CrossRef]

Pircher, M.

Ptaszynski, L.

Qin, J.

Quegan, S.

R. J. A. Tough, D. Blacknell, S. Quegan, “A statistical description of polarimetric and interferometric synthetic aperture radar data,” Proc. R. Soc. Lond. A 449, 567–589 (1995).
[CrossRef]

Ruvinskaya, S.

Sakadi, S.

Sampson, D. D.

Sarunic, M.

Sasaki, K.

Saxer, C.

Schlott, K.

Schmetterer, L.

Schwartz, D. M.

Sethuraman, S.

S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49, 111–119 (2004).
[CrossRef] [PubMed]

Sicam, V. A. D.

Srinivasan, V. J.

Stylianopoulos, T.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Szkulmowska, A.

Szkulmowski, M.

Szlag, D.

Tearney, G. J.

Telenkov, S. A.

S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49, 111–119 (2004).
[CrossRef] [PubMed]

T. Akkin, D. P. Dav, J.-I. Youn, S. A. Telenkov, H. G. R., T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33, 219–225 (2003).
[CrossRef] [PubMed]

Torzicky, T.

Tough, R. J. A.

R. J. A. Tough, D. Blacknell, S. Quegan, “A statistical description of polarimetric and interferometric synthetic aperture radar data,” Proc. R. Soc. Lond. A 449, 567–589 (1995).
[CrossRef]

Tyrrell, J. A.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Vakoc, B. J.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

B. J. Vakoc, G. J. Tearney, B. E. Bouma, “Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography,” IEEE Trans. Med. Imaging 28, 814–821 (2009).
[CrossRef] [PubMed]

van Meurs, J. C.

van Zeeburg, E.

Vermeer, K. A.

Vienola, K. V.

Vitkin, I. A.

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

Walther, J.

Wang, R. K.

L. An, J. Qin, R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18, 8220–8228 (2010).
[CrossRef] [PubMed]

R. K. Wang, S. Kirkpatrick, M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90, 164105, 2007).
[CrossRef]

Werner, J. S.

White, B. R.

Wilson, B. C.

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

Wojtkowski, M.

Wu, W.

Xiang, S.

Yamanari, M.

Yang, C.

Yang, V. X.

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

Yasuno, Y.

Yatagai, T.

Yazdanfar, S.

Youn, J.-I.

T. Akkin, D. P. Dav, J.-I. Youn, S. A. Telenkov, H. G. R., T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33, 219–225 (2003).
[CrossRef] [PubMed]

Yun, S. H.

Yun, S.-H.

Zawadzki, R.

Zawadzki, R. J.

Zhao, Y.

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. d. Boer, J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000).
[CrossRef]

Zhu, B.

Zotter, S.

Appl. Phys. Lett.

R. K. Wang, S. Kirkpatrick, M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90, 164105, 2007).
[CrossRef]

Biomed. Opt. Express

IEEE Trans. Geosci. Remote Sens.

A. Moreira, “Improved multilook techniques applied to SAR and SCANSAR imagery,” IEEE Trans. Geosci. Remote Sens. 29, 529–534, 1991).
[CrossRef]

L. Jong-Sen, K. Hoppel, S. Mango, A. Miller, “Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery,” IEEE Trans. Geosci. Remote Sens. 32, 1017–1028 (1994).
[CrossRef]

IEEE Trans. Med. Imaging

B. J. Vakoc, G. J. Tearney, B. E. Bouma, “Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography,” IEEE Trans. Med. Imaging 28, 814–821 (2009).
[CrossRef] [PubMed]

Lasers Surg. Med.

T. Akkin, D. P. Dav, J.-I. Youn, S. A. Telenkov, H. G. R., T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33, 219–225 (2003).
[CrossRef] [PubMed]

Nat. Med.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Opt. Commun.

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

Opt. Express

J. Walther, E. Koch, “Transverse motion as a source of noise and reduced correlation of the Doppler phase shift in spectral domain OCT,” Opt. Express 17, 19698–19713 (2009).
[CrossRef] [PubMed]

I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17, 23736–23754 (2009).
[CrossRef]

V. J. Srinivasan, S. Sakadi, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express 18, 2477–2494 (2010).
[CrossRef] [PubMed]

L. An, J. Qin, R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18, 8220–8228 (2010).
[CrossRef] [PubMed]

S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express 18, 25519–25534 (2010).
[CrossRef] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Gtzinger, R. A. Leitgeb, C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express 19, 1217–1227 (2011).
[CrossRef] [PubMed]

S. Makita, F. Jaillon, M. Yamanari, M. Miura, Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express 19, 1271–1283 (2011).
[CrossRef] [PubMed]

B. Braaf, K. A. Vermeer, K. V. Vienola, J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched b-scans,” Opt. Express 20, 20516–20534 (2012).
[CrossRef] [PubMed]

J. Lee, W. Wu, J. Y. Jiang, B. Zhu, D. A. Boas, “Dynamic light scattering optical coherence tomography,” Opt. Express 20, 22262–22277 (2012).
[CrossRef] [PubMed]

K. Kurokawa, K. Sasaki, S. Makita, Y.-J. Hong, Y. Yasuno, “Three-dimensional retinal and choroidal capillary imaging by power Doppler optical coherence angiography with adaptive optics,” Opt. Express 20, 22796–22812 (2012).
[CrossRef] [PubMed]

B. Braaf, K. A. Vermeer, V. A. D. Sicam, E. van Zeeburg, J. C. van Meurs, J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-m for the measurement of blood flow in the human choroid,” Opt. Express 19, 20886–20903 (2011).
[CrossRef] [PubMed]

F. Jaillon, S. Makita, Y. Yasuno, “Variable velocity range imaging of the choroid with dual-beam optical coherence angiography,” Opt. Express 20, 385–396 (2012).
[CrossRef] [PubMed]

S. Makita, F. Jaillon, M. Yamanari, Y. Yasuno, “Dual-beam-scan Doppler optical coherence angiography for birefringence-artifact-free vasculature imaging,” Opt. Express 20, 2681–2692 (2012).
[CrossRef] [PubMed]

R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11, 3116–3121 (2003).
[CrossRef] [PubMed]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, J. F. d. Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography,” Opt. Express 11, 3490–3497 (2003).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. d. Boer, B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977–2998 (2004).
[CrossRef] [PubMed]

S. Yazdanfar, C. Yang, M. Sarunic, J. Izatt, “Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound,” Opt. Express 13, 410–416 (2005).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, J. F. d. Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm,” Opt. Express 13, 3931–3944 (2005).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006).
[CrossRef] [PubMed]

D. C. Adler, S.-W. Huang, R. Huber, J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16, 4376–4393 (2008).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Med. Biol.

S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49, 111–119 (2004).
[CrossRef] [PubMed]

Proc. R. Soc. Lond. A

R. J. A. Tough, D. Blacknell, S. Quegan, “A statistical description of polarimetric and interferometric synthetic aperture radar data,” Proc. R. Soc. Lond. A 449, 567–589 (1995).
[CrossRef]

Other

W. Drexler, J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2008).
[CrossRef]

J. S. Bendat, A. G. Piersol, Random Data: Analysis and Measurement Procedures (John Wiley and Sons, 2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

A cross-sectional OCT image of the tissue phantom. The yellow box indicates the ROI of phase shift analysis.

Fig. 2
Fig. 2

Phase-resolved images with dual-beam-scan (right column; a, c, e) and emulated conventional phase-resolved (left column; b, d, f) methods. The fractional sampling step was set to be (a), (b) 0.84, (c), (d) 0.43, (e), (f) and 0.1.

Fig. 3
Fig. 3

Scatter plot of phase shift noise vs correlation coefficient. The solid curve shows the population standard deviation of phase shift (Eq. (7)).

Fig. 4
Fig. 4

Phase shift noise vs fractional sampling step δx.

Fig. 5
Fig. 5

The transitional point δxc (Eq. (38)) is plotted. In the upper region, the dual-beam method exhibits less phase shift noise than that of the single-beam method.

Fig. 6
Fig. 6

Phase shift noises vs ESNR.

Fig. 7
Fig. 7

Profiles of the correlation coefficients of the Hermitian products with displacement along (a) the lateral direction and (b) the axial direction. In each figure, the horizontal axis is fractional displacement iδx = iΔx/w and lδz = lΔz/ζ, where i and l are the displacements in the number of pixels along lateral and axial directions, respectively. δx = 0.22 and δz = 0.52. Solid curves are the expected correlation coefficients from Eq. (29).

Fig. 8
Fig. 8

Phase shift noise vs effective number of independent samples.

Fig. 9
Fig. 9

Phase shift noise vs fractional sampling step with averaging using a constant window size.

Tables (1)

Tables Icon

Table 1 List of notations

Equations (44)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ = arg [ g 1 * g 2 ] ,
G 1 = S 1 + N 1 , G 2 = S 2 + N 2 .
s = a R m a m exp [ i 2 k c ( z m z 0 ) ] ,
p Δ Φ ( Δ ϕ | ρ , Δ ϕ 0 ) = 1 ρ 2 2 π { β ( π 2 + sin 1 β ) [ 1 β 2 ] 3 / 2 + 1 1 β 2 } ,
ρ e i Δ ϕ 0 = E [ G 1 * G 2 ] E [ | G 1 | 2 ] E [ | G 2 | 2 ] ,
E [ Δ ϕ ] = ρ sin Δ ϕ 0 1 ρ 2 cos 2 Δ ϕ 0 cos 1 ( ρ cos Δ ϕ 0 ) ,
σ Δ ϕ = 1 ρ 2 1 β 2 [ π 2 4 π sin 1 β + ( sin 1 β ) 2 ] + π 2 12 Li 2 ( ρ 2 ) 2 ,
Δ ϕ ¯ = 1 N n = 1 N Δ ϕ n ,
S Δ ϕ = 1 N n = 1 N ( Δ ϕ n Δ ϕ ¯ ) 2 ,
ρ = ρ s ( 1 + SNR 1 1 ) ( 1 + SNR 2 1 ) ,
ρ s = | E [ S 1 * S 2 ] | E [ | S 1 | 2 ] E [ | S 2 | 2 ] .
1 1 + ESNR 1 1 ( 1 + SNR 1 1 ) ( 1 + SNR 2 1 ) .
s 1 ( t 1 ) = η 1 * h 1 ( r 1 ( t 1 ) ) , s 2 ( t 2 ) = η 2 * h 2 ( r 2 ( t 2 ) ) .
ρ s e i Δ ϕ 0 ρ S 1 , S 2 ( t 1 , t 2 ) = E [ s 1 * ( t 1 ) s 2 ( t 2 ) ] E [ | s 1 ( t 1 ) | 2 ] E [ | s 2 ( t 2 ) | 2 ] .
h χ ( x L , y L , z L ) e 2 x L 2 w χ 2 e 2 y L 2 w χ 2 e Δ k χ 2 z L 2 8 e 2 i k c χ ( z L z 0 ) ( χ = 1 , 2 ) ,
ρ s ρ η 1 , η 2 × 2 w 1 w 2 w 1 2 + w 2 2 2 Δ k 1 Δ k 2 Δ k 1 2 + Δ k 2 2 × e 2 x ( t 1 , t 2 ) 2 + y ( t 1 , t 2 ) 2 w 1 2 + w 2 2 e Δ k 1 2 Δ k 2 2 Δ k 1 2 + Δ k 2 2 z ( t 1 , t 2 ) 2 8 × e 8 ( k c 1 k c 2 ) 2 Δ k 1 2 + Δ k 2 2 × e 4 k c 1 2 Δ k 2 2 + k c 2 2 Δ k 1 2 Δ k 1 2 + Δ k 2 2 D ( t 2 + t 1 2 ) ( t 2 t 1 ) ,
Δ ϕ 0 2 k c 1 Δ k 2 2 + k c 2 Δ k 1 2 Δ k 1 2 + Δ k 2 2 z ( t 1 , t 2 ) ,
ρ s , SS ρ η 1 , η 2 | ρ h 1 , h 2 ( r ( Δ t ) ) | ,
ρ h 1 , h 2 ( r ) = 2 w 1 w 2 w 1 2 + w 2 2 2 Δ k 1 Δ k 2 Δ k 1 2 + Δ k 2 2 e 2 x 2 + y 2 w 1 2 + w 2 2 e Δ k 1 2 Δ k 2 2 Δ k 1 2 + Δ k 2 2 z 2 8 e 8 ( k c 1 k c 2 ) 2 Δ k 1 2 + Δ k 1 2 e 2 i k c 1 Δ k 2 2 + k c 2 Δ k 1 2 Δ k 1 2 + Δ k 2 2 z .
r = | g 1 * ( t 1 ) g 2 ( t 2 ) ¯ | | g 1 ( t 1 ) | 2 ¯ | g 2 ( t 2 ) | 2 ¯ .
ρ ^ s = ( 1 + ESNR ^ 1 ) r = | g 1 * ( t 1 ) g 2 ( t 2 ) ¯ | [ | g 1 ( t 1 ) | 2 ¯ | n 1 | 2 ¯ ] [ | g 2 ( t 2 ) | 2 ¯ | n 2 | 2 ¯ ] ,
1 + ESNR ^ 1 = | g 1 ( t 1 ) | 2 ¯ | g 2 ( t 2 ) | 2 ¯ [ | g 1 ( t 1 ) | 2 ¯ | n 1 | 2 ¯ ] [ | g 2 ( t 2 ) | 2 ¯ | n 2 | 2 ¯ ] .
Δ ϕ ^ 0 = arg [ κ = 1 ν g 1 ( κ ) * g 2 ( κ ) ] .
p Δ Φ ^ 0 ( Δ ϕ ^ 0 | ρ , Δ ϕ 0 ) = Γ ( ν + 1 2 ) ( 1 ρ 2 ) ν ρ cos ( Δ ϕ ^ 0 Δ ϕ 0 ) 2 π Γ ( ν ) [ 1 ρ 2 cos 2 ( Δ ϕ ^ 0 Δ ϕ 0 ) ] ν + 1 / 2 + ( 1 ρ 2 ) ν 2 π F 1 2 ( ν , 1 ; 1 2 ; ρ 2 cos 2 ( Δ ϕ ^ 0 Δ ϕ 0 ) ) ,
σ Δ ϕ ^ 0 = E [ Δ ϕ ^ 0 2 ] E [ Δ ϕ ^ 0 ] 2 .
Δ ϕ ^ 0 = arg [ i I j J l L g 1 * ( x 1 + i , y 1 + j , z 1 + l ) g 2 ( x 1 + i , y 1 + j , z 1 + l ) ] ,
ENIS = I 1 + 2 i = 1 I 1 I l I ρ g 2 2 ( i Δ x , 0 , 0 ) J 1 + 2 j = 1 J 1 J l J ρ g 2 2 ( 0 , j Δ y , 0 ) × L 1 + 2 l = 1 L 1 L l L ρ g 2 2 ( 0 , 0 , l Δ z ) ,
ρ g 2 ( i Δ x , 0 , 0 ) = | E [ G 1 * ( x 1 ) G 2 ( x 1 ) G 1 ( x 1 + i ) G 2 * ( x 1 + i ) ] E [ G 1 * ( x 1 ) G 2 ( x 1 ) ] E [ G 1 ( x 1 + i ) G 2 * ( x 1 + i ) ] | E [ | G 1 * ( x 1 ) G 2 ( x 1 ) E [ G 1 * ( x 1 ) G 2 ( x 1 ) ] | 2 ] E [ | G 1 * ( x 1 + i ) G 2 ( x 1 + i ) E [ G 1 * ( x 1 + i ) G 2 ( x 1 + i ) ] | 2 ] .
ρ g 2 , S S ( i Δ x , j Δ y , l Δ z ) = 1 ( 1 + ESNR 1 ) 2 | ρ h 1 , h 1 * ( i Δ x , j Δ y , l Δ z ) ρ h 2 , h 2 ( i Δ x , j Δ y , l Δ z ) | ,
| ρ h 1 , h 1 * ( i Δ x , j Δ y , l Δ z ) ρ h 2 , h 2 ( i Δ x , j Δ y , l Δ z ) | = e w 1 2 + w 2 2 w 1 2 w 2 2 [ ( i Δ x ) 2 + ( j Δ y ) 2 ] e ( l Δ z ) 2 16 ( Δ k 1 2 + Δ k 2 2 ) .
Δ ϕ flow = 2 n k c V Δ t cos θ ,
v min = K σ Δ ϕ SS Δ t ,
ρ s , SS ( SB ) = e x b 2 + y b 2 w 2 ,
σ Δ ϕ SS ( SB ) = { σ Δ ϕ | ρ = e δ x 2 1 + 1 / ESNR ( SB ) ( I J L = 1 ) σ Δ ϕ ^ 0 | ρ = e δ x 2 1 + 1 / ESNR ( SB ) , ν = ENIS I 1 , J , L ( I J L > = 2 ) ,
ρ s , SS ( DB ) = ρ Pol . 2 w 1 w 2 w 1 2 + w 2 2 2 Δ k 1 Δ k 2 Δ k 1 2 + Δ k 2 2 e 8 ( k c 1 k c 2 ) 2 Δ k 1 2 + Δ k 2 2 ,
σ Δ ϕ SS ( DB ) = { σ Δ ϕ | ρ = ρ s , SS ( DB ) 1 + 1 / ESNR ( DB ) ( I J L = 1 ) σ Δ ϕ ^ 0 | ρ = ρ s , SS ( DB ) 1 + 1 / ESNR ( DB ) , ν = ENIS I , J , L ( I J L > = 2 ) .
g ( x i , z l ) = g H ( x i , z l ) + g V ( x i , z l ) exp [ i Δ ϕ ch ( x i ) ] ,
δ x c = ln [ ρ Pol . ESNR ( DB ) ESNR ( SB ) ESNR ( SB ) + 1 ESNR ( DB ) + 1 ] = ln [ ρ Pol . ESNR ( SB ) + 1 ESNR ( SB ) + 2 ] .
ESNR ρ s = ρ s 1 ρ s .
I ( DB ) = { 2 δ x 2 δ x 1 , 1 otherwise
I ( SB ) = { 2 δ x 1 2 δ x 2 , 1 otherwise .
E [ Δ ϕ ^ 0 n ] = ( 1 ) n / 2 π n cos ( n π 2 ) n + 1 + 2 l = 1 { ( 1 ) l ρ l Γ ( l 2 + 1 ) Γ ( l 2 + ν ) F 1 2 ( l 2 , l 2 ν + 1 ; l + 1 ; ρ 2 ) π Γ ( ν ) Γ ( l + 1 ) × [ n s n sinh ( π s ) [ s cos ( l Δ ϕ 0 ) l sin ( l Δ ϕ 0 ) ] l 2 + s 2 ] | s 0 } .
E [ Δ ϕ ^ 0 ] = l = 1 2 ( ρ ) l sin ( l Δ ϕ 0 ) Γ ( l 2 + 1 ) Γ ( l 2 + ν ) F 1 2 [ l 2 , l 2 ν + 1 ; l + 1 ; ρ 2 ] l Γ ( ν ) Γ ( l + 1 ) ,
E [ Δ ϕ ^ 0 2 ] = π 2 3 + l = 1 4 ( ρ ) l cos ( l Δ ϕ 0 ) Γ ( l 2 + 1 ) Γ ( l 2 + ν ) F 1 2 [ l 2 , l 2 ν + 1 ; l + 1 ; ρ 2 ] l 2 Γ ( ν ) Γ ( l + 1 ) .

Metrics