Abstract

A model is developed to evaluate the light collection of a diffuse light source located at the tip of an optical fibre. The model is confirmed experimentally and used to evaluate and compare the light collection efficiency of different fibre-coupled luminescence dosimeter probe designs. The model includes contributions from both meridional and skew rays, and considers the light collection from an optically attenuating scintillator. Hence the model enables the optimisation of different, but useful and new probe materials such as BeO ceramic. Four different dosimeter architectures are considered, including previously investigated probe designs; the butt-coupled and reflective wall, along with two novel designs. The novel designs utilise a combination of the scintillating material and transparent media to increase the light collection. Simulations indicate that the novel probes are more efficient in light collection for applications in which it is necessary to minimise the volume of the scintillating material.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Afshar, S. C. Warren-Smith, T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
    [CrossRef] [PubMed]
  2. S. C. Warren-Smith, S. Afshar, T. M. Monro, “Fluorescence-based sensing with optical nanowires: a generalized model and experimental validation,” Opt. Express 18(9), 9474–9485 (2010).
    [CrossRef] [PubMed]
  3. M. Jianjun, W. J. Bock, “Addressing factors affecting fluorescent signal collection of a multimode photonic crystal fiber fluorometer,” IEEE Trans. Instrum. Meas. 57(12), 2813–2818 (2008).
    [CrossRef]
  4. U. Utzinger, R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
    [CrossRef] [PubMed]
  5. A. S. Beddar, T. R. Mackie, F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical consideration,” Phys. Med. Biol. 37(10), 1883–1900 (1992).
    [CrossRef] [PubMed]
  6. A. S. Beddar, T. R. Mackie, F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: II. Properties and measurements,” Phys. Med. Biol. 37(10), 1901–1913 (1992).
    [CrossRef] [PubMed]
  7. N. Suchowerska, J. Lambert, T. Nakano, S. Law, J. Elsey, D. R. McKenzie, “A fibre optic dosimeter customised for brachytherapy,” Radiat. Meas. 42(4–5), 929–932 (2007).
    [CrossRef]
  8. C. E. Andersen, S. K. Nielsen, S. Greilich, J. Helt-Hansen, J. C. Lindegaard, K. Tanderup, “Characterization of a fiber-coupled Al2O3:C luminescence dosimetry system for online in vivo dose verification during 192Ir brachytherapy,” Med. Phys. 36(3), 708–718 (2009).
    [CrossRef] [PubMed]
  9. C. E. Andersen, S. K. Nielsen, J. C. Lindegaard, K. Tanderup, “Time-resolved in vivo luminescence dosimetry for online error detection in pulsed dose-rate brachytherapy,” Med. Phys. 36(11), 5033–5043 (2009).
    [CrossRef] [PubMed]
  10. J. Lambert, D. R. McKenzie, S. Law, J. Elsey, N. Suchowerska, “A plastic scintillation dosimeter for high dose rate brachytherapy,” Phys. Med. Biol. 51(21), 5505–5516 (2006).
    [CrossRef] [PubMed]
  11. J. Lambert, Y. Yin, D. R. McKenzie, S. H. Law, A. Ralston, N. Suchowerska, “A prototype scintillation dosimeter customized for small and dynamic megavoltage radiation fields,” Phys. Med. Biol. 55(4), 1115–1126 (2010).
    [CrossRef] [PubMed]
  12. A. F. Fernandez, B. Brichard, S. O’Keeffe, C. Fitzpatrick, E. Lewis, J. R. Vaille, L. Dusseau, D. A. Jackson, F. Ravotti, M. Glaser, H. El-Rabii, “Real-time fibre optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors,” Fusion Eng. Des. 83(1), 50–59 (2008).
    [CrossRef]
  13. A. S. Beddar, N. Suchowerska, S. H. Law, “Plastic scintillation dosimetry for radiation therapy: minimizing capture of Cerenkov radiation noise,” Phys. Med. Biol. 49(5), 783–790 (2004).
    [CrossRef] [PubMed]
  14. A. S. Beddar, S. Law, N. Suchowerska, T. R. Mackie, “Plastic scintillation dosimetry: optimization of light collection efficiency,” Phys. Med. Biol. 48(9), 1141–1152 (2003).
    [CrossRef] [PubMed]
  15. J. Elsey, D. R. McKenzie, J. Lambert, N. Suchowerska, S. L. Law, S. C. Fleming, “Optimal coupling of light from a cylindrical scintillator into an optical fiber,” Appl. Opt. 46(3), 397–404 (2007).
    [CrossRef] [PubMed]
  16. L. Lembo, M. Pimpinella, B. Mukherjee, “Self optical attenuation coefficient of TL glow in BeO detectors,” Radiat. Prot. Dosimetry 33, 43–45 (1990).
  17. A. M. C. Santos, M. Mohammadi, J. Asp, T. M. Monro, S. Afshar V, “Characterisation of a real-time fibre-coupled beryllium oxide (BeO) luminescence dosimeter in X-ray beams,” Radiat. Meas. 53–54, 1–7 (2013).
    [CrossRef]
  18. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  19. A. Snyder, “Leaky-ray theory of optical waveguides of circular cross section,” Appl. Phys. A Mater. 4, 273–298 (1974).

2013 (1)

A. M. C. Santos, M. Mohammadi, J. Asp, T. M. Monro, S. Afshar V, “Characterisation of a real-time fibre-coupled beryllium oxide (BeO) luminescence dosimeter in X-ray beams,” Radiat. Meas. 53–54, 1–7 (2013).
[CrossRef]

2010 (2)

S. C. Warren-Smith, S. Afshar, T. M. Monro, “Fluorescence-based sensing with optical nanowires: a generalized model and experimental validation,” Opt. Express 18(9), 9474–9485 (2010).
[CrossRef] [PubMed]

J. Lambert, Y. Yin, D. R. McKenzie, S. H. Law, A. Ralston, N. Suchowerska, “A prototype scintillation dosimeter customized for small and dynamic megavoltage radiation fields,” Phys. Med. Biol. 55(4), 1115–1126 (2010).
[CrossRef] [PubMed]

2009 (2)

C. E. Andersen, S. K. Nielsen, S. Greilich, J. Helt-Hansen, J. C. Lindegaard, K. Tanderup, “Characterization of a fiber-coupled Al2O3:C luminescence dosimetry system for online in vivo dose verification during 192Ir brachytherapy,” Med. Phys. 36(3), 708–718 (2009).
[CrossRef] [PubMed]

C. E. Andersen, S. K. Nielsen, J. C. Lindegaard, K. Tanderup, “Time-resolved in vivo luminescence dosimetry for online error detection in pulsed dose-rate brachytherapy,” Med. Phys. 36(11), 5033–5043 (2009).
[CrossRef] [PubMed]

2008 (2)

A. F. Fernandez, B. Brichard, S. O’Keeffe, C. Fitzpatrick, E. Lewis, J. R. Vaille, L. Dusseau, D. A. Jackson, F. Ravotti, M. Glaser, H. El-Rabii, “Real-time fibre optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors,” Fusion Eng. Des. 83(1), 50–59 (2008).
[CrossRef]

M. Jianjun, W. J. Bock, “Addressing factors affecting fluorescent signal collection of a multimode photonic crystal fiber fluorometer,” IEEE Trans. Instrum. Meas. 57(12), 2813–2818 (2008).
[CrossRef]

2007 (3)

2006 (1)

J. Lambert, D. R. McKenzie, S. Law, J. Elsey, N. Suchowerska, “A plastic scintillation dosimeter for high dose rate brachytherapy,” Phys. Med. Biol. 51(21), 5505–5516 (2006).
[CrossRef] [PubMed]

2004 (1)

A. S. Beddar, N. Suchowerska, S. H. Law, “Plastic scintillation dosimetry for radiation therapy: minimizing capture of Cerenkov radiation noise,” Phys. Med. Biol. 49(5), 783–790 (2004).
[CrossRef] [PubMed]

2003 (2)

A. S. Beddar, S. Law, N. Suchowerska, T. R. Mackie, “Plastic scintillation dosimetry: optimization of light collection efficiency,” Phys. Med. Biol. 48(9), 1141–1152 (2003).
[CrossRef] [PubMed]

U. Utzinger, R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
[CrossRef] [PubMed]

1992 (2)

A. S. Beddar, T. R. Mackie, F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical consideration,” Phys. Med. Biol. 37(10), 1883–1900 (1992).
[CrossRef] [PubMed]

A. S. Beddar, T. R. Mackie, F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: II. Properties and measurements,” Phys. Med. Biol. 37(10), 1901–1913 (1992).
[CrossRef] [PubMed]

1990 (1)

L. Lembo, M. Pimpinella, B. Mukherjee, “Self optical attenuation coefficient of TL glow in BeO detectors,” Radiat. Prot. Dosimetry 33, 43–45 (1990).

1974 (1)

A. Snyder, “Leaky-ray theory of optical waveguides of circular cross section,” Appl. Phys. A Mater. 4, 273–298 (1974).

Afshar, S.

Afshar V, S.

A. M. C. Santos, M. Mohammadi, J. Asp, T. M. Monro, S. Afshar V, “Characterisation of a real-time fibre-coupled beryllium oxide (BeO) luminescence dosimeter in X-ray beams,” Radiat. Meas. 53–54, 1–7 (2013).
[CrossRef]

Andersen, C. E.

C. E. Andersen, S. K. Nielsen, S. Greilich, J. Helt-Hansen, J. C. Lindegaard, K. Tanderup, “Characterization of a fiber-coupled Al2O3:C luminescence dosimetry system for online in vivo dose verification during 192Ir brachytherapy,” Med. Phys. 36(3), 708–718 (2009).
[CrossRef] [PubMed]

C. E. Andersen, S. K. Nielsen, J. C. Lindegaard, K. Tanderup, “Time-resolved in vivo luminescence dosimetry for online error detection in pulsed dose-rate brachytherapy,” Med. Phys. 36(11), 5033–5043 (2009).
[CrossRef] [PubMed]

Asp, J.

A. M. C. Santos, M. Mohammadi, J. Asp, T. M. Monro, S. Afshar V, “Characterisation of a real-time fibre-coupled beryllium oxide (BeO) luminescence dosimeter in X-ray beams,” Radiat. Meas. 53–54, 1–7 (2013).
[CrossRef]

Attix, F. H.

A. S. Beddar, T. R. Mackie, F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: II. Properties and measurements,” Phys. Med. Biol. 37(10), 1901–1913 (1992).
[CrossRef] [PubMed]

A. S. Beddar, T. R. Mackie, F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical consideration,” Phys. Med. Biol. 37(10), 1883–1900 (1992).
[CrossRef] [PubMed]

Beddar, A. S.

A. S. Beddar, N. Suchowerska, S. H. Law, “Plastic scintillation dosimetry for radiation therapy: minimizing capture of Cerenkov radiation noise,” Phys. Med. Biol. 49(5), 783–790 (2004).
[CrossRef] [PubMed]

A. S. Beddar, S. Law, N. Suchowerska, T. R. Mackie, “Plastic scintillation dosimetry: optimization of light collection efficiency,” Phys. Med. Biol. 48(9), 1141–1152 (2003).
[CrossRef] [PubMed]

A. S. Beddar, T. R. Mackie, F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: II. Properties and measurements,” Phys. Med. Biol. 37(10), 1901–1913 (1992).
[CrossRef] [PubMed]

A. S. Beddar, T. R. Mackie, F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical consideration,” Phys. Med. Biol. 37(10), 1883–1900 (1992).
[CrossRef] [PubMed]

Bock, W. J.

M. Jianjun, W. J. Bock, “Addressing factors affecting fluorescent signal collection of a multimode photonic crystal fiber fluorometer,” IEEE Trans. Instrum. Meas. 57(12), 2813–2818 (2008).
[CrossRef]

Brichard, B.

A. F. Fernandez, B. Brichard, S. O’Keeffe, C. Fitzpatrick, E. Lewis, J. R. Vaille, L. Dusseau, D. A. Jackson, F. Ravotti, M. Glaser, H. El-Rabii, “Real-time fibre optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors,” Fusion Eng. Des. 83(1), 50–59 (2008).
[CrossRef]

Dusseau, L.

A. F. Fernandez, B. Brichard, S. O’Keeffe, C. Fitzpatrick, E. Lewis, J. R. Vaille, L. Dusseau, D. A. Jackson, F. Ravotti, M. Glaser, H. El-Rabii, “Real-time fibre optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors,” Fusion Eng. Des. 83(1), 50–59 (2008).
[CrossRef]

El-Rabii, H.

A. F. Fernandez, B. Brichard, S. O’Keeffe, C. Fitzpatrick, E. Lewis, J. R. Vaille, L. Dusseau, D. A. Jackson, F. Ravotti, M. Glaser, H. El-Rabii, “Real-time fibre optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors,” Fusion Eng. Des. 83(1), 50–59 (2008).
[CrossRef]

Elsey, J.

J. Elsey, D. R. McKenzie, J. Lambert, N. Suchowerska, S. L. Law, S. C. Fleming, “Optimal coupling of light from a cylindrical scintillator into an optical fiber,” Appl. Opt. 46(3), 397–404 (2007).
[CrossRef] [PubMed]

N. Suchowerska, J. Lambert, T. Nakano, S. Law, J. Elsey, D. R. McKenzie, “A fibre optic dosimeter customised for brachytherapy,” Radiat. Meas. 42(4–5), 929–932 (2007).
[CrossRef]

J. Lambert, D. R. McKenzie, S. Law, J. Elsey, N. Suchowerska, “A plastic scintillation dosimeter for high dose rate brachytherapy,” Phys. Med. Biol. 51(21), 5505–5516 (2006).
[CrossRef] [PubMed]

Fernandez, A. F.

A. F. Fernandez, B. Brichard, S. O’Keeffe, C. Fitzpatrick, E. Lewis, J. R. Vaille, L. Dusseau, D. A. Jackson, F. Ravotti, M. Glaser, H. El-Rabii, “Real-time fibre optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors,” Fusion Eng. Des. 83(1), 50–59 (2008).
[CrossRef]

Fitzpatrick, C.

A. F. Fernandez, B. Brichard, S. O’Keeffe, C. Fitzpatrick, E. Lewis, J. R. Vaille, L. Dusseau, D. A. Jackson, F. Ravotti, M. Glaser, H. El-Rabii, “Real-time fibre optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors,” Fusion Eng. Des. 83(1), 50–59 (2008).
[CrossRef]

Fleming, S. C.

Glaser, M.

A. F. Fernandez, B. Brichard, S. O’Keeffe, C. Fitzpatrick, E. Lewis, J. R. Vaille, L. Dusseau, D. A. Jackson, F. Ravotti, M. Glaser, H. El-Rabii, “Real-time fibre optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors,” Fusion Eng. Des. 83(1), 50–59 (2008).
[CrossRef]

Greilich, S.

C. E. Andersen, S. K. Nielsen, S. Greilich, J. Helt-Hansen, J. C. Lindegaard, K. Tanderup, “Characterization of a fiber-coupled Al2O3:C luminescence dosimetry system for online in vivo dose verification during 192Ir brachytherapy,” Med. Phys. 36(3), 708–718 (2009).
[CrossRef] [PubMed]

Helt-Hansen, J.

C. E. Andersen, S. K. Nielsen, S. Greilich, J. Helt-Hansen, J. C. Lindegaard, K. Tanderup, “Characterization of a fiber-coupled Al2O3:C luminescence dosimetry system for online in vivo dose verification during 192Ir brachytherapy,” Med. Phys. 36(3), 708–718 (2009).
[CrossRef] [PubMed]

Jackson, D. A.

A. F. Fernandez, B. Brichard, S. O’Keeffe, C. Fitzpatrick, E. Lewis, J. R. Vaille, L. Dusseau, D. A. Jackson, F. Ravotti, M. Glaser, H. El-Rabii, “Real-time fibre optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors,” Fusion Eng. Des. 83(1), 50–59 (2008).
[CrossRef]

Jianjun, M.

M. Jianjun, W. J. Bock, “Addressing factors affecting fluorescent signal collection of a multimode photonic crystal fiber fluorometer,” IEEE Trans. Instrum. Meas. 57(12), 2813–2818 (2008).
[CrossRef]

Lambert, J.

J. Lambert, Y. Yin, D. R. McKenzie, S. H. Law, A. Ralston, N. Suchowerska, “A prototype scintillation dosimeter customized for small and dynamic megavoltage radiation fields,” Phys. Med. Biol. 55(4), 1115–1126 (2010).
[CrossRef] [PubMed]

N. Suchowerska, J. Lambert, T. Nakano, S. Law, J. Elsey, D. R. McKenzie, “A fibre optic dosimeter customised for brachytherapy,” Radiat. Meas. 42(4–5), 929–932 (2007).
[CrossRef]

J. Elsey, D. R. McKenzie, J. Lambert, N. Suchowerska, S. L. Law, S. C. Fleming, “Optimal coupling of light from a cylindrical scintillator into an optical fiber,” Appl. Opt. 46(3), 397–404 (2007).
[CrossRef] [PubMed]

J. Lambert, D. R. McKenzie, S. Law, J. Elsey, N. Suchowerska, “A plastic scintillation dosimeter for high dose rate brachytherapy,” Phys. Med. Biol. 51(21), 5505–5516 (2006).
[CrossRef] [PubMed]

Law, S.

N. Suchowerska, J. Lambert, T. Nakano, S. Law, J. Elsey, D. R. McKenzie, “A fibre optic dosimeter customised for brachytherapy,” Radiat. Meas. 42(4–5), 929–932 (2007).
[CrossRef]

J. Lambert, D. R. McKenzie, S. Law, J. Elsey, N. Suchowerska, “A plastic scintillation dosimeter for high dose rate brachytherapy,” Phys. Med. Biol. 51(21), 5505–5516 (2006).
[CrossRef] [PubMed]

A. S. Beddar, S. Law, N. Suchowerska, T. R. Mackie, “Plastic scintillation dosimetry: optimization of light collection efficiency,” Phys. Med. Biol. 48(9), 1141–1152 (2003).
[CrossRef] [PubMed]

Law, S. H.

J. Lambert, Y. Yin, D. R. McKenzie, S. H. Law, A. Ralston, N. Suchowerska, “A prototype scintillation dosimeter customized for small and dynamic megavoltage radiation fields,” Phys. Med. Biol. 55(4), 1115–1126 (2010).
[CrossRef] [PubMed]

A. S. Beddar, N. Suchowerska, S. H. Law, “Plastic scintillation dosimetry for radiation therapy: minimizing capture of Cerenkov radiation noise,” Phys. Med. Biol. 49(5), 783–790 (2004).
[CrossRef] [PubMed]

Law, S. L.

Lembo, L.

L. Lembo, M. Pimpinella, B. Mukherjee, “Self optical attenuation coefficient of TL glow in BeO detectors,” Radiat. Prot. Dosimetry 33, 43–45 (1990).

Lewis, E.

A. F. Fernandez, B. Brichard, S. O’Keeffe, C. Fitzpatrick, E. Lewis, J. R. Vaille, L. Dusseau, D. A. Jackson, F. Ravotti, M. Glaser, H. El-Rabii, “Real-time fibre optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors,” Fusion Eng. Des. 83(1), 50–59 (2008).
[CrossRef]

Lindegaard, J. C.

C. E. Andersen, S. K. Nielsen, S. Greilich, J. Helt-Hansen, J. C. Lindegaard, K. Tanderup, “Characterization of a fiber-coupled Al2O3:C luminescence dosimetry system for online in vivo dose verification during 192Ir brachytherapy,” Med. Phys. 36(3), 708–718 (2009).
[CrossRef] [PubMed]

C. E. Andersen, S. K. Nielsen, J. C. Lindegaard, K. Tanderup, “Time-resolved in vivo luminescence dosimetry for online error detection in pulsed dose-rate brachytherapy,” Med. Phys. 36(11), 5033–5043 (2009).
[CrossRef] [PubMed]

Mackie, T. R.

A. S. Beddar, S. Law, N. Suchowerska, T. R. Mackie, “Plastic scintillation dosimetry: optimization of light collection efficiency,” Phys. Med. Biol. 48(9), 1141–1152 (2003).
[CrossRef] [PubMed]

A. S. Beddar, T. R. Mackie, F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical consideration,” Phys. Med. Biol. 37(10), 1883–1900 (1992).
[CrossRef] [PubMed]

A. S. Beddar, T. R. Mackie, F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: II. Properties and measurements,” Phys. Med. Biol. 37(10), 1901–1913 (1992).
[CrossRef] [PubMed]

McKenzie, D. R.

J. Lambert, Y. Yin, D. R. McKenzie, S. H. Law, A. Ralston, N. Suchowerska, “A prototype scintillation dosimeter customized for small and dynamic megavoltage radiation fields,” Phys. Med. Biol. 55(4), 1115–1126 (2010).
[CrossRef] [PubMed]

J. Elsey, D. R. McKenzie, J. Lambert, N. Suchowerska, S. L. Law, S. C. Fleming, “Optimal coupling of light from a cylindrical scintillator into an optical fiber,” Appl. Opt. 46(3), 397–404 (2007).
[CrossRef] [PubMed]

N. Suchowerska, J. Lambert, T. Nakano, S. Law, J. Elsey, D. R. McKenzie, “A fibre optic dosimeter customised for brachytherapy,” Radiat. Meas. 42(4–5), 929–932 (2007).
[CrossRef]

J. Lambert, D. R. McKenzie, S. Law, J. Elsey, N. Suchowerska, “A plastic scintillation dosimeter for high dose rate brachytherapy,” Phys. Med. Biol. 51(21), 5505–5516 (2006).
[CrossRef] [PubMed]

Mohammadi, M.

A. M. C. Santos, M. Mohammadi, J. Asp, T. M. Monro, S. Afshar V, “Characterisation of a real-time fibre-coupled beryllium oxide (BeO) luminescence dosimeter in X-ray beams,” Radiat. Meas. 53–54, 1–7 (2013).
[CrossRef]

Monro, T. M.

Mukherjee, B.

L. Lembo, M. Pimpinella, B. Mukherjee, “Self optical attenuation coefficient of TL glow in BeO detectors,” Radiat. Prot. Dosimetry 33, 43–45 (1990).

Nakano, T.

N. Suchowerska, J. Lambert, T. Nakano, S. Law, J. Elsey, D. R. McKenzie, “A fibre optic dosimeter customised for brachytherapy,” Radiat. Meas. 42(4–5), 929–932 (2007).
[CrossRef]

Nielsen, S. K.

C. E. Andersen, S. K. Nielsen, S. Greilich, J. Helt-Hansen, J. C. Lindegaard, K. Tanderup, “Characterization of a fiber-coupled Al2O3:C luminescence dosimetry system for online in vivo dose verification during 192Ir brachytherapy,” Med. Phys. 36(3), 708–718 (2009).
[CrossRef] [PubMed]

C. E. Andersen, S. K. Nielsen, J. C. Lindegaard, K. Tanderup, “Time-resolved in vivo luminescence dosimetry for online error detection in pulsed dose-rate brachytherapy,” Med. Phys. 36(11), 5033–5043 (2009).
[CrossRef] [PubMed]

O’Keeffe, S.

A. F. Fernandez, B. Brichard, S. O’Keeffe, C. Fitzpatrick, E. Lewis, J. R. Vaille, L. Dusseau, D. A. Jackson, F. Ravotti, M. Glaser, H. El-Rabii, “Real-time fibre optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors,” Fusion Eng. Des. 83(1), 50–59 (2008).
[CrossRef]

Pimpinella, M.

L. Lembo, M. Pimpinella, B. Mukherjee, “Self optical attenuation coefficient of TL glow in BeO detectors,” Radiat. Prot. Dosimetry 33, 43–45 (1990).

Ralston, A.

J. Lambert, Y. Yin, D. R. McKenzie, S. H. Law, A. Ralston, N. Suchowerska, “A prototype scintillation dosimeter customized for small and dynamic megavoltage radiation fields,” Phys. Med. Biol. 55(4), 1115–1126 (2010).
[CrossRef] [PubMed]

Ravotti, F.

A. F. Fernandez, B. Brichard, S. O’Keeffe, C. Fitzpatrick, E. Lewis, J. R. Vaille, L. Dusseau, D. A. Jackson, F. Ravotti, M. Glaser, H. El-Rabii, “Real-time fibre optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors,” Fusion Eng. Des. 83(1), 50–59 (2008).
[CrossRef]

Richards-Kortum, R. R.

U. Utzinger, R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
[CrossRef] [PubMed]

Santos, A. M. C.

A. M. C. Santos, M. Mohammadi, J. Asp, T. M. Monro, S. Afshar V, “Characterisation of a real-time fibre-coupled beryllium oxide (BeO) luminescence dosimeter in X-ray beams,” Radiat. Meas. 53–54, 1–7 (2013).
[CrossRef]

Snyder, A.

A. Snyder, “Leaky-ray theory of optical waveguides of circular cross section,” Appl. Phys. A Mater. 4, 273–298 (1974).

Suchowerska, N.

J. Lambert, Y. Yin, D. R. McKenzie, S. H. Law, A. Ralston, N. Suchowerska, “A prototype scintillation dosimeter customized for small and dynamic megavoltage radiation fields,” Phys. Med. Biol. 55(4), 1115–1126 (2010).
[CrossRef] [PubMed]

J. Elsey, D. R. McKenzie, J. Lambert, N. Suchowerska, S. L. Law, S. C. Fleming, “Optimal coupling of light from a cylindrical scintillator into an optical fiber,” Appl. Opt. 46(3), 397–404 (2007).
[CrossRef] [PubMed]

N. Suchowerska, J. Lambert, T. Nakano, S. Law, J. Elsey, D. R. McKenzie, “A fibre optic dosimeter customised for brachytherapy,” Radiat. Meas. 42(4–5), 929–932 (2007).
[CrossRef]

J. Lambert, D. R. McKenzie, S. Law, J. Elsey, N. Suchowerska, “A plastic scintillation dosimeter for high dose rate brachytherapy,” Phys. Med. Biol. 51(21), 5505–5516 (2006).
[CrossRef] [PubMed]

A. S. Beddar, N. Suchowerska, S. H. Law, “Plastic scintillation dosimetry for radiation therapy: minimizing capture of Cerenkov radiation noise,” Phys. Med. Biol. 49(5), 783–790 (2004).
[CrossRef] [PubMed]

A. S. Beddar, S. Law, N. Suchowerska, T. R. Mackie, “Plastic scintillation dosimetry: optimization of light collection efficiency,” Phys. Med. Biol. 48(9), 1141–1152 (2003).
[CrossRef] [PubMed]

Tanderup, K.

C. E. Andersen, S. K. Nielsen, J. C. Lindegaard, K. Tanderup, “Time-resolved in vivo luminescence dosimetry for online error detection in pulsed dose-rate brachytherapy,” Med. Phys. 36(11), 5033–5043 (2009).
[CrossRef] [PubMed]

C. E. Andersen, S. K. Nielsen, S. Greilich, J. Helt-Hansen, J. C. Lindegaard, K. Tanderup, “Characterization of a fiber-coupled Al2O3:C luminescence dosimetry system for online in vivo dose verification during 192Ir brachytherapy,” Med. Phys. 36(3), 708–718 (2009).
[CrossRef] [PubMed]

Utzinger, U.

U. Utzinger, R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
[CrossRef] [PubMed]

Vaille, J. R.

A. F. Fernandez, B. Brichard, S. O’Keeffe, C. Fitzpatrick, E. Lewis, J. R. Vaille, L. Dusseau, D. A. Jackson, F. Ravotti, M. Glaser, H. El-Rabii, “Real-time fibre optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors,” Fusion Eng. Des. 83(1), 50–59 (2008).
[CrossRef]

Warren-Smith, S. C.

Yin, Y.

J. Lambert, Y. Yin, D. R. McKenzie, S. H. Law, A. Ralston, N. Suchowerska, “A prototype scintillation dosimeter customized for small and dynamic megavoltage radiation fields,” Phys. Med. Biol. 55(4), 1115–1126 (2010).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. A Mater. (1)

A. Snyder, “Leaky-ray theory of optical waveguides of circular cross section,” Appl. Phys. A Mater. 4, 273–298 (1974).

Fusion Eng. Des. (1)

A. F. Fernandez, B. Brichard, S. O’Keeffe, C. Fitzpatrick, E. Lewis, J. R. Vaille, L. Dusseau, D. A. Jackson, F. Ravotti, M. Glaser, H. El-Rabii, “Real-time fibre optic radiation dosimeters for nuclear environment monitoring around thermonuclear reactors,” Fusion Eng. Des. 83(1), 50–59 (2008).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

M. Jianjun, W. J. Bock, “Addressing factors affecting fluorescent signal collection of a multimode photonic crystal fiber fluorometer,” IEEE Trans. Instrum. Meas. 57(12), 2813–2818 (2008).
[CrossRef]

J. Biomed. Opt. (1)

U. Utzinger, R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
[CrossRef] [PubMed]

Med. Phys. (2)

C. E. Andersen, S. K. Nielsen, S. Greilich, J. Helt-Hansen, J. C. Lindegaard, K. Tanderup, “Characterization of a fiber-coupled Al2O3:C luminescence dosimetry system for online in vivo dose verification during 192Ir brachytherapy,” Med. Phys. 36(3), 708–718 (2009).
[CrossRef] [PubMed]

C. E. Andersen, S. K. Nielsen, J. C. Lindegaard, K. Tanderup, “Time-resolved in vivo luminescence dosimetry for online error detection in pulsed dose-rate brachytherapy,” Med. Phys. 36(11), 5033–5043 (2009).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Med. Biol. (6)

A. S. Beddar, N. Suchowerska, S. H. Law, “Plastic scintillation dosimetry for radiation therapy: minimizing capture of Cerenkov radiation noise,” Phys. Med. Biol. 49(5), 783–790 (2004).
[CrossRef] [PubMed]

A. S. Beddar, S. Law, N. Suchowerska, T. R. Mackie, “Plastic scintillation dosimetry: optimization of light collection efficiency,” Phys. Med. Biol. 48(9), 1141–1152 (2003).
[CrossRef] [PubMed]

J. Lambert, D. R. McKenzie, S. Law, J. Elsey, N. Suchowerska, “A plastic scintillation dosimeter for high dose rate brachytherapy,” Phys. Med. Biol. 51(21), 5505–5516 (2006).
[CrossRef] [PubMed]

J. Lambert, Y. Yin, D. R. McKenzie, S. H. Law, A. Ralston, N. Suchowerska, “A prototype scintillation dosimeter customized for small and dynamic megavoltage radiation fields,” Phys. Med. Biol. 55(4), 1115–1126 (2010).
[CrossRef] [PubMed]

A. S. Beddar, T. R. Mackie, F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical consideration,” Phys. Med. Biol. 37(10), 1883–1900 (1992).
[CrossRef] [PubMed]

A. S. Beddar, T. R. Mackie, F. H. Attix, “Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: II. Properties and measurements,” Phys. Med. Biol. 37(10), 1901–1913 (1992).
[CrossRef] [PubMed]

Radiat. Meas. (2)

N. Suchowerska, J. Lambert, T. Nakano, S. Law, J. Elsey, D. R. McKenzie, “A fibre optic dosimeter customised for brachytherapy,” Radiat. Meas. 42(4–5), 929–932 (2007).
[CrossRef]

A. M. C. Santos, M. Mohammadi, J. Asp, T. M. Monro, S. Afshar V, “Characterisation of a real-time fibre-coupled beryllium oxide (BeO) luminescence dosimeter in X-ray beams,” Radiat. Meas. 53–54, 1–7 (2013).
[CrossRef]

Radiat. Prot. Dosimetry (1)

L. Lembo, M. Pimpinella, B. Mukherjee, “Self optical attenuation coefficient of TL glow in BeO detectors,” Radiat. Prot. Dosimetry 33, 43–45 (1990).

Other (1)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Ray paths within a step-index fibre of core refractive index, nco, and cladding refractive index, ncl, a) a meridional ray and b) a skew ray showing the azimuthal angle, ϕ az , and c) a skew ray showing all angles including the total angle of incidence, α .

Fig. 2
Fig. 2

Due to the symmetry of the system, a) the light collection by a point source, represents an area between the other modelled point sources, where the parameters t, R1 and R2 are defined by the number of point sources modelled and hence the pixel size, b) where the light collection of each point source represents an annulus, c) the summation of all the represents a slice of the scintillator.

Fig. 3
Fig. 3

The BeO probe arrangements a) butt-coupled, b) reflective wall, c) cladding-coupled and d) double-cladding. The dark grey shaded region is the scintillating material and the lower refractive index layer, shaded in a light grey.

Fig. 4
Fig. 4

A cross-section of the scintillator depicting the azimuthal angle, ϕaz, the simulated cross sectional angle utilized in model, ϕa. Where b is the distance of the emitting source at point A from the optical axis, point B is the project of the ray onto the scintillator of radius rs.

Fig. 5
Fig. 5

The benefit of the use of a lower refractive index surrounding the scintillator, for identical rays with longitudinal propagation angles, φ i , there is a smaller longitudinal propagation angle for rays incident from n1 than from ns, hence φ r2 < φ rs .

Fig. 6
Fig. 6

A cross section of the double-cladding probe showing the change in the azimuthal angle and the modelled cross sectional angle after refraction and a following reflection.

Fig. 7
Fig. 7

The two scenarios modelled: a) where the overall size of the different probe designs are kept constant, and b) where the volume of the scintillating material in the different probe designs are kept constant.

Fig. 8
Fig. 8

The experimental setup used to validate the model. An SXR unit was used to expose various lengths of the scintillators, controlled by a 3 mm lead shielding block.

Fig. 9
Fig. 9

Comparison between the modelled butt-coupled and reflective wall and corresponding measurements.

Fig. 10
Fig. 10

Modelling results of the novel probes, a) cladding-coupled and b) double-cladding.

Fig. 11
Fig. 11

The total light collection of all four probe designs when constraining: a) the overall size of the probes and b) the volume of the scintillating material.

Fig. 12
Fig. 12

The comparison between the modelled and experimentally measured light collection for a BeO ceramic butt-coupled design.

Fig. 13
Fig. 13

Modelled total light collection from the four investigated probes when including the optical attenuation of BeO and constraining either: a) the overall size of the probe is constrained and b) the volume of the scintillating material.

Tables (3)

Tables Icon

Table 1 Simulated Optical Fibre Parameters

Tables Icon

Table 2 Simulation Parameters for the Comparison of the Different Probe Designs

Tables Icon

Table 3 Probe Parameters Simulated for the Experimental Validation

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

P b = i N b I i N b Ω b V , P r = i N r I i N r Ω r V , P t = i N t I i N t Ω t V ,
V= π t ( R 2 2 -R 1 2 ) .
Ω b =2π N b N s , Ω r =2π N r N s , Ω t =2π N t N s ,
x=rcos ϕ a sin ϕ z ,
y=rsin ϕ a sin ϕ z ,
z=rcos ϕ z .
sin( π 2 - ϕ az ) b = sin( π- ϕ a ) r s .
ϕ az = π 2 - sin -1 { b r s sin[ π- ϕ a ] }.
ϕ m = sin -1 { 1 n s n co 2 -n cl 2 }.
α m = cos -1 { 1 n s n co 2 -n cl 2 }.
I=I 0 e - μ r ,
ϕ z < ϕ c .
ϕ c = 1- ( n 1 n s ) 2 .
ϕ c '= ϕ c +2 ϕ az .
α c = sin -1 { n 1 n s } .
β ¯ =ncos ϕ z ,
1 ¯ =nsin ϕ z cos ϕ az ,
β ¯ 2 + 1 ¯ 2 =n 2 sin 2 α .
ϕ z '= cos -1 { n s n 1 cos ϕ z } ,
ϕ az '= cos -1 { n s sin ϕ z n 1 sin ϕ z ' cos ϕ az } ,
α'= sin -1 { n s n 1 sinα } ,
ϕ a '= ϕ a +( ϕ az - ϕ az ' ) .
ϕ az ''= π 2 - cos -1 { R 2 +r 1 2 -r 2 2 2Rr 1 },

Metrics