Abstract

We optically trap plasmonic gold particles in two dimensions and set them into circular motion around the optical axis using a helically phased vortex laser beam. The orbiting frequency of the particles reaches 86 Hz, which corresponds to a particle velocity of the order 1 mm per second, for an incident laser power of a few tens of milliwatts. The experimentally determined orbiting frequencies are found to be well in line with the notion that the beam carries an orbital angular momentum of ħl per photon.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Yao, M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
    [CrossRef]
  2. N. B. Simpson, K. Dholakia, L. Allen, M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22(1), 52–54 (1997).
    [CrossRef] [PubMed]
  3. H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
    [CrossRef] [PubMed]
  4. M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, K. Dholakia, “Optical vortex trap for resonant confinement of metal nanoparticles,” Opt. Express 16(7), 4991–4999 (2008).
    [CrossRef] [PubMed]
  5. K. Ladavac, D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12(6), 1144–1149 (2004).
    [CrossRef] [PubMed]
  6. T. Kolb and G. Whyte, “Rotation of optically trapped living cells for single-cell tomography,” in Optics in the Life Sciences Conference, 2013 OSA Technical Digest Series (Optical Society of America, 2013), paper TM4D.4.
    [CrossRef]
  7. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
    [CrossRef] [PubMed]
  8. Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, K. Dholakia, “Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle,” Anal. Chem. 83(23), 8855–8858 (2011).
    [CrossRef] [PubMed]
  9. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
    [CrossRef] [PubMed]
  10. J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
    [CrossRef] [PubMed]
  11. M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78(4), 547–549 (2001).
    [CrossRef]
  12. P. Galajda, P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
    [CrossRef]
  13. L. Tong, V. D. Miljković, M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
    [CrossRef] [PubMed]
  14. A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
    [CrossRef] [PubMed]
  15. V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
    [CrossRef]
  16. V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
    [CrossRef] [PubMed]
  17. K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt. 4(2), S82–S89 (2002).
    [CrossRef]
  18. A. T. O’Neil, I. MacVicar, L. Allen, M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
    [CrossRef] [PubMed]
  19. Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
    [CrossRef] [PubMed]
  20. K. Ladavac, D. G. Grier, “Colloidal hydrodynamic coupling in concentric optical vortices,” Europhys. Lett. 70(4), 548–554 (2005).
    [CrossRef]
  21. Y. Li, J. Kim, M. J. Escuti, “Controlling orbital angular momentum using forked polarization gratings,” Proc. SPIE 7789, 77890F (2010).
    [CrossRef]
  22. S. C. Tiwari, “Geometrical phase in optics; quantal or classical?” J. Mod. Opt. 39, 1097–1105 (1992).
    [CrossRef]
  23. M. V. Berry, “The adiabatic phase and Pancharatnam's phase for polarized light,” J. Mod. Opt. 34(11), 1401–1407 (1987).
    [CrossRef]
  24. J. E. Curtis, D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
    [CrossRef] [PubMed]
  25. A. O. Govorov, H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
    [CrossRef]
  26. R. L. Fogel’son, E. R. Likhachev, “Temperature dependence of viscosity,” Tech. Phys. 46(8), 1056–1059 (2001).
    [CrossRef]
  27. P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
    [CrossRef] [PubMed]
  28. D. Rings, R. Schachoff, M. Selmke, F. Cichos, K. Kroy, “Hot Brownian motion,” Phys. Rev. Lett. 105(9), 090604 (2010).
    [CrossRef] [PubMed]
  29. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Kluwer, 1991).
  30. M. J. Padgett, “On diffraction within a dielectric medium as an example of the Minkowski formulation of optical momentum,” Opt. Express 16(25), 20864–20868 (2008).
    [CrossRef] [PubMed]
  31. I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep. 52(3), 133–201 (1979).
    [CrossRef]
  32. Y. Arita, M. Mazilu, K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
    [CrossRef] [PubMed]

2013 (2)

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
[CrossRef] [PubMed]

Y. Arita, M. Mazilu, K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
[CrossRef] [PubMed]

2011 (3)

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[CrossRef] [PubMed]

A. M. Yao, M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[CrossRef]

Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, K. Dholakia, “Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle,” Anal. Chem. 83(23), 8855–8858 (2011).
[CrossRef] [PubMed]

2010 (3)

L. Tong, V. D. Miljković, M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
[CrossRef] [PubMed]

Y. Li, J. Kim, M. J. Escuti, “Controlling orbital angular momentum using forked polarization gratings,” Proc. SPIE 7789, 77890F (2010).
[CrossRef]

D. Rings, R. Schachoff, M. Selmke, F. Cichos, K. Kroy, “Hot Brownian motion,” Phys. Rev. Lett. 105(9), 090604 (2010).
[CrossRef] [PubMed]

2008 (2)

2007 (2)

A. O. Govorov, H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
[CrossRef]

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[CrossRef] [PubMed]

2006 (1)

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

2005 (1)

K. Ladavac, D. G. Grier, “Colloidal hydrodynamic coupling in concentric optical vortices,” Europhys. Lett. 70(4), 548–554 (2005).
[CrossRef]

2004 (2)

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
[CrossRef] [PubMed]

K. Ladavac, D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12(6), 1144–1149 (2004).
[CrossRef] [PubMed]

2003 (2)

J. E. Curtis, D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[CrossRef] [PubMed]

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[CrossRef] [PubMed]

2002 (3)

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt. 4(2), S82–S89 (2002).
[CrossRef]

A. T. O’Neil, I. MacVicar, L. Allen, M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
[CrossRef]

2001 (4)

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78(4), 547–549 (2001).
[CrossRef]

P. Galajda, P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[CrossRef]

R. L. Fogel’son, E. R. Likhachev, “Temperature dependence of viscosity,” Tech. Phys. 46(8), 1056–1059 (2001).
[CrossRef]

1997 (1)

1995 (1)

H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[CrossRef] [PubMed]

1992 (1)

S. C. Tiwari, “Geometrical phase in optics; quantal or classical?” J. Mod. Opt. 39, 1097–1105 (1992).
[CrossRef]

1987 (1)

M. V. Berry, “The adiabatic phase and Pancharatnam's phase for polarized light,” J. Mod. Opt. 34(11), 1401–1407 (1987).
[CrossRef]

1979 (1)

I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep. 52(3), 133–201 (1979).
[CrossRef]

Allen, L.

A. T. O’Neil, I. MacVicar, L. Allen, M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

N. B. Simpson, K. Dholakia, L. Allen, M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22(1), 52–54 (1997).
[CrossRef] [PubMed]

Arita, Y.

Y. Arita, M. Mazilu, K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
[CrossRef] [PubMed]

Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, K. Dholakia, “Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle,” Anal. Chem. 83(23), 8855–8858 (2011).
[CrossRef] [PubMed]

Arlt, J.

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt. 4(2), S82–S89 (2002).
[CrossRef]

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Berry, M. V.

M. V. Berry, “The adiabatic phase and Pancharatnam's phase for polarized light,” J. Mod. Opt. 34(11), 1401–1407 (1987).
[CrossRef]

Bishop, A. I.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
[CrossRef] [PubMed]

Brevik, I.

I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep. 52(3), 133–201 (1979).
[CrossRef]

Bryant, P. E.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Chávez-Cerda, S.

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
[CrossRef]

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt. 4(2), S82–S89 (2002).
[CrossRef]

Chiu, D. T.

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[CrossRef] [PubMed]

Cichos, F.

D. Rings, R. Schachoff, M. Selmke, F. Cichos, K. Kroy, “Hot Brownian motion,” Phys. Rev. Lett. 105(9), 090604 (2010).
[CrossRef] [PubMed]

Cooper, J.

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

Curtis, J. E.

J. E. Curtis, D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[CrossRef] [PubMed]

Dholakia, K.

Y. Arita, M. Mazilu, K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
[CrossRef] [PubMed]

Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, K. Dholakia, “Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle,” Anal. Chem. 83(23), 8855–8858 (2011).
[CrossRef] [PubMed]

M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, K. Dholakia, “Optical vortex trap for resonant confinement of metal nanoparticles,” Opt. Express 16(7), 4991–4999 (2008).
[CrossRef] [PubMed]

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[CrossRef] [PubMed]

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt. 4(2), S82–S89 (2002).
[CrossRef]

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
[CrossRef]

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

N. B. Simpson, K. Dholakia, L. Allen, M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22(1), 52–54 (1997).
[CrossRef] [PubMed]

di Leonardo, R.

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

Dienerowitz, M.

Dultz, W.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[CrossRef] [PubMed]

Edgar, J. S.

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[CrossRef] [PubMed]

Escuti, M. J.

Y. Li, J. Kim, M. J. Escuti, “Controlling orbital angular momentum using forked polarization gratings,” Proc. SPIE 7789, 77890F (2010).
[CrossRef]

Fogel’son, R. L.

R. L. Fogel’son, E. R. Likhachev, “Temperature dependence of viscosity,” Tech. Phys. 46(8), 1056–1059 (2001).
[CrossRef]

Friese, M. E. J.

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78(4), 547–549 (2001).
[CrossRef]

H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[CrossRef] [PubMed]

Galajda, P.

P. Galajda, P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[CrossRef]

Garcés-Chávez, V.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[CrossRef] [PubMed]

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt. 4(2), S82–S89 (2002).
[CrossRef]

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
[CrossRef]

Gold, J.

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78(4), 547–549 (2001).
[CrossRef]

Govorov, A. O.

A. O. Govorov, H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
[CrossRef]

Grier, D. G.

K. Ladavac, D. G. Grier, “Colloidal hydrodynamic coupling in concentric optical vortices,” Europhys. Lett. 70(4), 548–554 (2005).
[CrossRef]

K. Ladavac, D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12(6), 1144–1149 (2004).
[CrossRef] [PubMed]

J. E. Curtis, D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[CrossRef] [PubMed]

Gschneidtner, T.

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
[CrossRef] [PubMed]

Hagberg, P.

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78(4), 547–549 (2001).
[CrossRef]

Hanstorp, D.

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78(4), 547–549 (2001).
[CrossRef]

He, H.

H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[CrossRef] [PubMed]

Heckenberg, N. R.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
[CrossRef] [PubMed]

H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[CrossRef] [PubMed]

Jeffries, G. D. M.

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[CrossRef] [PubMed]

Johansson, P.

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
[CrossRef] [PubMed]

Käll, M.

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
[CrossRef] [PubMed]

L. Tong, V. D. Miljković, M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
[CrossRef] [PubMed]

Kim, J.

Y. Li, J. Kim, M. J. Escuti, “Controlling orbital angular momentum using forked polarization gratings,” Proc. SPIE 7789, 77890F (2010).
[CrossRef]

Krauss, T. F.

Kroy, K.

D. Rings, R. Schachoff, M. Selmke, F. Cichos, K. Kroy, “Hot Brownian motion,” Phys. Rev. Lett. 105(9), 090604 (2010).
[CrossRef] [PubMed]

Ladavac, K.

K. Ladavac, D. G. Grier, “Colloidal hydrodynamic coupling in concentric optical vortices,” Europhys. Lett. 70(4), 548–554 (2005).
[CrossRef]

K. Ladavac, D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12(6), 1144–1149 (2004).
[CrossRef] [PubMed]

Leach, J.

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

Lehmuskero, A.

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
[CrossRef] [PubMed]

Li, Y.

Y. Li, J. Kim, M. J. Escuti, “Controlling orbital angular momentum using forked polarization gratings,” Proc. SPIE 7789, 77890F (2010).
[CrossRef]

Likhachev, E. R.

R. L. Fogel’son, E. R. Likhachev, “Temperature dependence of viscosity,” Tech. Phys. 46(8), 1056–1059 (2001).
[CrossRef]

MacDonald, M. P.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

MacVicar, I.

A. T. O’Neil, I. MacVicar, L. Allen, M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

Mazilu, M.

Y. Arita, M. Mazilu, K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
[CrossRef] [PubMed]

Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, K. Dholakia, “Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle,” Anal. Chem. 83(23), 8855–8858 (2011).
[CrossRef] [PubMed]

M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, K. Dholakia, “Optical vortex trap for resonant confinement of metal nanoparticles,” Opt. Express 16(7), 4991–4999 (2008).
[CrossRef] [PubMed]

McGloin, D.

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[CrossRef] [PubMed]

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[CrossRef] [PubMed]

McKinley, A. W.

Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, K. Dholakia, “Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle,” Anal. Chem. 83(23), 8855–8858 (2011).
[CrossRef] [PubMed]

Miljkovic, V. D.

L. Tong, V. D. Miljković, M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
[CrossRef] [PubMed]

Mushfique, H.

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

Nieminen, T. A.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
[CrossRef] [PubMed]

O’Neil, A. T.

A. T. O’Neil, I. MacVicar, L. Allen, M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

Ogier, R.

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
[CrossRef] [PubMed]

Ormos, P.

P. Galajda, P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[CrossRef]

Orrit, M.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[CrossRef] [PubMed]

Padgett, M.

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

Padgett, M. J.

A. M. Yao, M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[CrossRef]

M. J. Padgett, “On diffraction within a dielectric medium as an example of the Minkowski formulation of optical momentum,” Opt. Express 16(25), 20864–20868 (2008).
[CrossRef] [PubMed]

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[CrossRef] [PubMed]

A. T. O’Neil, I. MacVicar, L. Allen, M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

N. B. Simpson, K. Dholakia, L. Allen, M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22(1), 52–54 (1997).
[CrossRef] [PubMed]

Paterson, L.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Reece, P. J.

Richardson, H. H.

A. O. Govorov, H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
[CrossRef]

Rings, D.

D. Rings, R. Schachoff, M. Selmke, F. Cichos, K. Kroy, “Hot Brownian motion,” Phys. Rev. Lett. 105(9), 090604 (2010).
[CrossRef] [PubMed]

Rubinsztein-Dunlop, H.

Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, K. Dholakia, “Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle,” Anal. Chem. 83(23), 8855–8858 (2011).
[CrossRef] [PubMed]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
[CrossRef] [PubMed]

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78(4), 547–549 (2001).
[CrossRef]

H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[CrossRef] [PubMed]

Ruijgrok, P. V.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[CrossRef] [PubMed]

Schachoff, R.

D. Rings, R. Schachoff, M. Selmke, F. Cichos, K. Kroy, “Hot Brownian motion,” Phys. Rev. Lett. 105(9), 090604 (2010).
[CrossRef] [PubMed]

Schmitzer, H.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[CrossRef] [PubMed]

Selmke, M.

D. Rings, R. Schachoff, M. Selmke, F. Cichos, K. Kroy, “Hot Brownian motion,” Phys. Rev. Lett. 105(9), 090604 (2010).
[CrossRef] [PubMed]

Sibbett, W.

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
[CrossRef]

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Simpson, N. B.

Tchebotareva, A. L.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[CrossRef] [PubMed]

Tiwari, S. C.

S. C. Tiwari, “Geometrical phase in optics; quantal or classical?” J. Mod. Opt. 39, 1097–1105 (1992).
[CrossRef]

Tong, L.

L. Tong, V. D. Miljković, M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
[CrossRef] [PubMed]

Verhart, N. R.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[CrossRef] [PubMed]

Volke-Sepulveda, K.

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt. 4(2), S82–S89 (2002).
[CrossRef]

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
[CrossRef]

Yao, A. M.

A. M. Yao, M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[CrossRef]

Zhao, Y.

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[CrossRef] [PubMed]

Zijlstra, P.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[CrossRef] [PubMed]

Adv. Opt. Photonics (1)

A. M. Yao, M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[CrossRef]

Anal. Chem. (1)

Y. Arita, A. W. McKinley, M. Mazilu, H. Rubinsztein-Dunlop, K. Dholakia, “Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle,” Anal. Chem. 83(23), 8855–8858 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78(4), 547–549 (2001).
[CrossRef]

P. Galajda, P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[CrossRef]

Europhys. Lett. (1)

K. Ladavac, D. G. Grier, “Colloidal hydrodynamic coupling in concentric optical vortices,” Europhys. Lett. 70(4), 548–554 (2005).
[CrossRef]

J. Mod. Opt. (2)

S. C. Tiwari, “Geometrical phase in optics; quantal or classical?” J. Mod. Opt. 39, 1097–1105 (1992).
[CrossRef]

M. V. Berry, “The adiabatic phase and Pancharatnam's phase for polarized light,” J. Mod. Opt. 34(11), 1401–1407 (1987).
[CrossRef]

J. Opt. B Quantum Semiclassical Opt. (1)

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt. 4(2), S82–S89 (2002).
[CrossRef]

Lab Chip (1)

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

Nano Lett. (2)

L. Tong, V. D. Miljković, M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
[CrossRef] [PubMed]

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
[CrossRef] [PubMed]

Nano Today (1)

A. O. Govorov, H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
[CrossRef]

Nat. Commun. (1)

Y. Arita, M. Mazilu, K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rep. (1)

I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep. 52(3), 133–201 (1979).
[CrossRef]

Phys. Rev. A (1)

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
[CrossRef]

Phys. Rev. Lett. (8)

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003).
[CrossRef] [PubMed]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
[CrossRef] [PubMed]

J. E. Curtis, D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[CrossRef] [PubMed]

A. T. O’Neil, I. MacVicar, L. Allen, M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[CrossRef] [PubMed]

Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[CrossRef] [PubMed]

H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[CrossRef] [PubMed]

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[CrossRef] [PubMed]

D. Rings, R. Schachoff, M. Selmke, F. Cichos, K. Kroy, “Hot Brownian motion,” Phys. Rev. Lett. 105(9), 090604 (2010).
[CrossRef] [PubMed]

Proc. SPIE (1)

Y. Li, J. Kim, M. J. Escuti, “Controlling orbital angular momentum using forked polarization gratings,” Proc. SPIE 7789, 77890F (2010).
[CrossRef]

Science (1)

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Tech. Phys. (1)

R. L. Fogel’son, E. R. Likhachev, “Temperature dependence of viscosity,” Tech. Phys. 46(8), 1056–1059 (2001).
[CrossRef]

Other (2)

T. Kolb and G. Whyte, “Rotation of optically trapped living cells for single-cell tomography,” in Optics in the Life Sciences Conference, 2013 OSA Technical Digest Series (Optical Society of America, 2013), paper TM4D.4.
[CrossRef]

J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Kluwer, 1991).

Supplementary Material (1)

» Media 1: MOV (197 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Illustration of trapping and detection of orbiting nanoparticles. The 830 nm laser beam is expanded to fill the back aperture of the microscope objective, polarized and focused on the sample through the q-plate. Most of the back-scattered laser light is filtered away by the hot mirror but a small fraction reaches the APD and can be analyzed with the autocorrelator. (b) An image of the q-plate used to generate the optical vortex beam when it is positioned between two crossed polarizers. (c) The optically trapped particle moves along a circular orbit of radius ~2 µm, as determined by the optical vortex beam intensity profile.

Fig. 2
Fig. 2

(a) Autocorrelation functions of the photon count rate for a laser power of 13.3 mW and (b) 73.1 mW, corresponding to the circular and diamond data points in Fig. 3, respectively. (c) Image of an orbiting particle for a laser power of 13.3 mW. The dashed line indicates the movement of the particle during the integration time of the camera (41.7 ms) (d) Image for the case of a laser power of 73.1 mW (Media 1). The concentric rings and diffuse scattering in (c) and (d) are mainly an image artifact caused by a slight displacement of the particle relative to the focal plane along the optical axis.

Fig. 3
Fig. 3

Theoretical (dashed line) and experimental orbital rotation frequencies for five different particles as a function of the sample-plane laser power. The left-hand inset shows an estimate of the temperature rise on the particle surface obtained from the heat transport equation while the right-hand inset shows the corresponding temperature dependent viscosity relevant to translational particle motion.

Fig. 4
Fig. 4

(a) The angular force on a spherical gold particle of radius 200 nm in water illuminated by a LG beam of vacuum wavelength 830 nm, mode number l = 8, a beam waist of 1 µm, and a total power of 20 mW. This force pattern can drive the particle along a circular pattern. (b) The in-plane radial force in the same situation for circularly polarized light. The radial force confines the particle to moving within the ring of high light intensity, hence stabilizing the circular motion driven by the angular forces. (c) For light polarized linearly (along the x-axis), the radial force varies substantially along the high intensity ring.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

τ o = ( σ a + β σ s ) I l / ω 0 .
β σ s = d σ s d Ω ( 1 cos θ ) sin θ d θ d φ ,
τ v = 6 π η r 2 R 0 ω ,
ω = ( σ a + β σ s ) I l 6 π η r 2 R 0 ω 0 .
η ( T ) = η 0 exp [ E a N A k B ( T T * ) ] ,
T eff = ( T bath + T p ) / 2.

Metrics