Abstract

We demonstrate a method to increase the acquisition speed in coherent anti-Stokes Raman scattering (CARS) hyperspectral imaging while retaining the relevant spectral information. The method first determines the important spectral components of a sample from a hyper-spectral image over a small number of spatial points but a large number of spectral points covering the accessible spectral range and sampling the instrument spectral resolution at the Nyquist limit. From these components we determine a small set of frequencies needed to retrieve the weights of the components with minimum error for a given measurement noise. Hyperspectral images with a large number of spatial points, for example covering a large spatial region, are then measured at this small set of frequencies, and a reconstruction algorithm is applied to generate the full spectral range and resolution. The resulting spectra are suited to retrieve from the CARS intensity the CARS susceptibility which is linear in the concentration, and apply unsupervised quantitative analysis methods such as FSC3 [1]. We demonstrate the method on CARS hyperspectral images of human osteosarcoma U2OS cell, with a reduction in the acquisition time by a factor of 25. This method is suited also for other coherent vibrational microscopy techniques such as stimulated Raman scattering, and in general for hyperspectral imaging techniques with sequential spectral acquisition.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Masia, A. Glen, P. Stephens, P. Borri, W. Langbein, “Quantitative chemical imaging using hyperspectral coherent anti-Stokes Raman scattering microscopy,” Anal. Chem. (2013). DOI.
    [CrossRef]
  2. C. L. Evans, X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
    [CrossRef]
  3. J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7, 137–145 (2011).
    [CrossRef] [PubMed]
  4. A. Zumbusch, W. Langbein, P. Borri, “Nonlinear vibrational microscopy applied to lipid biology,” Progress in Lipid Research 52, 615–632 (2013).
    [CrossRef] [PubMed]
  5. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 102, 16807–16812 (2005).
    [CrossRef] [PubMed]
  6. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
    [CrossRef] [PubMed]
  7. Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express 17, 3651–3658 (2009).
    [CrossRef] [PubMed]
  8. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
    [CrossRef] [PubMed]
  9. D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” Journal of the American Chemical Society 134, 3623–3626 (2012).
    [CrossRef] [PubMed]
  10. I. Pope, W. Langbein, P. Watson, P. Borri, “Simultaneous hyperspectral differential-CARS, TPF and SHG microscopy with a single 5 fs Ti:Sa laser,” Opt. Express 21, 7096–7106 (2013).
    [CrossRef] [PubMed]
  11. L. Kong, M. Ji, G. R. Holtom, D. Fu, C. W. Freudiger, X. S. Xie, “Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator,” Opt. Lett. 38, 145–147 (2013).
    [CrossRef] [PubMed]
  12. Y. Liu, Y. J. Lee, M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett. 34, 1363–1365 (2009).
    [CrossRef] [PubMed]
  13. E. M. Vartiainen, H. A. Rinia, M. Müller, M. Bonn, “Direct extraction of Raman line-shapes from congested CARS spectra,” Opt. Express 14, 3622–3630 (2006).
    [CrossRef] [PubMed]
  14. D. Zhang, M. N. Slipchenko, D. E. Leaird, A. M. Weiner, J.-X. Cheng, “Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper,” Opt. Express 21, 13864–13874 (2013).
    [CrossRef] [PubMed]
  15. Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nature Photon. 6, 845–851 (2012).
    [CrossRef]
  16. S. Qaisar, R.M. Bilal, W. Iqbal, M. Naureen, S. Lee, “Compressive sensing: from theory to applications, a survey,” J. Communications and Network 15, 443–456 (2013).
  17. T. Hellerer, A. M. Enejder, A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25–27 (2004).
    [CrossRef]
  18. I. Rocha-Mendoza, W. Langbein, P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93, 201103 (2008).
    [CrossRef]
  19. W. Langbein, I. Rocha-Mendoza, P. Borri, “Coherent anti-Stokes Raman micro-spectroscopy using spectral focusing: Theory and Experiment,” J. Raman Spectrosc. 40, 800–808 (2009).
    [CrossRef]

2013

2012

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nature Photon. 6, 845–851 (2012).
[CrossRef]

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” Journal of the American Chemical Society 134, 3623–3626 (2012).
[CrossRef] [PubMed]

2011

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7, 137–145 (2011).
[CrossRef] [PubMed]

2010

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[CrossRef] [PubMed]

2009

2008

I. Rocha-Mendoza, W. Langbein, P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93, 201103 (2008).
[CrossRef]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

C. L. Evans, X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[CrossRef]

2006

2005

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 102, 16807–16812 (2005).
[CrossRef] [PubMed]

2004

T. Hellerer, A. M. Enejder, A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25–27 (2004).
[CrossRef]

Bilal, R.M.

S. Qaisar, R.M. Bilal, W. Iqbal, M. Naureen, S. Lee, “Compressive sensing: from theory to applications, a survey,” J. Communications and Network 15, 443–456 (2013).

Blake, J. A.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7, 137–145 (2011).
[CrossRef] [PubMed]

Bonn, M.

Borri, P.

I. Pope, W. Langbein, P. Watson, P. Borri, “Simultaneous hyperspectral differential-CARS, TPF and SHG microscopy with a single 5 fs Ti:Sa laser,” Opt. Express 21, 7096–7106 (2013).
[CrossRef] [PubMed]

A. Zumbusch, W. Langbein, P. Borri, “Nonlinear vibrational microscopy applied to lipid biology,” Progress in Lipid Research 52, 615–632 (2013).
[CrossRef] [PubMed]

W. Langbein, I. Rocha-Mendoza, P. Borri, “Coherent anti-Stokes Raman micro-spectroscopy using spectral focusing: Theory and Experiment,” J. Raman Spectrosc. 40, 800–808 (2009).
[CrossRef]

I. Rocha-Mendoza, W. Langbein, P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93, 201103 (2008).
[CrossRef]

F. Masia, A. Glen, P. Stephens, P. Borri, W. Langbein, “Quantitative chemical imaging using hyperspectral coherent anti-Stokes Raman scattering microscopy,” Anal. Chem. (2013). DOI.
[CrossRef]

Cheng, J.-X.

Cicerone, M. T.

Côté, D.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 102, 16807–16812 (2005).
[CrossRef] [PubMed]

Dake, F.

Danielson, D. C.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7, 137–145 (2011).
[CrossRef] [PubMed]

Enejder, A. M.

T. Hellerer, A. M. Enejder, A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25–27 (2004).
[CrossRef]

Evans, C. L.

C. L. Evans, X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[CrossRef]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 102, 16807–16812 (2005).
[CrossRef] [PubMed]

Freudiger, C.

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” Journal of the American Chemical Society 134, 3623–3626 (2012).
[CrossRef] [PubMed]

Freudiger, C. W.

L. Kong, M. Ji, G. R. Holtom, D. Fu, C. W. Freudiger, X. S. Xie, “Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator,” Opt. Lett. 38, 145–147 (2013).
[CrossRef] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

Fu, D.

L. Kong, M. Ji, G. R. Holtom, D. Fu, C. W. Freudiger, X. S. Xie, “Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator,” Opt. Lett. 38, 145–147 (2013).
[CrossRef] [PubMed]

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” Journal of the American Chemical Society 134, 3623–3626 (2012).
[CrossRef] [PubMed]

Fukui, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nature Photon. 6, 845–851 (2012).
[CrossRef]

Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express 17, 3651–3658 (2009).
[CrossRef] [PubMed]

Glen, A.

F. Masia, A. Glen, P. Stephens, P. Borri, W. Langbein, “Quantitative chemical imaging using hyperspectral coherent anti-Stokes Raman scattering microscopy,” Anal. Chem. (2013). DOI.
[CrossRef]

Hashimoto, H.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nature Photon. 6, 845–851 (2012).
[CrossRef]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

Hellerer, T.

T. Hellerer, A. M. Enejder, A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25–27 (2004).
[CrossRef]

Holtom, G.

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” Journal of the American Chemical Society 134, 3623–3626 (2012).
[CrossRef] [PubMed]

Holtom, G. R.

L. Kong, M. Ji, G. R. Holtom, D. Fu, C. W. Freudiger, X. S. Xie, “Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator,” Opt. Lett. 38, 145–147 (2013).
[CrossRef] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

Iqbal, W.

S. Qaisar, R.M. Bilal, W. Iqbal, M. Naureen, S. Lee, “Compressive sensing: from theory to applications, a survey,” J. Communications and Network 15, 443–456 (2013).

Itoh, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nature Photon. 6, 845–851 (2012).
[CrossRef]

Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express 17, 3651–3658 (2009).
[CrossRef] [PubMed]

Ji, M.

Kajiyama, S.

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

Kennedy, D. C.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7, 137–145 (2011).
[CrossRef] [PubMed]

Kong, L.

Langbein, W.

I. Pope, W. Langbein, P. Watson, P. Borri, “Simultaneous hyperspectral differential-CARS, TPF and SHG microscopy with a single 5 fs Ti:Sa laser,” Opt. Express 21, 7096–7106 (2013).
[CrossRef] [PubMed]

A. Zumbusch, W. Langbein, P. Borri, “Nonlinear vibrational microscopy applied to lipid biology,” Progress in Lipid Research 52, 615–632 (2013).
[CrossRef] [PubMed]

W. Langbein, I. Rocha-Mendoza, P. Borri, “Coherent anti-Stokes Raman micro-spectroscopy using spectral focusing: Theory and Experiment,” J. Raman Spectrosc. 40, 800–808 (2009).
[CrossRef]

I. Rocha-Mendoza, W. Langbein, P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93, 201103 (2008).
[CrossRef]

F. Masia, A. Glen, P. Stephens, P. Borri, W. Langbein, “Quantitative chemical imaging using hyperspectral coherent anti-Stokes Raman scattering microscopy,” Anal. Chem. (2013). DOI.
[CrossRef]

Leaird, D. E.

Lee, S.

S. Qaisar, R.M. Bilal, W. Iqbal, M. Naureen, S. Lee, “Compressive sensing: from theory to applications, a survey,” J. Communications and Network 15, 443–456 (2013).

Lee, Y. J.

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 102, 16807–16812 (2005).
[CrossRef] [PubMed]

Liu, Y.

Lu, F.-K.

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” Journal of the American Chemical Society 134, 3623–3626 (2012).
[CrossRef] [PubMed]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

Lyn, R. K.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7, 137–145 (2011).
[CrossRef] [PubMed]

Masia, F.

F. Masia, A. Glen, P. Stephens, P. Borri, W. Langbein, “Quantitative chemical imaging using hyperspectral coherent anti-Stokes Raman scattering microscopy,” Anal. Chem. (2013). DOI.
[CrossRef]

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

Müller, M.

Naureen, M.

S. Qaisar, R.M. Bilal, W. Iqbal, M. Naureen, S. Lee, “Compressive sensing: from theory to applications, a survey,” J. Communications and Network 15, 443–456 (2013).

Nishizawa, N.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nature Photon. 6, 845–851 (2012).
[CrossRef]

Otsuka, Y.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nature Photon. 6, 845–851 (2012).
[CrossRef]

Ozeki, Y.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nature Photon. 6, 845–851 (2012).
[CrossRef]

Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express 17, 3651–3658 (2009).
[CrossRef] [PubMed]

Pernik, D. R.

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” Journal of the American Chemical Society 134, 3623–3626 (2012).
[CrossRef] [PubMed]

Pezacki, J. P.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7, 137–145 (2011).
[CrossRef] [PubMed]

Pope, I.

Potma, E. O.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 102, 16807–16812 (2005).
[CrossRef] [PubMed]

Puoris’haag, M.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 102, 16807–16812 (2005).
[CrossRef] [PubMed]

Qaisar, S.

S. Qaisar, R.M. Bilal, W. Iqbal, M. Naureen, S. Lee, “Compressive sensing: from theory to applications, a survey,” J. Communications and Network 15, 443–456 (2013).

Reichman, J.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[CrossRef] [PubMed]

Rinia, H. A.

Rocha-Mendoza, I.

W. Langbein, I. Rocha-Mendoza, P. Borri, “Coherent anti-Stokes Raman micro-spectroscopy using spectral focusing: Theory and Experiment,” J. Raman Spectrosc. 40, 800–808 (2009).
[CrossRef]

I. Rocha-Mendoza, W. Langbein, P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93, 201103 (2008).
[CrossRef]

Saar, B. G.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

Satoh, S.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nature Photon. 6, 845–851 (2012).
[CrossRef]

Singaravelu, R.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7, 137–145 (2011).
[CrossRef] [PubMed]

Slipchenko, M. N.

Stanley, C. M.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[CrossRef] [PubMed]

Stephens, P.

F. Masia, A. Glen, P. Stephens, P. Borri, W. Langbein, “Quantitative chemical imaging using hyperspectral coherent anti-Stokes Raman scattering microscopy,” Anal. Chem. (2013). DOI.
[CrossRef]

Sumimura, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nature Photon. 6, 845–851 (2012).
[CrossRef]

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

Umemura, W.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nature Photon. 6, 845–851 (2012).
[CrossRef]

Vartiainen, E. M.

Watson, P.

Weiner, A. M.

Xie, X. S.

L. Kong, M. Ji, G. R. Holtom, D. Fu, C. W. Freudiger, X. S. Xie, “Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator,” Opt. Lett. 38, 145–147 (2013).
[CrossRef] [PubMed]

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” Journal of the American Chemical Society 134, 3623–3626 (2012).
[CrossRef] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

C. L. Evans, X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[CrossRef]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 102, 16807–16812 (2005).
[CrossRef] [PubMed]

Zhang, D.

Zhang, X.

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” Journal of the American Chemical Society 134, 3623–3626 (2012).
[CrossRef] [PubMed]

Zumbusch, A.

A. Zumbusch, W. Langbein, P. Borri, “Nonlinear vibrational microscopy applied to lipid biology,” Progress in Lipid Research 52, 615–632 (2013).
[CrossRef] [PubMed]

T. Hellerer, A. M. Enejder, A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25–27 (2004).
[CrossRef]

Annu. Rev. Anal. Chem.

C. L. Evans, X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[CrossRef]

Appl. Phys. Lett.

T. Hellerer, A. M. Enejder, A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25–27 (2004).
[CrossRef]

I. Rocha-Mendoza, W. Langbein, P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93, 201103 (2008).
[CrossRef]

J. Communications and Network

S. Qaisar, R.M. Bilal, W. Iqbal, M. Naureen, S. Lee, “Compressive sensing: from theory to applications, a survey,” J. Communications and Network 15, 443–456 (2013).

J. Raman Spectrosc.

W. Langbein, I. Rocha-Mendoza, P. Borri, “Coherent anti-Stokes Raman micro-spectroscopy using spectral focusing: Theory and Experiment,” J. Raman Spectrosc. 40, 800–808 (2009).
[CrossRef]

Journal of the American Chemical Society

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” Journal of the American Chemical Society 134, 3623–3626 (2012).
[CrossRef] [PubMed]

Nat. Chem. Biol.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7, 137–145 (2011).
[CrossRef] [PubMed]

Nature Photon.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nature Photon. 6, 845–851 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. Natl. Acad. Sci. U. S. A.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 102, 16807–16812 (2005).
[CrossRef] [PubMed]

Progress in Lipid Research

A. Zumbusch, W. Langbein, P. Borri, “Nonlinear vibrational microscopy applied to lipid biology,” Progress in Lipid Research 52, 615–632 (2013).
[CrossRef] [PubMed]

Science

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[CrossRef] [PubMed]

Other

F. Masia, A. Glen, P. Stephens, P. Borri, W. Langbein, “Quantitative chemical imaging using hyperspectral coherent anti-Stokes Raman scattering microscopy,” Anal. Chem. (2013). DOI.
[CrossRef]

Supplementary Material (2)

» Media 1: AVI (2981 KB)     
» Media 2: AVI (4263 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

CARS intensity IC image of a human osteosarcoma U2OS cell acquired at an IFD of 2805 cm−1. Logarithmic gray scale as shown. The pixel size is 0.1 × 0.1 μm2, and the pixel dwell time was 10 μs. The pump and Stokes beam power at the sample were 53 mW and 31 mW, respectively. Spectra at the positions indicated in the Fig. are shown in Fig. 3. The scale bar represents 5 μm. The full dataset of I C is shown in the panel a) of the hyperspectral movie Media 1.

Fig. 2
Fig. 2

a) Diagonal elements of the singular value matrix σ of dataset A, normalized to the largest value. The solid line is a linear fit to σj, j for jS/2. The dashed line is the linear fit multiplied by η. b) Error ε in the spectral reconstruction of the data as a function of the number S′ of spectral points used, for the different methods discussed in the text as labeled. The inset shows the evolution of ε during the random walk for S′ = 8, where i indicates the step number. The green surrounding lines bars indicate the standard deviation of ε over 10 independent repetitions of the walk.

Fig. 3
Fig. 3

(a) Comparison of the measured (solid lines) and reconstructed (dashed line) CARS intensity spectra at the positions indicated in Fig. 1. The light gray spectrum is obtained using S′max = Smax. The blue dots represent the S′ = 8 wavenumbers given by s used in the reconstruction of the hyperspectral image. A hyperspectral movie of the measured and reconstructued I C is shown in panels b) and c) of Media 1, respectively.(b) Corresponding retrieved ( χ ˜ ¯ ) using the PCKK method. A hyperspectral movie of the measured and retrieved ( χ ˜ ¯ ) is shown in panels b and c) of Media 2, respectively.

Fig. 4
Fig. 4

Spectral error ES of the I C and ( χ ˜ ¯ ) due to reconstruction from sparse sample data a linear grayscales as shown. The scale bar represents 5 μm.

Metrics