S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077051 (2012).
[Crossref]
[PubMed]
J. W. Shi, F. M. Kuo, and J. E. Bowers, “Design and Analysis of Ultra-High-Speed Near-Ballistic Uni-Traveling-Carrier Photodiodes Under a 50-Omega Load for High-Power Performance,” IEEE Photon. Technol. Lett. 24(7), 533–535 (2012).
[Crossref]
Y. Bai, D. M. Ren, W. J. Zhao, Y. C. Qu, L. M. Qian, and Z. L. Chen, “Heterodyne Doppler velocity measurement of moving targets by mode-locked pulse laser,” Opt. Express 20(2), 764–768 (2012).
[Crossref]
[PubMed]
M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Opt. Express 2(3), 552–567 (2011).
[Crossref]
[PubMed]
C. D’Andrea, A. Nevin, A. Farina, A. Bassi, and R. Cubeddu, “Assessment of variations in moisture content of wood using time-resolved diffuse optical spectroscopy,” Appl. Opt. 48(4), B87–B93 (2009).
[Crossref]
[PubMed]
J. Wang, S. D. Jiang, K. D. Paulsen, and B. W. Pogue, “Broadband frequency-domain near-infrared spectral tomography using a mode-locked Ti:sapphire laser,” Appl. Opt. 48(10), D198–D207 (2009).
[Crossref]
[PubMed]
S. H. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009).
[Crossref]
[PubMed]
A. Bassi, A. Farina, C. D’Andrea, A. Pifferi, G. Valentini, and R. Cubeddu, “Portable, large-bandwidth time-resolved system for diffuse optical spectroscopy,” Opt. Express 15(22), 14482–14487 (2007).
[Crossref]
[PubMed]
A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref]
[PubMed]
F. Bevilacqua, J. S. You, C. K. Hayakawa, and V. Venugopalan, “Sampling tissue volumes using frequency-domain photon migration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 051908 (2004).
[Crossref]
[PubMed]
J. Johansson, S. Folestad, M. Josefson, A. Sparén, C. Abrahamsson, S. Andersson-Engels, S. Svanberg, and A. Sparen, “Time-Resolved NIR/Vis Spectroscopy for Analysis of Solids: Pharmaceutical Tablets,” Appl. Spectrosc. 56(6), 725–731 (2002).
[Crossref]
T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71(6), 2500–2513 (2000).
[Crossref]
J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, and E. Gratton, “Frequency-Domain Method for Measuring Spectral Properties in Multiple-Scattering Media: Methemoglobin Absorption Spectrum in a Tissuelike Phantom,” Appl. Opt. 34(7), 1143–1155 (1995).
[Crossref]
[PubMed]
L. H. Wang, S. L. Jacques, and L. Q. Zheng, “Mcml - Monte-Carlo Modeling of Light Transport in Multilayered Tissues,” Comput. Meth. Prog. Biol. 47(2), 131–146 (1995).
[Crossref]
S. A. Prahl, M. J. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993).
[Crossref]
[PubMed]
B. J. Tromberg, L. O. Svaasand, T. T. Tsay, and R. C. Haskell, “Properties of photon density waves in multiple-scattering media,” Appl. Opt. 32(4), 607–616 (1993).
[Crossref]
[PubMed]
J. Johansson, S. Folestad, M. Josefson, A. Sparén, C. Abrahamsson, S. Andersson-Engels, S. Svanberg, and A. Sparen, “Time-Resolved NIR/Vis Spectroscopy for Analysis of Solids: Pharmaceutical Tablets,” Appl. Spectrosc. 56(6), 725–731 (2002).
[Crossref]
T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71(6), 2500–2513 (2000).
[Crossref]
J. Johansson, S. Folestad, M. Josefson, A. Sparén, C. Abrahamsson, S. Andersson-Engels, S. Svanberg, and A. Sparen, “Time-Resolved NIR/Vis Spectroscopy for Analysis of Solids: Pharmaceutical Tablets,” Appl. Spectrosc. 56(6), 725–731 (2002).
[Crossref]
C. D’Andrea, A. Nevin, A. Farina, A. Bassi, and R. Cubeddu, “Assessment of variations in moisture content of wood using time-resolved diffuse optical spectroscopy,” Appl. Opt. 48(4), B87–B93 (2009).
[Crossref]
[PubMed]
A. Bassi, A. Farina, C. D’Andrea, A. Pifferi, G. Valentini, and R. Cubeddu, “Portable, large-bandwidth time-resolved system for diffuse optical spectroscopy,” Opt. Express 15(22), 14482–14487 (2007).
[Crossref]
[PubMed]
F. Bevilacqua, J. S. You, C. K. Hayakawa, and V. Venugopalan, “Sampling tissue volumes using frequency-domain photon migration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 051908 (2004).
[Crossref]
[PubMed]
M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Opt. Express 2(3), 552–567 (2011).
[Crossref]
[PubMed]
D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36(1), 75–92 (1997).
[Crossref]
[PubMed]
J. W. Shi, F. M. Kuo, and J. E. Bowers, “Design and Analysis of Ultra-High-Speed Near-Ballistic Uni-Traveling-Carrier Photodiodes Under a 50-Omega Load for High-Power Performance,” IEEE Photon. Technol. Lett. 24(7), 533–535 (2012).
[Crossref]
A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref]
[PubMed]
A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref]
[PubMed]
S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077051 (2012).
[Crossref]
[PubMed]
T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71(6), 2500–2513 (2000).
[Crossref]
C. D’Andrea, A. Nevin, A. Farina, A. Bassi, and R. Cubeddu, “Assessment of variations in moisture content of wood using time-resolved diffuse optical spectroscopy,” Appl. Opt. 48(4), B87–B93 (2009).
[Crossref]
[PubMed]
A. Bassi, A. Farina, C. D’Andrea, A. Pifferi, G. Valentini, and R. Cubeddu, “Portable, large-bandwidth time-resolved system for diffuse optical spectroscopy,” Opt. Express 15(22), 14482–14487 (2007).
[Crossref]
[PubMed]
C. D’Andrea, A. Nevin, A. Farina, A. Bassi, and R. Cubeddu, “Assessment of variations in moisture content of wood using time-resolved diffuse optical spectroscopy,” Appl. Opt. 48(4), B87–B93 (2009).
[Crossref]
[PubMed]
A. Bassi, A. Farina, C. D’Andrea, A. Pifferi, G. Valentini, and R. Cubeddu, “Portable, large-bandwidth time-resolved system for diffuse optical spectroscopy,” Opt. Express 15(22), 14482–14487 (2007).
[Crossref]
[PubMed]
M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Opt. Express 2(3), 552–567 (2011).
[Crossref]
[PubMed]
S. H. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009).
[Crossref]
[PubMed]
A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref]
[PubMed]
C. D’Andrea, A. Nevin, A. Farina, A. Bassi, and R. Cubeddu, “Assessment of variations in moisture content of wood using time-resolved diffuse optical spectroscopy,” Appl. Opt. 48(4), B87–B93 (2009).
[Crossref]
[PubMed]
A. Bassi, A. Farina, C. D’Andrea, A. Pifferi, G. Valentini, and R. Cubeddu, “Portable, large-bandwidth time-resolved system for diffuse optical spectroscopy,” Opt. Express 15(22), 14482–14487 (2007).
[Crossref]
[PubMed]
T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71(6), 2500–2513 (2000).
[Crossref]
J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, and E. Gratton, “Frequency-Domain Method for Measuring Spectral Properties in Multiple-Scattering Media: Methemoglobin Absorption Spectrum in a Tissuelike Phantom,” Appl. Opt. 34(7), 1143–1155 (1995).
[Crossref]
[PubMed]
J. Johansson, S. Folestad, M. Josefson, A. Sparén, C. Abrahamsson, S. Andersson-Engels, S. Svanberg, and A. Sparen, “Time-Resolved NIR/Vis Spectroscopy for Analysis of Solids: Pharmaceutical Tablets,” Appl. Spectrosc. 56(6), 725–731 (2002).
[Crossref]
M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Opt. Express 2(3), 552–567 (2011).
[Crossref]
[PubMed]
J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, and E. Gratton, “Frequency-Domain Method for Measuring Spectral Properties in Multiple-Scattering Media: Methemoglobin Absorption Spectrum in a Tissuelike Phantom,” Appl. Opt. 34(7), 1143–1155 (1995).
[Crossref]
[PubMed]
M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Opt. Express 2(3), 552–567 (2011).
[Crossref]
[PubMed]
R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary Conditions for the Diffusion Equation in Radiative Transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994).
[Crossref]
[PubMed]
B. J. Tromberg, L. O. Svaasand, T. T. Tsay, and R. C. Haskell, “Properties of photon density waves in multiple-scattering media,” Appl. Opt. 32(4), 607–616 (1993).
[Crossref]
[PubMed]
F. Bevilacqua, J. S. You, C. K. Hayakawa, and V. Venugopalan, “Sampling tissue volumes using frequency-domain photon migration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 051908 (2004).
[Crossref]
[PubMed]
A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref]
[PubMed]
S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077051 (2012).
[Crossref]
[PubMed]
L. H. Wang, S. L. Jacques, and L. Q. Zheng, “Mcml - Monte-Carlo Modeling of Light Transport in Multilayered Tissues,” Comput. Meth. Prog. Biol. 47(2), 131–146 (1995).
[Crossref]
J. Johansson, S. Folestad, M. Josefson, A. Sparén, C. Abrahamsson, S. Andersson-Engels, S. Svanberg, and A. Sparen, “Time-Resolved NIR/Vis Spectroscopy for Analysis of Solids: Pharmaceutical Tablets,” Appl. Spectrosc. 56(6), 725–731 (2002).
[Crossref]
J. Johansson, S. Folestad, M. Josefson, A. Sparén, C. Abrahamsson, S. Andersson-Engels, S. Svanberg, and A. Sparen, “Time-Resolved NIR/Vis Spectroscopy for Analysis of Solids: Pharmaceutical Tablets,” Appl. Spectrosc. 56(6), 725–731 (2002).
[Crossref]
J. W. Shi, F. M. Kuo, and J. E. Bowers, “Design and Analysis of Ultra-High-Speed Near-Ballistic Uni-Traveling-Carrier Photodiodes Under a 50-Omega Load for High-Power Performance,” IEEE Photon. Technol. Lett. 24(7), 533–535 (2012).
[Crossref]
S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077051 (2012).
[Crossref]
[PubMed]
A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref]
[PubMed]
T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71(6), 2500–2513 (2000).
[Crossref]
M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Opt. Express 2(3), 552–567 (2011).
[Crossref]
[PubMed]
M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Opt. Express 2(3), 552–567 (2011).
[Crossref]
[PubMed]
M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Opt. Express 2(3), 552–567 (2011).
[Crossref]
[PubMed]
A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref]
[PubMed]
J. W. Shi, F. M. Kuo, and J. E. Bowers, “Design and Analysis of Ultra-High-Speed Near-Ballistic Uni-Traveling-Carrier Photodiodes Under a 50-Omega Load for High-Power Performance,” IEEE Photon. Technol. Lett. 24(7), 533–535 (2012).
[Crossref]
M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Opt. Express 2(3), 552–567 (2011).
[Crossref]
[PubMed]
J. Johansson, S. Folestad, M. Josefson, A. Sparén, C. Abrahamsson, S. Andersson-Engels, S. Svanberg, and A. Sparen, “Time-Resolved NIR/Vis Spectroscopy for Analysis of Solids: Pharmaceutical Tablets,” Appl. Spectrosc. 56(6), 725–731 (2002).
[Crossref]
J. Johansson, S. Folestad, M. Josefson, A. Sparén, C. Abrahamsson, S. Andersson-Engels, S. Svanberg, and A. Sparen, “Time-Resolved NIR/Vis Spectroscopy for Analysis of Solids: Pharmaceutical Tablets,” Appl. Spectrosc. 56(6), 725–731 (2002).
[Crossref]
R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary Conditions for the Diffusion Equation in Radiative Transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994).
[Crossref]
[PubMed]
B. J. Tromberg, L. O. Svaasand, T. T. Tsay, and R. C. Haskell, “Properties of photon density waves in multiple-scattering media,” Appl. Opt. 32(4), 607–616 (1993).
[Crossref]
[PubMed]
J. Johansson, S. Folestad, M. Josefson, A. Sparén, C. Abrahamsson, S. Andersson-Engels, S. Svanberg, and A. Sparen, “Time-Resolved NIR/Vis Spectroscopy for Analysis of Solids: Pharmaceutical Tablets,” Appl. Spectrosc. 56(6), 725–731 (2002).
[Crossref]
A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref]
[PubMed]
T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71(6), 2500–2513 (2000).
[Crossref]
R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary Conditions for the Diffusion Equation in Radiative Transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994).
[Crossref]
[PubMed]
B. J. Tromberg, L. O. Svaasand, T. T. Tsay, and R. C. Haskell, “Properties of photon density waves in multiple-scattering media,” Appl. Opt. 32(4), 607–616 (1993).
[Crossref]
[PubMed]
R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary Conditions for the Diffusion Equation in Radiative Transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994).
[Crossref]
[PubMed]
B. J. Tromberg, L. O. Svaasand, T. T. Tsay, and R. C. Haskell, “Properties of photon density waves in multiple-scattering media,” Appl. Opt. 32(4), 607–616 (1993).
[Crossref]
[PubMed]
S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077051 (2012).
[Crossref]
[PubMed]
S. H. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009).
[Crossref]
[PubMed]
S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077051 (2012).
[Crossref]
[PubMed]
F. Bevilacqua, J. S. You, C. K. Hayakawa, and V. Venugopalan, “Sampling tissue volumes using frequency-domain photon migration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 051908 (2004).
[Crossref]
[PubMed]
L. H. Wang, S. L. Jacques, and L. Q. Zheng, “Mcml - Monte-Carlo Modeling of Light Transport in Multilayered Tissues,” Comput. Meth. Prog. Biol. 47(2), 131–146 (1995).
[Crossref]
F. Bevilacqua, J. S. You, C. K. Hayakawa, and V. Venugopalan, “Sampling tissue volumes using frequency-domain photon migration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 051908 (2004).
[Crossref]
[PubMed]
S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077051 (2012).
[Crossref]
[PubMed]
L. H. Wang, S. L. Jacques, and L. Q. Zheng, “Mcml - Monte-Carlo Modeling of Light Transport in Multilayered Tissues,” Comput. Meth. Prog. Biol. 47(2), 131–146 (1995).
[Crossref]
S. A. Prahl, M. J. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993).
[Crossref]
[PubMed]
B. J. Tromberg, L. O. Svaasand, T. T. Tsay, and R. C. Haskell, “Properties of photon density waves in multiple-scattering media,” Appl. Opt. 32(4), 607–616 (1993).
[Crossref]
[PubMed]
J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, and E. Gratton, “Frequency-Domain Method for Measuring Spectral Properties in Multiple-Scattering Media: Methemoglobin Absorption Spectrum in a Tissuelike Phantom,” Appl. Opt. 34(7), 1143–1155 (1995).
[Crossref]
[PubMed]
D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36(1), 75–92 (1997).
[Crossref]
[PubMed]
C. D’Andrea, A. Nevin, A. Farina, A. Bassi, and R. Cubeddu, “Assessment of variations in moisture content of wood using time-resolved diffuse optical spectroscopy,” Appl. Opt. 48(4), B87–B93 (2009).
[Crossref]
[PubMed]
J. Wang, S. D. Jiang, K. D. Paulsen, and B. W. Pogue, “Broadband frequency-domain near-infrared spectral tomography using a mode-locked Ti:sapphire laser,” Appl. Opt. 48(10), D198–D207 (2009).
[Crossref]
[PubMed]
J. Johansson, S. Folestad, M. Josefson, A. Sparén, C. Abrahamsson, S. Andersson-Engels, S. Svanberg, and A. Sparen, “Time-Resolved NIR/Vis Spectroscopy for Analysis of Solids: Pharmaceutical Tablets,” Appl. Spectrosc. 56(6), 725–731 (2002).
[Crossref]
M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Opt. Express 2(3), 552–567 (2011).
[Crossref]
[PubMed]
L. H. Wang, S. L. Jacques, and L. Q. Zheng, “Mcml - Monte-Carlo Modeling of Light Transport in Multilayered Tissues,” Comput. Meth. Prog. Biol. 47(2), 131–146 (1995).
[Crossref]
J. W. Shi, F. M. Kuo, and J. E. Bowers, “Design and Analysis of Ultra-High-Speed Near-Ballistic Uni-Traveling-Carrier Photodiodes Under a 50-Omega Load for High-Power Performance,” IEEE Photon. Technol. Lett. 24(7), 533–535 (2012).
[Crossref]
S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, and Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077051 (2012).
[Crossref]
[PubMed]
S. H. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009).
[Crossref]
[PubMed]
A. Bassi, A. Farina, C. D’Andrea, A. Pifferi, G. Valentini, and R. Cubeddu, “Portable, large-bandwidth time-resolved system for diffuse optical spectroscopy,” Opt. Express 15(22), 14482–14487 (2007).
[Crossref]
[PubMed]
Y. Bai, D. M. Ren, W. J. Zhao, Y. C. Qu, L. M. Qian, and Z. L. Chen, “Heterodyne Doppler velocity measurement of moving targets by mode-locked pulse laser,” Opt. Express 20(2), 764–768 (2012).
[Crossref]
[PubMed]
F. Bevilacqua, J. S. You, C. K. Hayakawa, and V. Venugopalan, “Sampling tissue volumes using frequency-domain photon migration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 051908 (2004).
[Crossref]
[PubMed]
A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[Crossref]
[PubMed]
T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71(6), 2500–2513 (2000).
[Crossref]
S. H. Tseng, A. J. Durkin, P. Wilder-Smith, D. Cuccia, F. Bevilacqua, A. G. Durkin, and B. J. Tromberg, “Diffuse, Near Infrared Spectroscopy of in-vivo Oral Tissues,” poster in Engineering Foundation Conference. 2003. Banff, Canada.
J. T. Verdeyener, Laser Electronics (Prentice-Hall, 1995).
S. Haykin, Communication Systems (John Wiley, 1994).