Abstract

Except the fundamental modulation frequency, by higher-order-harmonic modulations of mode-locked laser pulses and a simple frequency demodulation circuit, a novel approach to GHz frequency-domain-photon-migration (FDPM) system was reported. With this novel approach, a wide-band modulation frequency comb is available without any external modulation devices and the only electronics to extract the optical attenuation and phase properties at a selected modulation frequency in FDPM systems are good mixers and lock-in devices. This approach greatly expands the frequency range that could be achieved by conventional FDPM systems and suggests that our system could extract much more information from biological tissues than the conventional FDPM systems. Moreover, this demonstration will be beneficial for discerning the minute change of tissue properties.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
    [CrossRef] [PubMed]
  2. M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Opt. Express 2(3), 552–567 (2011).
    [CrossRef] [PubMed]
  3. S. H. Tseng, A. J. Durkin, P. Wilder-Smith, D. Cuccia, F. Bevilacqua, A. G. Durkin, and B. J. Tromberg, “Diffuse, Near Infrared Spectroscopy of in-vivo Oral Tissues,” poster in Engineering Foundation Conference. 2003. Banff, Canada.
  4. S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077051 (2012).
    [CrossRef] [PubMed]
  5. C. D’Andrea, A. Nevin, A. Farina, A. Bassi, R. Cubeddu, “Assessment of variations in moisture content of wood using time-resolved diffuse optical spectroscopy,” Appl. Opt. 48(4), B87–B93 (2009).
    [CrossRef] [PubMed]
  6. J. Johansson, S. Folestad, M. Josefson, A. Sparén, C. Abrahamsson, S. Andersson-Engels, S. Svanberg, A. Sparen, “Time-Resolved NIR/Vis Spectroscopy for Analysis of Solids: Pharmaceutical Tablets,” Appl. Spectrosc. 56(6), 725–731 (2002).
    [CrossRef]
  7. A. Bassi, A. Farina, C. D’Andrea, A. Pifferi, G. Valentini, R. Cubeddu, “Portable, large-bandwidth time-resolved system for diffuse optical spectroscopy,” Opt. Express 15(22), 14482–14487 (2007).
    [CrossRef] [PubMed]
  8. T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71(6), 2500–2513 (2000).
    [CrossRef]
  9. S. H. Tseng, P. Bargo, A. Durkin, N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009).
    [CrossRef] [PubMed]
  10. J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, E. Gratton, “Frequency-Domain Method for Measuring Spectral Properties in Multiple-Scattering Media: Methemoglobin Absorption Spectrum in a Tissuelike Phantom,” Appl. Opt. 34(7), 1143–1155 (1995).
    [CrossRef] [PubMed]
  11. F. Bevilacqua, J. S. You, C. K. Hayakawa, V. Venugopalan, “Sampling tissue volumes using frequency-domain photon migration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 051908 (2004).
    [CrossRef] [PubMed]
  12. B. J. Tromberg, L. O. Svaasand, T. T. Tsay, R. C. Haskell, “Properties of photon density waves in multiple-scattering media,” Appl. Opt. 32(4), 607–616 (1993).
    [CrossRef] [PubMed]
  13. J. Wang, S. D. Jiang, K. D. Paulsen, B. W. Pogue, “Broadband frequency-domain near-infrared spectral tomography using a mode-locked Ti:sapphire laser,” Appl. Opt. 48(10), D198–D207 (2009).
    [CrossRef] [PubMed]
  14. Y. Bai, D. M. Ren, W. J. Zhao, Y. C. Qu, L. M. Qian, Z. L. Chen, “Heterodyne Doppler velocity measurement of moving targets by mode-locked pulse laser,” Opt. Express 20(2), 764–768 (2012).
    [CrossRef] [PubMed]
  15. J. T. Verdeyener, Laser Electronics (Prentice-Hall, 1995).
  16. J. W. Shi, F. M. Kuo, J. E. Bowers, “Design and Analysis of Ultra-High-Speed Near-Ballistic Uni-Traveling-Carrier Photodiodes Under a 50-Omega Load for High-Power Performance,” IEEE Photon. Technol. Lett. 24(7), 533–535 (2012).
    [CrossRef]
  17. S. Haykin, Communication Systems (John Wiley, 1994).
  18. S. A. Prahl, M. J. van Gemert, A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993).
    [CrossRef] [PubMed]
  19. L. H. Wang, S. L. Jacques, L. Q. Zheng, “Mcml - Monte-Carlo Modeling of Light Transport in Multilayered Tissues,” Comput. Meth. Prog. Biol. 47(2), 131–146 (1995).
    [CrossRef]
  20. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary Conditions for the Diffusion Equation in Radiative Transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994).
    [CrossRef] [PubMed]
  21. D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36(1), 75–92 (1997).
    [CrossRef] [PubMed]

2012

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077051 (2012).
[CrossRef] [PubMed]

J. W. Shi, F. M. Kuo, J. E. Bowers, “Design and Analysis of Ultra-High-Speed Near-Ballistic Uni-Traveling-Carrier Photodiodes Under a 50-Omega Load for High-Power Performance,” IEEE Photon. Technol. Lett. 24(7), 533–535 (2012).
[CrossRef]

Y. Bai, D. M. Ren, W. J. Zhao, Y. C. Qu, L. M. Qian, Z. L. Chen, “Heterodyne Doppler velocity measurement of moving targets by mode-locked pulse laser,” Opt. Express 20(2), 764–768 (2012).
[CrossRef] [PubMed]

2011

2009

2007

A. Bassi, A. Farina, C. D’Andrea, A. Pifferi, G. Valentini, R. Cubeddu, “Portable, large-bandwidth time-resolved system for diffuse optical spectroscopy,” Opt. Express 15(22), 14482–14487 (2007).
[CrossRef] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[CrossRef] [PubMed]

2004

F. Bevilacqua, J. S. You, C. K. Hayakawa, V. Venugopalan, “Sampling tissue volumes using frequency-domain photon migration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 051908 (2004).
[CrossRef] [PubMed]

2002

2000

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71(6), 2500–2513 (2000).
[CrossRef]

1997

1995

1994

1993

Abrahamsson, C.

Anderson, E.

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71(6), 2500–2513 (2000).
[CrossRef]

Andersson-Engels, S.

Bai, Y.

Bargo, P.

Bassi, A.

Bevilacqua, F.

F. Bevilacqua, J. S. You, C. K. Hayakawa, V. Venugopalan, “Sampling tissue volumes using frequency-domain photon migration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 051908 (2004).
[CrossRef] [PubMed]

Boas, D. A.

Bowers, J. E.

J. W. Shi, F. M. Kuo, J. E. Bowers, “Design and Analysis of Ultra-High-Speed Near-Ballistic Uni-Traveling-Carrier Photodiodes Under a 50-Omega Load for High-Power Performance,” IEEE Photon. Technol. Lett. 24(7), 533–535 (2012).
[CrossRef]

Butler, J.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[CrossRef] [PubMed]

Cerussi, A.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[CrossRef] [PubMed]

Cerussi, A. E.

Chance, B.

Chen, W. R.

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077051 (2012).
[CrossRef] [PubMed]

Chen, Z. L.

Coquoz, O.

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71(6), 2500–2513 (2000).
[CrossRef]

Cubeddu, R.

D’Andrea, C.

Dehaes, M.

Durkin, A.

S. H. Tseng, P. Bargo, A. Durkin, N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009).
[CrossRef] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[CrossRef] [PubMed]

Fantini, S.

Farina, A.

Feng, T. C.

Fishkin, J. B.

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71(6), 2500–2513 (2000).
[CrossRef]

J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, E. Gratton, “Frequency-Domain Method for Measuring Spectral Properties in Multiple-Scattering Media: Methemoglobin Absorption Spectrum in a Tissuelike Phantom,” Appl. Opt. 34(7), 1143–1155 (1995).
[CrossRef] [PubMed]

Folestad, S.

Franceschini, M. A.

Grant, P. E.

Gratton, E.

Haskell, R. C.

Hayakawa, C. K.

F. Bevilacqua, J. S. You, C. K. Hayakawa, V. Venugopalan, “Sampling tissue volumes using frequency-domain photon migration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 051908 (2004).
[CrossRef] [PubMed]

Hsiang, D.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[CrossRef] [PubMed]

Hsu, C. K.

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077051 (2012).
[CrossRef] [PubMed]

Jacques, S. L.

L. H. Wang, S. L. Jacques, L. Q. Zheng, “Mcml - Monte-Carlo Modeling of Light Transport in Multilayered Tissues,” Comput. Meth. Prog. Biol. 47(2), 131–146 (1995).
[CrossRef]

Jiang, S. D.

Johansson, J.

Josefson, M.

Kollias, N.

Kuo, F. M.

J. W. Shi, F. M. Kuo, J. E. Bowers, “Design and Analysis of Ultra-High-Speed Near-Ballistic Uni-Traveling-Carrier Photodiodes Under a 50-Omega Load for High-Power Performance,” IEEE Photon. Technol. Lett. 24(7), 533–535 (2012).
[CrossRef]

Liaw, Y. K.

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077051 (2012).
[CrossRef] [PubMed]

McAdams, M. S.

Mehta, R.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[CrossRef] [PubMed]

Nevin, A.

O’Leary, M. A.

Paulsen, K. D.

Pham, T. H.

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71(6), 2500–2513 (2000).
[CrossRef]

Pienaar, R.

Pifferi, A.

Pogue, B. W.

Prahl, S. A.

Qian, L. M.

Qu, Y. C.

Ren, D. M.

Roche-Labarbe, N.

Selb, J.

Shah, N.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[CrossRef] [PubMed]

Shi, J. W.

J. W. Shi, F. M. Kuo, J. E. Bowers, “Design and Analysis of Ultra-High-Speed Near-Ballistic Uni-Traveling-Carrier Photodiodes Under a 50-Omega Load for High-Power Performance,” IEEE Photon. Technol. Lett. 24(7), 533–535 (2012).
[CrossRef]

Sliva, D. D.

So, P. T. C.

Sparen, A.

Sparén, A.

Svaasand, L. O.

Svanberg, S.

Tromberg, B. J.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[CrossRef] [PubMed]

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71(6), 2500–2513 (2000).
[CrossRef]

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary Conditions for the Diffusion Equation in Radiative Transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994).
[CrossRef] [PubMed]

B. J. Tromberg, L. O. Svaasand, T. T. Tsay, R. C. Haskell, “Properties of photon density waves in multiple-scattering media,” Appl. Opt. 32(4), 607–616 (1993).
[CrossRef] [PubMed]

Tsay, T. T.

Tseng, S. H.

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077051 (2012).
[CrossRef] [PubMed]

S. H. Tseng, P. Bargo, A. Durkin, N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009).
[CrossRef] [PubMed]

Tzeng, S. Y.

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077051 (2012).
[CrossRef] [PubMed]

Valentini, G.

van Gemert, M. J.

Venugopalan, V.

F. Bevilacqua, J. S. You, C. K. Hayakawa, V. Venugopalan, “Sampling tissue volumes using frequency-domain photon migration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 051908 (2004).
[CrossRef] [PubMed]

Wang, J.

Wang, L. H.

L. H. Wang, S. L. Jacques, L. Q. Zheng, “Mcml - Monte-Carlo Modeling of Light Transport in Multilayered Tissues,” Comput. Meth. Prog. Biol. 47(2), 131–146 (1995).
[CrossRef]

Welch, A. J.

Yodh, A. G.

You, J. S.

F. Bevilacqua, J. S. You, C. K. Hayakawa, V. Venugopalan, “Sampling tissue volumes using frequency-domain photon migration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 051908 (2004).
[CrossRef] [PubMed]

Yu-Yun Lee, J.

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077051 (2012).
[CrossRef] [PubMed]

Zhao, W. J.

Zheng, L. Q.

L. H. Wang, S. L. Jacques, L. Q. Zheng, “Mcml - Monte-Carlo Modeling of Light Transport in Multilayered Tissues,” Comput. Meth. Prog. Biol. 47(2), 131–146 (1995).
[CrossRef]

Appl. Opt.

Appl. Spectrosc.

Biomed. Opt. Express

Comput. Meth. Prog. Biol.

L. H. Wang, S. L. Jacques, L. Q. Zheng, “Mcml - Monte-Carlo Modeling of Light Transport in Multilayered Tissues,” Comput. Meth. Prog. Biol. 47(2), 131–146 (1995).
[CrossRef]

IEEE Photon. Technol. Lett.

J. W. Shi, F. M. Kuo, J. E. Bowers, “Design and Analysis of Ultra-High-Speed Near-Ballistic Uni-Traveling-Carrier Photodiodes Under a 50-Omega Load for High-Power Performance,” IEEE Photon. Technol. Lett. 24(7), 533–535 (2012).
[CrossRef]

J. Biomed. Opt.

S. H. Tseng, C. K. Hsu, J. Yu-Yun Lee, S. Y. Tzeng, W. R. Chen, Y. K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 077051 (2012).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Opt. Express

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

F. Bevilacqua, J. S. You, C. K. Hayakawa, V. Venugopalan, “Sampling tissue volumes using frequency-domain photon migration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 051908 (2004).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(10), 4014–4019 (2007).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum. 71(6), 2500–2513 (2000).
[CrossRef]

Other

S. H. Tseng, A. J. Durkin, P. Wilder-Smith, D. Cuccia, F. Bevilacqua, A. G. Durkin, and B. J. Tromberg, “Diffuse, Near Infrared Spectroscopy of in-vivo Oral Tissues,” poster in Engineering Foundation Conference. 2003. Banff, Canada.

S. Haykin, Communication Systems (John Wiley, 1994).

J. T. Verdeyener, Laser Electronics (Prentice-Hall, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Operation principles of high-frequency FDPM system. (a): Periodic mode-locked laser pulse trains with period T and pulse duration. (b): The Fourier transform of mode-locked laser pulse trains. A(f) means the amplitude in the frequency domain and is equal to the Fourier transform of A(t). (c): The bandwidth Fourier transforms in the frequency domain is determined by the pulse width. The fundamental modulation frequency (demonstrated in previous report) is labeled by a green line and the higher-order modulation frequencies (demonstrated in this report) are labeled by blue lines.

Fig. 2
Fig. 2

(a) Schematic for proposed FDPM system. Abbreviations: BS beam splitter, PD1 and PD2 photodetector, LPF 10MHz electrical low-pass filters. (b) Operation principles of frequency demodulation circuits. δ is the detuning frequency for lock-in detection.

Fig. 3
Fig. 3

(a) Optical spectrum and (b) auto-correlation traces of the excitation femtosecond pulses. (c) Electrical spectrum of the modulated signals. (d) The relationship between OMF and EDF in previous work and this work.

Fig. 4
Fig. 4

(a) Amplitude ratio and (b) phase difference as a function of frequency. Squares and lines represent the raw data and the best fit of the diffusion theory, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

RF= K A K cos(2π f K t+ Φ K )

Metrics