Abstract

We present a way to generate acousto-optical signals in timovssue-like media with nanosecond laser pulses. Our method is based on recording and analyzing speckle patterns formed by interaction of nanosecond laser pulses with tissue, without and with simultaneous application of ultrasound. Stroboscopic application allows visualizing the temporal behavior of speckles while the ultrasound is propagating through the medium. We investigate two ways of quantifying the acousto-optic effect, viz. adding and subtracting speckle patterns obtained at various ultrasound phases. Both methods are compared with the existing speckle contrast method using a 2D scan and are found to perform similarly. Our method gives outlook on overcoming the speckle decorrelation problem in acousto-optics, and therefore brings in-vivo acousto-optic measurements one step closer. Furthermore it enables combining acousto-optics and photoacoustics in one setup with a single laser.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. G. Resink, A. C. Boccara, W. Steenbergen, “State-of-the art of acousto-optic sensing and imaging of turbid media,” J. Biomed. Opt. 17(4), 040901 (2012).
    [CrossRef] [PubMed]
  2. D. S. Elson, R. Li, C. Dunsby, R. Eckersley, M. X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1(4), 632–648 (2011).
    [CrossRef] [PubMed]
  3. K. Daoudi, A. Hussain, E. Hondebrink, W. Steenbergen, “Correcting photoacoustic signals for fluence variations using acousto-optic modulation,” Opt. Express 20(13), 14117–14129 (2012).
    [CrossRef] [PubMed]
  4. A. Hussain, K. Daoudi, E. Hondebrink, and W. Steenbergen, “Quantitative Photoacoustic Imaging by Acousto-Optically Measured Light Fluence,” in OSA Technical Digest (Optical Society of America, 2012), BM2B.5.
  5. L. H. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: An analytic model,” Phys Rev Lett. 87(4), 043903 (2001).
  6. M. Lesaffre, F. Jean, F. Ramaz, A. C. Boccara, M. Gross, P. Delaye, G. Roosen, “In situ monitoring of the photorefractive response time in a self-adaptive wavefront holography setup developed for acousto-optic imaging,” Opt. Express 15(3), 1030–1042 (2007).
    [CrossRef] [PubMed]
  7. S. Lévêque-Fort, “Three-dimensional acousto-optic imaging in biological tissues with parallel signal processing,” Appl. Opt. 40(7), 1029–1036 (2000).
    [CrossRef] [PubMed]
  8. J. Li, G. Ku, L. V. Wang, “Ultrasound-modulated optical tomography of biological tissue by use of contrast of laser speckles,” Appl. Opt. 41(28), 6030–6035 (2002).
    [CrossRef] [PubMed]
  9. W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered-light,” Physica B 204(1-4), 14–19 (1995).
    [CrossRef]
  10. L. H. Wang, S. L. Jacques, X. M. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20(6), 629–631 (1995).
    [CrossRef] [PubMed]

2012 (2)

S. G. Resink, A. C. Boccara, W. Steenbergen, “State-of-the art of acousto-optic sensing and imaging of turbid media,” J. Biomed. Opt. 17(4), 040901 (2012).
[CrossRef] [PubMed]

K. Daoudi, A. Hussain, E. Hondebrink, W. Steenbergen, “Correcting photoacoustic signals for fluence variations using acousto-optic modulation,” Opt. Express 20(13), 14117–14129 (2012).
[CrossRef] [PubMed]

2011 (1)

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, M. X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1(4), 632–648 (2011).
[CrossRef] [PubMed]

2007 (1)

2002 (1)

2001 (1)

L. H. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: An analytic model,” Phys Rev Lett. 87(4), 043903 (2001).

2000 (1)

1995 (2)

Boccara, A. C.

Daoudi, K.

Delaye, P.

Dunsby, C.

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, M. X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1(4), 632–648 (2011).
[CrossRef] [PubMed]

Eckersley, R.

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, M. X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1(4), 632–648 (2011).
[CrossRef] [PubMed]

Elson, D. S.

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, M. X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1(4), 632–648 (2011).
[CrossRef] [PubMed]

Gross, M.

Hondebrink, E.

Hussain, A.

Jacques, S. L.

Jean, F.

Ku, G.

Lesaffre, M.

Leutz, W.

W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered-light,” Physica B 204(1-4), 14–19 (1995).
[CrossRef]

Lévêque-Fort, S.

Li, J.

Li, R.

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, M. X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1(4), 632–648 (2011).
[CrossRef] [PubMed]

Maret, G.

W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered-light,” Physica B 204(1-4), 14–19 (1995).
[CrossRef]

Ramaz, F.

Resink, S. G.

S. G. Resink, A. C. Boccara, W. Steenbergen, “State-of-the art of acousto-optic sensing and imaging of turbid media,” J. Biomed. Opt. 17(4), 040901 (2012).
[CrossRef] [PubMed]

Roosen, G.

Steenbergen, W.

S. G. Resink, A. C. Boccara, W. Steenbergen, “State-of-the art of acousto-optic sensing and imaging of turbid media,” J. Biomed. Opt. 17(4), 040901 (2012).
[CrossRef] [PubMed]

K. Daoudi, A. Hussain, E. Hondebrink, W. Steenbergen, “Correcting photoacoustic signals for fluence variations using acousto-optic modulation,” Opt. Express 20(13), 14117–14129 (2012).
[CrossRef] [PubMed]

Tang, M. X.

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, M. X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1(4), 632–648 (2011).
[CrossRef] [PubMed]

Wang, L. H.

Wang, L. H. V.

L. H. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: An analytic model,” Phys Rev Lett. 87(4), 043903 (2001).

Wang, L. V.

Zhao, X. M.

Appl. Opt. (2)

Interface Focus (1)

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, M. X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1(4), 632–648 (2011).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

S. G. Resink, A. C. Boccara, W. Steenbergen, “State-of-the art of acousto-optic sensing and imaging of turbid media,” J. Biomed. Opt. 17(4), 040901 (2012).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys Rev Lett. (1)

L. H. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: An analytic model,” Phys Rev Lett. 87(4), 043903 (2001).

Physica B (1)

W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered-light,” Physica B 204(1-4), 14–19 (1995).
[CrossRef]

Other (1)

A. Hussain, K. Daoudi, E. Hondebrink, and W. Steenbergen, “Quantitative Photoacoustic Imaging by Acousto-Optically Measured Light Fluence,” in OSA Technical Digest (Optical Society of America, 2012), BM2B.5.

Supplementary Material (1)

» Media 1: MOV (3067 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental set-up. FG: function generators, AMP: amplifier, TR: Ultrasound transducer and BD: beam dump.

Fig. 2
Fig. 2

(a) The intensity modulation of three randomly chosen speckles (location in b indicated by line color) as function of z-position of the US burst from the fixed US focus (b) speckle pattern and frame from the attached mov-file (Media 1) where the color scale is optimized for print. (c, d) The average power spectrum of the modulation for 3 groups of speckles: low, average and high intensity. The red (square/ upper lines) denotes a bright speckle; Blue (circle/ middle lines) denotes a speckle with average brightness. Green (Triangle/lower lines) denotes a dark speckle.

Fig. 3
Fig. 3

Normalized AO-signal as function of US phase difference as acquired using the speckle pattern subtraction method. The size of the error bar denotes the standard deviation on the raw AO-signal. The line connects the average values for all realized phase differences.

Fig. 4
Fig. 4

AO scan results for subtracting two speckle patterns (a), adding two patterns (b) and speckle contrast method (c).

Fig. 5
Fig. 5

Comparison of (a) pulsed methods vs. speckle contrast in CW setup, and (b) the addition method vs. subtraction method. The AO-signal from subtracting patterns (black, left axis) and addition of patterns (red, right axis).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I(n,t)= I dc (n)+ I ac (n)cos(ωt+φ(n))
I 1 (n)= I dc (n)+ I ac cos(φ(n))
I 2 (n)= I dc (n) I ac cos(φ(n))
S AO = ( I 1 (n) I 2 (n) ) 2
( I 1 (n) I 2 (n) ) 2 I nt (n) I t (n) = I nt (n) I t (n)
ΔC= C 0 C
C= ( ( I 1 (n)+ I 2 (n) ) 2 I 1 (n)+ I 2 (n) 2 ) 1/2 I 1 (n)+ I 2 (n) .

Metrics