Abstract

Coherent anti-Stokes Raman scattering (CARS) microscopy is a powerful imaging technique that can provide chemical information of organic and nonorganic materials through vibrational spectroscopy. However, its contrast is not sufficient for monitoring thin film materials. In this study, silica microspheres were employed for enhancing the signal contrast in CARS imaging. One layer of optically transparent silica microspheres was self-assembled onto polymer grating samples to enhance the CARS signals. The highest contrast enhancement factor of 12.5 was achieved using 6.1-μm-diameter microspheres. Finite-difference time-domain method (FDTD) simulation was conducted to simulate the contrast enhancement with silica microspheres of different diameters.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. L. Evans, X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1(1), 883–909 (2008).
    [CrossRef] [PubMed]
  2. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 102(46), 16807–16812 (2005).
    [CrossRef] [PubMed]
  3. G. W. H. Wurpel, J. M. Schins, M. Müller, “Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 27(13), 1093–1095 (2002).
    [CrossRef] [PubMed]
  4. X. S. Xie, J. Yu, W. Y. Yang, “Living cells as test tubes,” Science 312(5771), 228–230 (2006).
    [CrossRef] [PubMed]
  5. T. B. Huff, Y. Z. Shi, W. J. Sun, W. Wu, R. Shi, J. X. Cheng, “Real-time CARS imaging reveals a calpain-dependent rathway for paranodal myelin retraction during high-frequency stimulation,” PLoS ONE 6, e17176 (2011).
  6. R. F. Begley, A. B. Harvey, R. L. Byer, “Coherent anti‐Stokes Raman spectroscopy,” Appl. Phys. Lett. 25(7), 387–390 (1974).
    [CrossRef]
  7. C. L. Evans, E. O. Potma, X. S. Xie, “Coherent anti-Stokes Raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy,” Opt. Lett. 29(24), 2923–2925 (2004).
    [CrossRef] [PubMed]
  8. F. Ganikhanov, C. L. Evans, B. G. Saar, X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006).
    [CrossRef] [PubMed]
  9. A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [CrossRef]
  10. M. Hashimoto, T. Araki, S. Kawata, “Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with a collinear configuration,” Opt. Lett. 25(24), 1768–1770 (2000).
    [CrossRef] [PubMed]
  11. S. H. Parekh, Y. J. Lee, K. A. Aamer, M. T. Cicerone, “Label-free cellular imaging by broadband coherent anti-Stokes Raman scattering microscopy,” Biophys. J. 99(8), 2695–2704 (2010).
    [CrossRef] [PubMed]
  12. T. T. Le, H. M. Duren, M. N. Slipchenko, C. D. Hu, J. X. Cheng, “Label-free quantitative analysis of lipid metabolism in living Caenorhabditis elegans,” J. Lipid Res. 51(3), 672–677 (2010).
    [CrossRef] [PubMed]
  13. X. L. Nan, J. X. Cheng, X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44(11), 2202–2208 (2003).
    [CrossRef] [PubMed]
  14. X. N. He, J. Allen, P. N. Black, T. Baldacchini, X. Huang, H. Huang, L. Jiang, Y. F. Lu, “Coherent anti-Stokes Raman scattering and spontaneous Raman spectroscopy and microscopy of microalgae with nitrogen depletion,” Biomed. Opt. Express 3(11), 2896–2906 (2012).
    [CrossRef] [PubMed]
  15. K. König, H. Liang, M. W. Berns, B. J. Tromberg, “Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption,” Opt. Lett. 21(14), 1090–1092 (1996).
    [CrossRef] [PubMed]
  16. Y. Fu, H. Wang, R. Shi, J. X. Cheng, “Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy,” Opt. Express 14(9), 3942–3951 (2006).
    [CrossRef] [PubMed]
  17. E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).
    [CrossRef]
  18. H. Kano, H. Hamaguchi, “Ultrabroadband (>2500 cm−1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
    [CrossRef]
  19. G. W. H. Wurpel, J. M. Schins, M. Müller, “Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 27(13), 1093–1095 (2002).
    [CrossRef] [PubMed]
  20. J. X. Cheng, A. Volkmer, L. D. Book, X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
    [CrossRef]
  21. W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. Mahjouri-Samani, L. Jiang, T. Baldacchini, Y. F. Lu, “Simultaneous additive and subtractive three-dimensional micro/nano-fabrication using integrated two-photon polymerization and multi-photon ablation,” Light Sci. Appl. 1, e6 (2012).
  22. H. Wang, K. K. Mendu, Y. F. Lu, J. Shi, D. R. Alexander, D. W. Doerr, “Laser-assisted fabrication of 3-D structures on polymer film,” J. Laser Micro Nanoeng. 1(2), 106–110 (2006).
    [CrossRef]
  23. Z. B. Wang, W. Guo, L. Li, B. Luk’yangchuk, A. Khan, Z. Liu, Z. C. Chen, M. H. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
  24. K. J. Yi, H. Wang, Y. F. Lu, Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101(6), 063528 (2007).
    [CrossRef]
  25. Z. G. Chen, A. Taflove, V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
    [CrossRef] [PubMed]
  26. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
    [CrossRef] [PubMed]

2012

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. Mahjouri-Samani, L. Jiang, T. Baldacchini, Y. F. Lu, “Simultaneous additive and subtractive three-dimensional micro/nano-fabrication using integrated two-photon polymerization and multi-photon ablation,” Light Sci. Appl. 1, e6 (2012).

X. N. He, J. Allen, P. N. Black, T. Baldacchini, X. Huang, H. Huang, L. Jiang, Y. F. Lu, “Coherent anti-Stokes Raman scattering and spontaneous Raman spectroscopy and microscopy of microalgae with nitrogen depletion,” Biomed. Opt. Express 3(11), 2896–2906 (2012).
[CrossRef] [PubMed]

2011

Z. B. Wang, W. Guo, L. Li, B. Luk’yangchuk, A. Khan, Z. Liu, Z. C. Chen, M. H. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).

T. B. Huff, Y. Z. Shi, W. J. Sun, W. Wu, R. Shi, J. X. Cheng, “Real-time CARS imaging reveals a calpain-dependent rathway for paranodal myelin retraction during high-frequency stimulation,” PLoS ONE 6, e17176 (2011).

2010

S. H. Parekh, Y. J. Lee, K. A. Aamer, M. T. Cicerone, “Label-free cellular imaging by broadband coherent anti-Stokes Raman scattering microscopy,” Biophys. J. 99(8), 2695–2704 (2010).
[CrossRef] [PubMed]

T. T. Le, H. M. Duren, M. N. Slipchenko, C. D. Hu, J. X. Cheng, “Label-free quantitative analysis of lipid metabolism in living Caenorhabditis elegans,” J. Lipid Res. 51(3), 672–677 (2010).
[CrossRef] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

2008

C. L. Evans, X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1(1), 883–909 (2008).
[CrossRef] [PubMed]

2007

K. J. Yi, H. Wang, Y. F. Lu, Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101(6), 063528 (2007).
[CrossRef]

2006

2005

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

H. Kano, H. Hamaguchi, “Ultrabroadband (>2500 cm−1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
[CrossRef]

2004

2003

X. L. Nan, J. X. Cheng, X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44(11), 2202–2208 (2003).
[CrossRef] [PubMed]

2002

2000

1999

A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

1996

1974

R. F. Begley, A. B. Harvey, R. L. Byer, “Coherent anti‐Stokes Raman spectroscopy,” Appl. Phys. Lett. 25(7), 387–390 (1974).
[CrossRef]

Aamer, K. A.

S. H. Parekh, Y. J. Lee, K. A. Aamer, M. T. Cicerone, “Label-free cellular imaging by broadband coherent anti-Stokes Raman scattering microscopy,” Biophys. J. 99(8), 2695–2704 (2010).
[CrossRef] [PubMed]

Alexander, D. R.

H. Wang, K. K. Mendu, Y. F. Lu, J. Shi, D. R. Alexander, D. W. Doerr, “Laser-assisted fabrication of 3-D structures on polymer film,” J. Laser Micro Nanoeng. 1(2), 106–110 (2006).
[CrossRef]

Allen, J.

Araki, T.

Backman, V.

Baldacchini, T.

X. N. He, J. Allen, P. N. Black, T. Baldacchini, X. Huang, H. Huang, L. Jiang, Y. F. Lu, “Coherent anti-Stokes Raman scattering and spontaneous Raman spectroscopy and microscopy of microalgae with nitrogen depletion,” Biomed. Opt. Express 3(11), 2896–2906 (2012).
[CrossRef] [PubMed]

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. Mahjouri-Samani, L. Jiang, T. Baldacchini, Y. F. Lu, “Simultaneous additive and subtractive three-dimensional micro/nano-fabrication using integrated two-photon polymerization and multi-photon ablation,” Light Sci. Appl. 1, e6 (2012).

Begley, R. F.

R. F. Begley, A. B. Harvey, R. L. Byer, “Coherent anti‐Stokes Raman spectroscopy,” Appl. Phys. Lett. 25(7), 387–390 (1974).
[CrossRef]

Berns, M. W.

Black, P. N.

Book, L. D.

J. X. Cheng, A. Volkmer, L. D. Book, X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
[CrossRef]

Byer, R. L.

R. F. Begley, A. B. Harvey, R. L. Byer, “Coherent anti‐Stokes Raman spectroscopy,” Appl. Phys. Lett. 25(7), 387–390 (1974).
[CrossRef]

Chen, Z. C.

Z. B. Wang, W. Guo, L. Li, B. Luk’yangchuk, A. Khan, Z. Liu, Z. C. Chen, M. H. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).

Chen, Z. G.

Cheng, J. X.

T. B. Huff, Y. Z. Shi, W. J. Sun, W. Wu, R. Shi, J. X. Cheng, “Real-time CARS imaging reveals a calpain-dependent rathway for paranodal myelin retraction during high-frequency stimulation,” PLoS ONE 6, e17176 (2011).

T. T. Le, H. M. Duren, M. N. Slipchenko, C. D. Hu, J. X. Cheng, “Label-free quantitative analysis of lipid metabolism in living Caenorhabditis elegans,” J. Lipid Res. 51(3), 672–677 (2010).
[CrossRef] [PubMed]

Y. Fu, H. Wang, R. Shi, J. X. Cheng, “Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy,” Opt. Express 14(9), 3942–3951 (2006).
[CrossRef] [PubMed]

X. L. Nan, J. X. Cheng, X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44(11), 2202–2208 (2003).
[CrossRef] [PubMed]

J. X. Cheng, A. Volkmer, L. D. Book, X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
[CrossRef]

Cicerone, M. T.

S. H. Parekh, Y. J. Lee, K. A. Aamer, M. T. Cicerone, “Label-free cellular imaging by broadband coherent anti-Stokes Raman scattering microscopy,” Biophys. J. 99(8), 2695–2704 (2010).
[CrossRef] [PubMed]

Côté, D.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

Doerr, D. W.

H. Wang, K. K. Mendu, Y. F. Lu, J. Shi, D. R. Alexander, D. W. Doerr, “Laser-assisted fabrication of 3-D structures on polymer film,” J. Laser Micro Nanoeng. 1(2), 106–110 (2006).
[CrossRef]

Duren, H. M.

T. T. Le, H. M. Duren, M. N. Slipchenko, C. D. Hu, J. X. Cheng, “Label-free quantitative analysis of lipid metabolism in living Caenorhabditis elegans,” J. Lipid Res. 51(3), 672–677 (2010).
[CrossRef] [PubMed]

Evans, C. L.

C. L. Evans, X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1(1), 883–909 (2008).
[CrossRef] [PubMed]

F. Ganikhanov, C. L. Evans, B. G. Saar, X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, X. S. Xie, “Coherent anti-Stokes Raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy,” Opt. Lett. 29(24), 2923–2925 (2004).
[CrossRef] [PubMed]

Freudiger, C. W.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

Fu, Y.

Ganikhanov, F.

Gao, Y.

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. Mahjouri-Samani, L. Jiang, T. Baldacchini, Y. F. Lu, “Simultaneous additive and subtractive three-dimensional micro/nano-fabrication using integrated two-photon polymerization and multi-photon ablation,” Light Sci. Appl. 1, e6 (2012).

Guo, W.

Z. B. Wang, W. Guo, L. Li, B. Luk’yangchuk, A. Khan, Z. Liu, Z. C. Chen, M. H. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).

Hamaguchi, H.

H. Kano, H. Hamaguchi, “Ultrabroadband (>2500 cm−1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
[CrossRef]

Harvey, A. B.

R. F. Begley, A. B. Harvey, R. L. Byer, “Coherent anti‐Stokes Raman spectroscopy,” Appl. Phys. Lett. 25(7), 387–390 (1974).
[CrossRef]

Hashimoto, M.

He, X. N.

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. Mahjouri-Samani, L. Jiang, T. Baldacchini, Y. F. Lu, “Simultaneous additive and subtractive three-dimensional micro/nano-fabrication using integrated two-photon polymerization and multi-photon ablation,” Light Sci. Appl. 1, e6 (2012).

X. N. He, J. Allen, P. N. Black, T. Baldacchini, X. Huang, H. Huang, L. Jiang, Y. F. Lu, “Coherent anti-Stokes Raman scattering and spontaneous Raman spectroscopy and microscopy of microalgae with nitrogen depletion,” Biomed. Opt. Express 3(11), 2896–2906 (2012).
[CrossRef] [PubMed]

Hinsberg, W. D.

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).
[CrossRef]

Holtom, G. R.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Hong, M. H.

Z. B. Wang, W. Guo, L. Li, B. Luk’yangchuk, A. Khan, Z. Liu, Z. C. Chen, M. H. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).

Hu, C. D.

T. T. Le, H. M. Duren, M. N. Slipchenko, C. D. Hu, J. X. Cheng, “Label-free quantitative analysis of lipid metabolism in living Caenorhabditis elegans,” J. Lipid Res. 51(3), 672–677 (2010).
[CrossRef] [PubMed]

Huang, H.

Huang, X.

Huff, T. B.

T. B. Huff, Y. Z. Shi, W. J. Sun, W. Wu, R. Shi, J. X. Cheng, “Real-time CARS imaging reveals a calpain-dependent rathway for paranodal myelin retraction during high-frequency stimulation,” PLoS ONE 6, e17176 (2011).

Jiang, L.

X. N. He, J. Allen, P. N. Black, T. Baldacchini, X. Huang, H. Huang, L. Jiang, Y. F. Lu, “Coherent anti-Stokes Raman scattering and spontaneous Raman spectroscopy and microscopy of microalgae with nitrogen depletion,” Biomed. Opt. Express 3(11), 2896–2906 (2012).
[CrossRef] [PubMed]

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. Mahjouri-Samani, L. Jiang, T. Baldacchini, Y. F. Lu, “Simultaneous additive and subtractive three-dimensional micro/nano-fabrication using integrated two-photon polymerization and multi-photon ablation,” Light Sci. Appl. 1, e6 (2012).

Jones, D.

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).
[CrossRef]

Kano, H.

H. Kano, H. Hamaguchi, “Ultrabroadband (>2500 cm−1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
[CrossRef]

Kawata, S.

Khan, A.

Z. B. Wang, W. Guo, L. Li, B. Luk’yangchuk, A. Khan, Z. Liu, Z. C. Chen, M. H. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).

König, K.

Le, T. T.

T. T. Le, H. M. Duren, M. N. Slipchenko, C. D. Hu, J. X. Cheng, “Label-free quantitative analysis of lipid metabolism in living Caenorhabditis elegans,” J. Lipid Res. 51(3), 672–677 (2010).
[CrossRef] [PubMed]

Lee, Y. J.

S. H. Parekh, Y. J. Lee, K. A. Aamer, M. T. Cicerone, “Label-free cellular imaging by broadband coherent anti-Stokes Raman scattering microscopy,” Biophys. J. 99(8), 2695–2704 (2010).
[CrossRef] [PubMed]

Leone, S. R.

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).
[CrossRef]

Li, L.

Z. B. Wang, W. Guo, L. Li, B. Luk’yangchuk, A. Khan, Z. Liu, Z. C. Chen, M. H. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).

Liang, H.

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

Liu, Z.

Z. B. Wang, W. Guo, L. Li, B. Luk’yangchuk, A. Khan, Z. Liu, Z. C. Chen, M. H. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).

Lu, Y. F.

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. Mahjouri-Samani, L. Jiang, T. Baldacchini, Y. F. Lu, “Simultaneous additive and subtractive three-dimensional micro/nano-fabrication using integrated two-photon polymerization and multi-photon ablation,” Light Sci. Appl. 1, e6 (2012).

X. N. He, J. Allen, P. N. Black, T. Baldacchini, X. Huang, H. Huang, L. Jiang, Y. F. Lu, “Coherent anti-Stokes Raman scattering and spontaneous Raman spectroscopy and microscopy of microalgae with nitrogen depletion,” Biomed. Opt. Express 3(11), 2896–2906 (2012).
[CrossRef] [PubMed]

K. J. Yi, H. Wang, Y. F. Lu, Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101(6), 063528 (2007).
[CrossRef]

H. Wang, K. K. Mendu, Y. F. Lu, J. Shi, D. R. Alexander, D. W. Doerr, “Laser-assisted fabrication of 3-D structures on polymer film,” J. Laser Micro Nanoeng. 1(2), 106–110 (2006).
[CrossRef]

Luk’yangchuk, B.

Z. B. Wang, W. Guo, L. Li, B. Luk’yangchuk, A. Khan, Z. Liu, Z. C. Chen, M. H. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).

Mahjouri-Samani, M.

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. Mahjouri-Samani, L. Jiang, T. Baldacchini, Y. F. Lu, “Simultaneous additive and subtractive three-dimensional micro/nano-fabrication using integrated two-photon polymerization and multi-photon ablation,” Light Sci. Appl. 1, e6 (2012).

Mendu, K. K.

H. Wang, K. K. Mendu, Y. F. Lu, J. Shi, D. R. Alexander, D. W. Doerr, “Laser-assisted fabrication of 3-D structures on polymer film,” J. Laser Micro Nanoeng. 1(2), 106–110 (2006).
[CrossRef]

Müller, M.

Muntean, L.

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).
[CrossRef]

Nan, X. L.

X. L. Nan, J. X. Cheng, X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44(11), 2202–2208 (2003).
[CrossRef] [PubMed]

Parekh, S. H.

S. H. Parekh, Y. J. Lee, K. A. Aamer, M. T. Cicerone, “Label-free cellular imaging by broadband coherent anti-Stokes Raman scattering microscopy,” Biophys. J. 99(8), 2695–2704 (2010).
[CrossRef] [PubMed]

Potma, E. O.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).
[CrossRef]

C. L. Evans, E. O. Potma, X. S. Xie, “Coherent anti-Stokes Raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy,” Opt. Lett. 29(24), 2923–2925 (2004).
[CrossRef] [PubMed]

Preusser, J.

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).
[CrossRef]

Puoris’haag, M.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

Reichman, J.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

Saar, B. G.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

F. Ganikhanov, C. L. Evans, B. G. Saar, X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006).
[CrossRef] [PubMed]

Schade, W.

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).
[CrossRef]

Schins, J. M.

Shi, J.

H. Wang, K. K. Mendu, Y. F. Lu, J. Shi, D. R. Alexander, D. W. Doerr, “Laser-assisted fabrication of 3-D structures on polymer film,” J. Laser Micro Nanoeng. 1(2), 106–110 (2006).
[CrossRef]

Shi, R.

T. B. Huff, Y. Z. Shi, W. J. Sun, W. Wu, R. Shi, J. X. Cheng, “Real-time CARS imaging reveals a calpain-dependent rathway for paranodal myelin retraction during high-frequency stimulation,” PLoS ONE 6, e17176 (2011).

Y. Fu, H. Wang, R. Shi, J. X. Cheng, “Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy,” Opt. Express 14(9), 3942–3951 (2006).
[CrossRef] [PubMed]

Shi, Y. Z.

T. B. Huff, Y. Z. Shi, W. J. Sun, W. Wu, R. Shi, J. X. Cheng, “Real-time CARS imaging reveals a calpain-dependent rathway for paranodal myelin retraction during high-frequency stimulation,” PLoS ONE 6, e17176 (2011).

Slipchenko, M. N.

T. T. Le, H. M. Duren, M. N. Slipchenko, C. D. Hu, J. X. Cheng, “Label-free quantitative analysis of lipid metabolism in living Caenorhabditis elegans,” J. Lipid Res. 51(3), 672–677 (2010).
[CrossRef] [PubMed]

Stanley, C. M.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

Sun, W. J.

T. B. Huff, Y. Z. Shi, W. J. Sun, W. Wu, R. Shi, J. X. Cheng, “Real-time CARS imaging reveals a calpain-dependent rathway for paranodal myelin retraction during high-frequency stimulation,” PLoS ONE 6, e17176 (2011).

Taflove, A.

Tromberg, B. J.

Volkmer, A.

J. X. Cheng, A. Volkmer, L. D. Book, X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
[CrossRef]

Wang, H.

K. J. Yi, H. Wang, Y. F. Lu, Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101(6), 063528 (2007).
[CrossRef]

Y. Fu, H. Wang, R. Shi, J. X. Cheng, “Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy,” Opt. Express 14(9), 3942–3951 (2006).
[CrossRef] [PubMed]

H. Wang, K. K. Mendu, Y. F. Lu, J. Shi, D. R. Alexander, D. W. Doerr, “Laser-assisted fabrication of 3-D structures on polymer film,” J. Laser Micro Nanoeng. 1(2), 106–110 (2006).
[CrossRef]

Wang, Z. B.

Z. B. Wang, W. Guo, L. Li, B. Luk’yangchuk, A. Khan, Z. Liu, Z. C. Chen, M. H. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).

Wu, W.

T. B. Huff, Y. Z. Shi, W. J. Sun, W. Wu, R. Shi, J. X. Cheng, “Real-time CARS imaging reveals a calpain-dependent rathway for paranodal myelin retraction during high-frequency stimulation,” PLoS ONE 6, e17176 (2011).

Wurpel, G. W. H.

Xie, X. S.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

C. L. Evans, X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1(1), 883–909 (2008).
[CrossRef] [PubMed]

F. Ganikhanov, C. L. Evans, B. G. Saar, X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006).
[CrossRef] [PubMed]

X. S. Xie, J. Yu, W. Y. Yang, “Living cells as test tubes,” Science 312(5771), 228–230 (2006).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).
[CrossRef]

C. L. Evans, E. O. Potma, X. S. Xie, “Coherent anti-Stokes Raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy,” Opt. Lett. 29(24), 2923–2925 (2004).
[CrossRef] [PubMed]

X. L. Nan, J. X. Cheng, X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44(11), 2202–2208 (2003).
[CrossRef] [PubMed]

J. X. Cheng, A. Volkmer, L. D. Book, X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
[CrossRef]

A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Xiong, W.

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. Mahjouri-Samani, L. Jiang, T. Baldacchini, Y. F. Lu, “Simultaneous additive and subtractive three-dimensional micro/nano-fabrication using integrated two-photon polymerization and multi-photon ablation,” Light Sci. Appl. 1, e6 (2012).

Yang, W. Y.

X. S. Xie, J. Yu, W. Y. Yang, “Living cells as test tubes,” Science 312(5771), 228–230 (2006).
[CrossRef] [PubMed]

Yang, Z. Y.

K. J. Yi, H. Wang, Y. F. Lu, Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101(6), 063528 (2007).
[CrossRef]

Ye, J.

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).
[CrossRef]

Yi, K. J.

K. J. Yi, H. Wang, Y. F. Lu, Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101(6), 063528 (2007).
[CrossRef]

Yu, J.

X. S. Xie, J. Yu, W. Y. Yang, “Living cells as test tubes,” Science 312(5771), 228–230 (2006).
[CrossRef] [PubMed]

Zhou, Y. S.

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. Mahjouri-Samani, L. Jiang, T. Baldacchini, Y. F. Lu, “Simultaneous additive and subtractive three-dimensional micro/nano-fabrication using integrated two-photon polymerization and multi-photon ablation,” Light Sci. Appl. 1, e6 (2012).

Zumbusch, A.

A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Annu. Rev. Anal. Chem.

C. L. Evans, X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1(1), 883–909 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett.

R. F. Begley, A. B. Harvey, R. L. Byer, “Coherent anti‐Stokes Raman spectroscopy,” Appl. Phys. Lett. 25(7), 387–390 (1974).
[CrossRef]

H. Kano, H. Hamaguchi, “Ultrabroadband (>2500 cm−1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
[CrossRef]

Biomed. Opt. Express

Biophys. J.

S. H. Parekh, Y. J. Lee, K. A. Aamer, M. T. Cicerone, “Label-free cellular imaging by broadband coherent anti-Stokes Raman scattering microscopy,” Biophys. J. 99(8), 2695–2704 (2010).
[CrossRef] [PubMed]

J. Appl. Phys.

K. J. Yi, H. Wang, Y. F. Lu, Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101(6), 063528 (2007).
[CrossRef]

J. Laser Micro Nanoeng.

H. Wang, K. K. Mendu, Y. F. Lu, J. Shi, D. R. Alexander, D. W. Doerr, “Laser-assisted fabrication of 3-D structures on polymer film,” J. Laser Micro Nanoeng. 1(2), 106–110 (2006).
[CrossRef]

J. Lipid Res.

T. T. Le, H. M. Duren, M. N. Slipchenko, C. D. Hu, J. X. Cheng, “Label-free quantitative analysis of lipid metabolism in living Caenorhabditis elegans,” J. Lipid Res. 51(3), 672–677 (2010).
[CrossRef] [PubMed]

X. L. Nan, J. X. Cheng, X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44(11), 2202–2208 (2003).
[CrossRef] [PubMed]

J. Phys. Chem. B

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).
[CrossRef]

J. X. Cheng, A. Volkmer, L. D. Book, X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
[CrossRef]

Light Sci. Appl.

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. Mahjouri-Samani, L. Jiang, T. Baldacchini, Y. F. Lu, “Simultaneous additive and subtractive three-dimensional micro/nano-fabrication using integrated two-photon polymerization and multi-photon ablation,” Light Sci. Appl. 1, e6 (2012).

Nat. Commun.

Z. B. Wang, W. Guo, L. Li, B. Luk’yangchuk, A. Khan, Z. Liu, Z. C. Chen, M. H. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

PLoS ONE

T. B. Huff, Y. Z. Shi, W. J. Sun, W. Wu, R. Shi, J. X. Cheng, “Real-time CARS imaging reveals a calpain-dependent rathway for paranodal myelin retraction during high-frequency stimulation,” PLoS ONE 6, e17176 (2011).

Proc. Natl. Acad. Sci. U. S. A.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

Science

X. S. Xie, J. Yu, W. Y. Yang, “Living cells as test tubes,” Science 312(5771), 228–230 (2006).
[CrossRef] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental configuration of contrast-enhanced CARS imaging using the transmission-mode broadband CARS microscopy integrated with an assembly of silica microspheres.

Fig. 2
Fig. 2

Schematic of the setup of the broadband forward CARS imaging system.

Fig. 3
Fig. 3

(a) SEM image of the grating structure (400-nm-wide lines spaced 280 nm apart), (b) SEM image of 6.1 μm silica microspheres, and (c) Raman spectrum of the IP-L photoresist (excited by 514 nm Ar+ laser). The range for CARS CH imaging is due to the 650/13 nm bandpass filter used in the experiment.

Fig. 4
Fig. 4

(a) Enhanced CARS imaging of the grating using 6.1 μm silica microspheres. (b),(c) shows the intensity profile of indicator lines 1 and 2 in (a), respectively. (d). 2D intensity profile of the white area shown in (a).

Fig. 5
Fig. 5

(a)-(d) 2D CARS images at various Z depths and (e) 3D Z-stacked image (z = 0~3 μm) of the grating (located at z = 2.0 μm) assembled with the 5.06 μm microspheres.

Fig. 6
Fig. 6

Calculated distributions of the electric fields under a signal light (650 nm) with (a) and without (b) a microsphere of 6 μm in the XZ cross-section. (c) The calculated E-field distributions on the same observation plane.

Fig. 7
Fig. 7

The simulated FWHM of the CARS signal distributions and the experimental EFs using different diameter microspheres.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

EF= CN R CNR = ( I A I B ) ( I A I B ) ,

Metrics