Abstract

A super-resolution (with λ/50 resolution ability at mid-infrared region) device that consists of a monolayer graphene sandwiched between two dielectric materials with two alternate chemical potentials in graphene (which can be obtained by alternately applying two biased voltages to graphene) is proposed and analyzed. When the subwavelength resolution is achieved, the graphene-based device can be viewed as an effective optical medium with alternate arrangement of positive and negative refractive indices. And the isofrequency dispersion curves of the effective optical medium have the hyperbolic form. Furthermore, the super-resolution at different desired frequencies can be reached by merely changing the chemical potentials of graphene. The proposed devices have potential applications in multi-functional material, real-time subwavelength imaging, and high-density optoelectronic components for using the abnormal diffraction feature.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Out-of-plane focusing and manipulation of terahertz beams based on a silicon/copper grating covered by monolayer graphene

Jianli Jiang, Xiao Zhang, Wei Zhang, Shuang Liang, Hong Wu, Liyong Jiang, and Xiangyin Li
Opt. Express 25(14) 16867-16878 (2017)

Plasmonic rainbow trapping by a graphene monolayer on a dielectric layer with a silicon grating substrate

Lin Chen, Tian Zhang, Xun Li, and Guoping Wang
Opt. Express 21(23) 28628-28637 (2013)

Tunable deep-subwavelength superscattering using graphene monolayers

R. J. Li, X. Lin, S. S. Lin, X. Liu, and H. S. Chen
Opt. Lett. 40(8) 1651-1654 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics, 7th edition (Cambridge Press, 1999).
  2. D. R. Smith, D. Schurig, M. Rosenbluth, and S. Schultz, “Limitations on subdiffraction imaging with a negative index slab,” Appl. Phys. Lett. 82(10), 1506–1508 (2003).
  3. W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005).
    [Crossref]
  4. A. Schilling, J. Schilling, C. Reinhardt, and B. Chickov, “A superlens for the deep ultraviolet,” Appl. Phys. Lett. 95(12), 121909 (2009).
    [Crossref]
  5. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
    [Crossref]
  6. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
    [Crossref]
  7. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
    [Crossref] [PubMed]
  8. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
    [Crossref] [PubMed]
  9. B. H. Cheng, Y. Z. Ho, Y. C. Lan, and D. P. Tsai, “Optical hybrid-superlens-hyperlens for superresolution imaging,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4601305 (2013).
    [Crossref]
  10. Y. T. Wang, B. H. Cheng, Y. Z. Ho, Y. C. Lan, P. G. Luan, and D. P. Tsai, “Gain-assisted hybrid-superlens hyperlens for nano imaging,” Opt. Express 20(20), 22953–22960 (2012).
    [Crossref] [PubMed]
  11. B. H. Cheng, Y. C. Lan, and D. P. Tsai, “Breaking optical diffraction limitation using optical hybrid-super-hyperlens with radially polarized light,” Opt. Express 21(12), 14898–14906 (2013).
    [Crossref] [PubMed]
  12. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  13. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  14. J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470–473 (2010).
    [Crossref] [PubMed]
  15. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  16. S. He, X. Zhang, and Y. He, “Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI,” Opt. Express 21(25), 30664–30673 (2013).
    [Crossref] [PubMed]
  17. T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
    [Crossref] [PubMed]
  18. M. Tymchenko, A. Y. Nikitin, and L. Martín-Moreno, “Faraday rotation due to excitation of magnetoplasmons in graphene microribbons,” ACS Nano 7(11), 9780–9787 (2013).
    [Crossref] [PubMed]
  19. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  20. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
    [Crossref] [PubMed]
  21. A. Auditore, C. de Angelis, A. Locatelli, and A. B. Aceves, “Tuning of surface plasmon polaritons beat length in graphene directional couplers,” Opt. Lett. 38(20), 4228–4231 (2013).
    [Crossref] [PubMed]
  22. P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
    [Crossref] [PubMed]
  23. Y. Xiang, J. Guo, X. Dai, S. Wen, and D. Tang, “Engineered surface Bloch waves in graphene-based hyperbolic metamaterials,” Opt. Express 22(3), 3054–3062 (2014).
    [Crossref] [PubMed]
  24. W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
    [Crossref] [PubMed]
  25. P. Li and T. Taubner, “Broadband subwavelength imaging using a tunable graphene-lens,” ACS Nano 6(11), 10107–10114 (2012).
    [Crossref] [PubMed]
  26. A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).
    [Crossref]
  27. P. Li, T. Wang, H. Böckmann, and T. Taubner, “Graphene-Enhanced Infrared Near-Field Microscopy,” Nano Lett. 14(8), 4400–4405 (2014).
    [Crossref] [PubMed]
  28. G. W. Hanson, “Dyadic Greens functions and guided surface waves on graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  29. L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
    [Crossref]
  30. E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B 75(20), 205418 (2007).
    [Crossref]
  31. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
    [Crossref]
  32. R. A. Jishi, M. S. Dresselhaus, and G. Dresselhaus, “Electron-phonon coupling and the electrical conductivity of fullerene nanotubules,” Phys. Rev. B Condens. Matter 48(15), 11385–11389 (1993).
    [Crossref] [PubMed]
  33. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  34. L. Chen, T. Zhang, X. Li, and G. Wang, “Plasmonic rainbow trapping by a graphene monolayer on a dielectric layer with a silicon grating substrate,” Opt. Express 21(23), 28628–28637 (2013).
    [Crossref] [PubMed]
  35. B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100(13), 131111 (2012).
    [Crossref]
  36. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, Oxford, 2006).

2014 (3)

P. Li, T. Wang, H. Böckmann, and T. Taubner, “Graphene-Enhanced Infrared Near-Field Microscopy,” Nano Lett. 14(8), 4400–4405 (2014).
[Crossref] [PubMed]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

Y. Xiang, J. Guo, X. Dai, S. Wen, and D. Tang, “Engineered surface Bloch waves in graphene-based hyperbolic metamaterials,” Opt. Express 22(3), 3054–3062 (2014).
[Crossref] [PubMed]

2013 (8)

M. Tymchenko, A. Y. Nikitin, and L. Martín-Moreno, “Faraday rotation due to excitation of magnetoplasmons in graphene microribbons,” ACS Nano 7(11), 9780–9787 (2013).
[Crossref] [PubMed]

B. H. Cheng, Y. C. Lan, and D. P. Tsai, “Breaking optical diffraction limitation using optical hybrid-super-hyperlens with radially polarized light,” Opt. Express 21(12), 14898–14906 (2013).
[Crossref] [PubMed]

A. Auditore, C. de Angelis, A. Locatelli, and A. B. Aceves, “Tuning of surface plasmon polaritons beat length in graphene directional couplers,” Opt. Lett. 38(20), 4228–4231 (2013).
[Crossref] [PubMed]

L. Chen, T. Zhang, X. Li, and G. Wang, “Plasmonic rainbow trapping by a graphene monolayer on a dielectric layer with a silicon grating substrate,” Opt. Express 21(23), 28628–28637 (2013).
[Crossref] [PubMed]

S. He, X. Zhang, and Y. He, “Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI,” Opt. Express 21(25), 30664–30673 (2013).
[Crossref] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

B. H. Cheng, Y. Z. Ho, Y. C. Lan, and D. P. Tsai, “Optical hybrid-superlens-hyperlens for superresolution imaging,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4601305 (2013).
[Crossref]

2012 (4)

P. Li and T. Taubner, “Broadband subwavelength imaging using a tunable graphene-lens,” ACS Nano 6(11), 10107–10114 (2012).
[Crossref] [PubMed]

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).
[Crossref]

Y. T. Wang, B. H. Cheng, Y. Z. Ho, Y. C. Lan, P. G. Luan, and D. P. Tsai, “Gain-assisted hybrid-superlens hyperlens for nano imaging,” Opt. Express 20(20), 22953–22960 (2012).
[Crossref] [PubMed]

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100(13), 131111 (2012).
[Crossref]

2011 (2)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

2010 (1)

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470–473 (2010).
[Crossref] [PubMed]

2009 (1)

A. Schilling, J. Schilling, C. Reinhardt, and B. Chickov, “A superlens for the deep ultraviolet,” Appl. Phys. Lett. 95(12), 121909 (2009).
[Crossref]

2008 (2)

G. W. Hanson, “Dyadic Greens functions and guided surface waves on graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

2007 (5)

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B 75(20), 205418 (2007).
[Crossref]

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
[Crossref]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

2006 (3)

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[Crossref]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[Crossref]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[Crossref] [PubMed]

2005 (1)

W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005).
[Crossref]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

2003 (1)

D. R. Smith, D. Schurig, M. Rosenbluth, and S. Schultz, “Limitations on subdiffraction imaging with a negative index slab,” Appl. Phys. Lett. 82(10), 1506–1508 (2003).

1993 (1)

R. A. Jishi, M. S. Dresselhaus, and G. Dresselhaus, “Electron-phonon coupling and the electrical conductivity of fullerene nanotubules,” Phys. Rev. B Condens. Matter 48(15), 11385–11389 (1993).
[Crossref] [PubMed]

Aceves, A. B.

Ajayan, P. M.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

Alekseyev, L. V.

Alù, A.

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

Andryieuski, A.

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).
[Crossref]

Auditore, A.

Avouris, P.

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

Bieri, M.

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470–473 (2010).
[Crossref] [PubMed]

Blankenburg, S.

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470–473 (2010).
[Crossref] [PubMed]

Böckmann, H.

P. Li, T. Wang, H. Böckmann, and T. Taubner, “Graphene-Enhanced Infrared Near-Field Microscopy,” Nano Lett. 14(8), 4400–4405 (2014).
[Crossref] [PubMed]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Braun, T.

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470–473 (2010).
[Crossref] [PubMed]

Cai, J.

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470–473 (2010).
[Crossref] [PubMed]

Cai, W.

W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005).
[Crossref]

Carbotte, J. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
[Crossref]

Chen, L.

Chen, P. Y.

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

Cheng, B. H.

Chickov, B.

A. Schilling, J. Schilling, C. Reinhardt, and B. Chickov, “A superlens for the deep ultraviolet,” Appl. Phys. Lett. 95(12), 121909 (2009).
[Crossref]

Chigrin, D. N.

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).
[Crossref]

Dai, X.

Das Sarma, S.

E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B 75(20), 205418 (2007).
[Crossref]

de Angelis, C.

Dresselhaus, G.

R. A. Jishi, M. S. Dresselhaus, and G. Dresselhaus, “Electron-phonon coupling and the electrical conductivity of fullerene nanotubules,” Phys. Rev. B Condens. Matter 48(15), 11385–11389 (1993).
[Crossref] [PubMed]

Dresselhaus, M. S.

R. A. Jishi, M. S. Dresselhaus, and G. Dresselhaus, “Electron-phonon coupling and the electrical conductivity of fullerene nanotubules,” Phys. Rev. B Condens. Matter 48(15), 11385–11389 (1993).
[Crossref] [PubMed]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[Crossref]

Falkovsky, L. A.

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

Fasel, R.

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470–473 (2010).
[Crossref] [PubMed]

Feng, X.

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470–473 (2010).
[Crossref] [PubMed]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gao, W.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

Geim, A. K.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Genov, D. A.

W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Guo, J.

Gusynin, V. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
[Crossref]

Hanson, G. W.

G. W. Hanson, “Dyadic Greens functions and guided surface waves on graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

He, S.

He, Y.

Ho, Y. Z.

B. H. Cheng, Y. Z. Ho, Y. C. Lan, and D. P. Tsai, “Optical hybrid-superlens-hyperlens for superresolution imaging,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4601305 (2013).
[Crossref]

Y. T. Wang, B. H. Cheng, Y. Z. Ho, Y. C. Lan, P. G. Luan, and D. P. Tsai, “Gain-assisted hybrid-superlens hyperlens for nano imaging,” Opt. Express 20(20), 22953–22960 (2012).
[Crossref] [PubMed]

Hwang, E. H.

E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B 75(20), 205418 (2007).
[Crossref]

Jaafar, R.

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470–473 (2010).
[Crossref] [PubMed]

Jacob, Z.

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jin, Z.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

Jishi, R. A.

R. A. Jishi, M. S. Dresselhaus, and G. Dresselhaus, “Electron-phonon coupling and the electrical conductivity of fullerene nanotubules,” Phys. Rev. B Condens. Matter 48(15), 11385–11389 (1993).
[Crossref] [PubMed]

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Kono, J.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

Lan, Y. C.

Lavrinenko, A. V.

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).
[Crossref]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Li, P.

P. Li, T. Wang, H. Böckmann, and T. Taubner, “Graphene-Enhanced Infrared Near-Field Microscopy,” Nano Lett. 14(8), 4400–4405 (2014).
[Crossref] [PubMed]

P. Li and T. Taubner, “Broadband subwavelength imaging using a tunable graphene-lens,” ACS Nano 6(11), 10107–10114 (2012).
[Crossref] [PubMed]

Li, X.

Liu, Z.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Locatelli, A.

Low, T.

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

Luan, P. G.

Martín-Moreno, L.

M. Tymchenko, A. Y. Nikitin, and L. Martín-Moreno, “Faraday rotation due to excitation of magnetoplasmons in graphene microribbons,” ACS Nano 7(11), 9780–9787 (2013).
[Crossref] [PubMed]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Müllen, K.

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470–473 (2010).
[Crossref] [PubMed]

Muoth, M.

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470–473 (2010).
[Crossref] [PubMed]

Narimanov, E.

Nikitin, A. Y.

M. Tymchenko, A. Y. Nikitin, and L. Martín-Moreno, “Faraday rotation due to excitation of magnetoplasmons in graphene microribbons,” ACS Nano 7(11), 9780–9787 (2013).
[Crossref] [PubMed]

Novoselov, K. S.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Pendry, J. B.

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[Crossref]

Pershoguba, S. S.

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

Reinhardt, C.

A. Schilling, J. Schilling, C. Reinhardt, and B. Chickov, “A superlens for the deep ultraviolet,” Appl. Phys. Lett. 95(12), 121909 (2009).
[Crossref]

Rosenbluth, M.

D. R. Smith, D. Schurig, M. Rosenbluth, and S. Schultz, “Limitations on subdiffraction imaging with a negative index slab,” Appl. Phys. Lett. 82(10), 1506–1508 (2003).

Ruffieux, P.

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470–473 (2010).
[Crossref] [PubMed]

Salandrino, A.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[Crossref]

Saleh, M.

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470–473 (2010).
[Crossref] [PubMed]

Schilling, A.

A. Schilling, J. Schilling, C. Reinhardt, and B. Chickov, “A superlens for the deep ultraviolet,” Appl. Phys. Lett. 95(12), 121909 (2009).
[Crossref]

Schilling, J.

A. Schilling, J. Schilling, C. Reinhardt, and B. Chickov, “A superlens for the deep ultraviolet,” Appl. Phys. Lett. 95(12), 121909 (2009).
[Crossref]

Schultz, S.

D. R. Smith, D. Schurig, M. Rosenbluth, and S. Schultz, “Limitations on subdiffraction imaging with a negative index slab,” Appl. Phys. Lett. 82(10), 1506–1508 (2003).

Schurig, D.

D. R. Smith, D. Schurig, M. Rosenbluth, and S. Schultz, “Limitations on subdiffraction imaging with a negative index slab,” Appl. Phys. Lett. 82(10), 1506–1508 (2003).

Seitsonen, A. P.

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470–473 (2010).
[Crossref] [PubMed]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005).
[Crossref]

Sharapov, S. G.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
[Crossref]

Shi, G.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

Shu, J.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

Smith, D. R.

D. R. Smith, D. Schurig, M. Rosenbluth, and S. Schultz, “Limitations on subdiffraction imaging with a negative index slab,” Appl. Phys. Lett. 82(10), 1506–1508 (2003).

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Tang, D.

Taubner, T.

P. Li, T. Wang, H. Böckmann, and T. Taubner, “Graphene-Enhanced Infrared Near-Field Microscopy,” Nano Lett. 14(8), 4400–4405 (2014).
[Crossref] [PubMed]

P. Li and T. Taubner, “Broadband subwavelength imaging using a tunable graphene-lens,” ACS Nano 6(11), 10107–10114 (2012).
[Crossref] [PubMed]

Teng, J.

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100(13), 131111 (2012).
[Crossref]

Tsai, D. P.

B. H. Cheng, Y. C. Lan, and D. P. Tsai, “Breaking optical diffraction limitation using optical hybrid-super-hyperlens with radially polarized light,” Opt. Express 21(12), 14898–14906 (2013).
[Crossref] [PubMed]

B. H. Cheng, Y. Z. Ho, Y. C. Lan, and D. P. Tsai, “Optical hybrid-superlens-hyperlens for superresolution imaging,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4601305 (2013).
[Crossref]

Y. T. Wang, B. H. Cheng, Y. Z. Ho, Y. C. Lan, P. G. Luan, and D. P. Tsai, “Gain-assisted hybrid-superlens hyperlens for nano imaging,” Opt. Express 20(20), 22953–22960 (2012).
[Crossref] [PubMed]

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[Crossref]

Tymchenko, M.

M. Tymchenko, A. Y. Nikitin, and L. Martín-Moreno, “Faraday rotation due to excitation of magnetoplasmons in graphene microribbons,” ACS Nano 7(11), 9780–9787 (2013).
[Crossref] [PubMed]

Vajtai, R.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Wang, B.

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100(13), 131111 (2012).
[Crossref]

Wang, G.

Wang, T.

P. Li, T. Wang, H. Böckmann, and T. Taubner, “Graphene-Enhanced Infrared Near-Field Microscopy,” Nano Lett. 14(8), 4400–4405 (2014).
[Crossref] [PubMed]

Wang, Y. T.

Wen, S.

Wood, B.

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[Crossref]

Xiang, Y.

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Xu, Q.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

Yuan, X.

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100(13), 131111 (2012).
[Crossref]

Zhang, Q.

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

Zhang, T.

Zhang, X.

S. He, X. Zhang, and Y. He, “Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI,” Opt. Express 21(25), 30664–30673 (2013).
[Crossref] [PubMed]

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100(13), 131111 (2012).
[Crossref]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

ACS Nano (4)

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

M. Tymchenko, A. Y. Nikitin, and L. Martín-Moreno, “Faraday rotation due to excitation of magnetoplasmons in graphene microribbons,” ACS Nano 7(11), 9780–9787 (2013).
[Crossref] [PubMed]

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

P. Li and T. Taubner, “Broadband subwavelength imaging using a tunable graphene-lens,” ACS Nano 6(11), 10107–10114 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100(13), 131111 (2012).
[Crossref]

D. R. Smith, D. Schurig, M. Rosenbluth, and S. Schultz, “Limitations on subdiffraction imaging with a negative index slab,” Appl. Phys. Lett. 82(10), 1506–1508 (2003).

A. Schilling, J. Schilling, C. Reinhardt, and B. Chickov, “A superlens for the deep ultraviolet,” Appl. Phys. Lett. 95(12), 121909 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

B. H. Cheng, Y. Z. Ho, Y. C. Lan, and D. P. Tsai, “Optical hybrid-superlens-hyperlens for superresolution imaging,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4601305 (2013).
[Crossref]

J. Appl. Phys. (2)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

G. W. Hanson, “Dyadic Greens functions and guided surface waves on graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. Phys. Condens. Matter (1)

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 026222 (2007).
[Crossref]

Nano Lett. (2)

W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref] [PubMed]

P. Li, T. Wang, H. Böckmann, and T. Taubner, “Graphene-Enhanced Infrared Near-Field Microscopy,” Nano Lett. 14(8), 4400–4405 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Nature (1)

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470–473 (2010).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. B (6)

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).
[Crossref]

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B 75(20), 205418 (2007).
[Crossref]

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[Crossref]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[Crossref]

W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005).
[Crossref]

Phys. Rev. B Condens. Matter (1)

R. A. Jishi, M. S. Dresselhaus, and G. Dresselhaus, “Electron-phonon coupling and the electrical conductivity of fullerene nanotubules,” Phys. Rev. B Condens. Matter 48(15), 11385–11389 (1993).
[Crossref] [PubMed]

Science (4)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Other (3)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, Oxford, 2006).

M. Born and E. Wolf, Principles of Optics, 7th edition (Cambridge Press, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Concept of investigated structure.
Fig. 2
Fig. 2 (a) Left: dispersion relations ( ω k diagrams) of monolayer graphene sandwiched between two dielectric materials for different chemical potentials in graphene, where solid (dashed) lines are the dispersion curves with positive (negative) slope. For red (blue, green, and black) line, chemical potential is 0.15 eV, (0.2 eV, 0.3 eV, and 0.4 eV), which comes from theoretical calculation. Solid circle symbols come from FEM simulation. Right: schema of monolayer graphene sandwiched between two dielectric materials. ε 1 ( ε 2 ) is the relative permittivity of upper (lower) dielectric material. For simplification, we set ε 1 = ε 2 = 6.3 in all investigated work. (b) and (c): Simulated Ex contours of excited surface waves at various operating frequencies for symmetric and ant-symmetric, respectively, modes. The chemical potential is 0.3 eV. (d) Side-view of the investigated system (Fig. 1). (e) Equivalent structure of (d). n e 1 ( n e 1 ) denotes effective refractive index obtained from formula n e = c Re [ k ] / ω , and the inset shows effective relative permittivity tensor of (d). ε / / and ε are effective relative permittivities in parallel (y and z) and perpendicular (x), respectively, directions.
Fig. 3
Fig. 3 Simulated structure. (a) Schematic 3D structure. (b) and (c) xz-plane and yz-plane side views, respectively. Total spatial space (x × y × z) in simulation is 60 nm × 140 nm × 7 nm. The volume fractions of graphene with chemical potentials μ c 1 and μ c 2 are 0.5 and 0.5, respectively), for periodicity Λ = 10 nm. Mask material is Chromium with thickness of 2 nm. Two elliptical holes on Cr mask represent the object to be resolved, which are filled with air. Length of major (minor) axis is 8 nm (2 nm). The center-to-center distance of the two holes is 80 nm. The blue arrow denotes the preferred propagation of excited surface wave, which can be fulfilled for proposed devices with flat hyperbolic isofrequency curves.
Fig. 4
Fig. 4 (a), (b), (c), and (d): Simulated time-averaged power flow contours. They are extracted at xy plane and 1.5 nm above the upper surface of the graphene. (e), (f), (g), and (h): Power flow intensities versus y position at x = 47 nm. (i), (j), (k), and (l): Isofrequency dispersion relations. For (a), (e) and (i), μ c 1 = 0.2 eV, μ c 2 = 0.3 eV, and incident frequency f = 71.195 THz. For (b), (f) and (j), μ c 1 = 0.3 eV, μ c 2 = 0.3 eV, and f = 71.195 THz. For (c), (g) and (k), μ c 1 = 0.15 eV, μ c 2 = 0.2 eV, and f = 55.2 THz. For (d), (h) and (l), μ c 1 = 0.2 eV, μ c 2 = 0.3 eV, and f = 55.2 THz. Orange lines in (e) – (h) denote the center positions of two tiny elliptical holes.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

σ g = i e 2 4 π ln [ 2 μ c ( ω + i 2 Γ ) 2 μ c + ( ω + i 2 Γ ) ] + i e 2 k B T π 2 ( ω + i 2 Γ ) [ μ c k B T + ln ( e μ c k B T + 1 ) ]
ε g n = ( ε 0 + i σ g ω Δ ) / ε 0 ,
T a n h [ k 2 ε g × ( ω / c ) 2 Δ ] = ε g ε d k 2 ε d × ( ω / c ) 2 k 2 ε g × ( ω / c ) 2 ;
C o t h [ k 2 ε g × ( ω / c ) 2 Δ ] = ε g ε d k 2 ε d × ( ω / c ) 2 k 2 ε g × ( ω / c ) 2 ,
cos ( k Λ ) = cos ( k 1 d 1 ) cos ( k 2 d 2 ) 1 2 ( n e 1 2 k 2 n e 2 2 k 1 + n e 2 2 k 1 n e 1 2 k 2 ) sin ( k 1 d 1 ) sin ( k 2 d 2 ) ,
k / / 2 ε + k 2 ε / / = k 0 2 ,

Metrics