Abstract

A compact optoelectronic tweezers system for combined cell manipulation and analysis is presented. CMOS-controlled gallium nitride micro-LED arrays are used to provide simultaneous spatio-temporal control of dielectrophoresis traps within an optoelectronic tweezers device and fluorescence imaging of contrasting dye labelled cells. This capability provides direct identification, selection and controlled interaction of single T-lymphocytes and dendritic cells. The trap strength and profile for two emission wavelengths of micro-LED array have been measured and a maximum trapping force of 13.1 and 7.6 pN was achieved for projected micro-LED devices emitting at λmax 520 and 450 nm, respectively. A potential application in biological research is demonstrated through the controlled interaction of live immune cells where there is potential for this method of OET to be implemented as a compact device.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photonics Technol. Lett. 22(18), 1346–1348 (2010).
    [CrossRef]
  2. P. Y. Chiou, A. T. Ohta, M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
    [CrossRef] [PubMed]
  3. H. Hwang, Y.-J. Choi, W. Choi, S.-H. Kim, J. Jang, J.-K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis 29(6), 1203–1212 (2008).
    [CrossRef] [PubMed]
  4. J. K. Valley, M. M. Garcia, P. Swinton, S. L. Neale, H.-Y. Hsu, A. Jamshidi, M. C. Wu, “Optoelectronic tweezers for quantitative assessment of embryo developmental stage,” in Proceedings of IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2010), pp. 943–946.
    [CrossRef]
  5. S.-M. Yang, T.-M. Yu, H.-P. Huang, M.-Y. Ku, L. Hsu, C.-H. Liu, “Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis,” Opt. Lett. 35(12), 1959–1961 (2010).
    [CrossRef] [PubMed]
  6. M. C. Wu, “Optoelectronic tweezers,” Nat. Photonics 5(6), 322–324 (2011).
    [CrossRef]
  7. R. Pethig, “Dielectrophoresis: Status of the theory, technology, and applications,” Biomicrofluidics 4(2), 022811 (2010).
    [CrossRef] [PubMed]
  8. A. T. Ohta, P.-Y. Chiou, and M. C. Wu, “Dynamic DMD-driven optoelectronic tweezers for microscopic particle manipulation,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Vol. 1 of 2004 OSA Technical Digest Series (Optical Society of America, 2004), paper CWS5.
  9. A. Zarowna-Dabrowska, S. L. Neale, D. Massoubre, J. J. D. McKendry, B. R. Rae, R. K. Henderson, M. J. Rose, H. Yin, J. M. Cooper, E. Gu, M. D. Dawson, “Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays,” Opt. Express 19(3), 2720–2728 (2011).
    [CrossRef] [PubMed]
  10. H. Y. Hsu, A. T. Ohta, P. Y. Chiou, A. Jamshidi, and M. C. Wu, “Phototransistor-based optoelectronic tweezers for cell manipulation in highly conductive solution,” in Proceedings of Solid-State Sensors, Actuators and Microsystems International Conference (Transducers, 2007), pp. 477–480.
    [CrossRef]
  11. A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, M. L. Dustin, “The immunological synapse: A molecular machine controlling T cell activation,” Science 285(5425), 221–227 (1999).
    [CrossRef] [PubMed]
  12. J. K. Valley, A. Jamshidi, A. T. Ohta, H.-Y. Hsu, M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17(2), 342–350 (2008).
    [CrossRef] [PubMed]
  13. B. R. Rae, C. Griffin, J. J. D. McKendry, J. M. Girkin, H. X. Zhang, E. Gu, D. Renshaw, E. Charbon, M. D. Dawson, R. K. Henderson, “CMOS driven micro-pixel LEDs integrated with single photon avalanche diodes for time resolved fluorescence measurements,” J. Phys. D Appl. Phys. 41(9), 094011 (2008).
    [CrossRef]
  14. D. M. Underhill, M. Bassetti, A. Rudensky, A. Aderem, “Dynamic interactions of macrophages with T cells during antigen presentation,” J. Exp. Med. 190(12), 1909–1914 (1999).
    [CrossRef] [PubMed]
  15. M. B. Lutz, N. Kukutsch, A. L. J. Ogilvie, S. Rössner, F. Koch, N. Romani, G. Schuler, “An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow,” J. Immunol. Methods 223(1), 77–92 (1999).
    [CrossRef] [PubMed]
  16. Life Technology, “CellTracker™ Probes for Long-Term Tracing of Living Cells,” http://tools.invitrogen.com/content/sfs/manuals/mp02925.pdf .
  17. M. P. Hughes, Nanoelectromechanics in Engineering and Biology (CRC Press, 2003).
  18. K. Svoboda, S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
    [CrossRef] [PubMed]
  19. S. L. Neale, A. T. Ohta, H.-Y. Hsu, J. K. Valley, A. Jamshidi, M. C. Wu, “Trap profiles of projector based optoelectronic tweezers (OET) with HeLa cells,” Opt. Express 17(7), 5231–5239 (2009).
    [CrossRef] [PubMed]
  20. T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, R. A. Mathies, “Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices,” Anal. Chem. 75(20), 5300–5305 (2003).
    [CrossRef] [PubMed]
  21. S. L. Neale, M. Mazilu, J. I. B. Wilson, K. Dholakia, T. F. Krauss, “The resolution of optical traps created by Light Induced Dielectrophoresis (LIDEP),” Opt. Express 15(20), 12619–12626 (2007).
    [CrossRef] [PubMed]
  22. K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
    [CrossRef] [PubMed]

2011

M. C. Wu, “Optoelectronic tweezers,” Nat. Photonics 5(6), 322–324 (2011).
[CrossRef]

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[CrossRef] [PubMed]

A. Zarowna-Dabrowska, S. L. Neale, D. Massoubre, J. J. D. McKendry, B. R. Rae, R. K. Henderson, M. J. Rose, H. Yin, J. M. Cooper, E. Gu, M. D. Dawson, “Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays,” Opt. Express 19(3), 2720–2728 (2011).
[CrossRef] [PubMed]

2010

S.-M. Yang, T.-M. Yu, H.-P. Huang, M.-Y. Ku, L. Hsu, C.-H. Liu, “Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis,” Opt. Lett. 35(12), 1959–1961 (2010).
[CrossRef] [PubMed]

R. Pethig, “Dielectrophoresis: Status of the theory, technology, and applications,” Biomicrofluidics 4(2), 022811 (2010).
[CrossRef] [PubMed]

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photonics Technol. Lett. 22(18), 1346–1348 (2010).
[CrossRef]

2009

2008

H. Hwang, Y.-J. Choi, W. Choi, S.-H. Kim, J. Jang, J.-K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis 29(6), 1203–1212 (2008).
[CrossRef] [PubMed]

J. K. Valley, A. Jamshidi, A. T. Ohta, H.-Y. Hsu, M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17(2), 342–350 (2008).
[CrossRef] [PubMed]

B. R. Rae, C. Griffin, J. J. D. McKendry, J. M. Girkin, H. X. Zhang, E. Gu, D. Renshaw, E. Charbon, M. D. Dawson, R. K. Henderson, “CMOS driven micro-pixel LEDs integrated with single photon avalanche diodes for time resolved fluorescence measurements,” J. Phys. D Appl. Phys. 41(9), 094011 (2008).
[CrossRef]

2007

2005

P. Y. Chiou, A. T. Ohta, M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

2003

T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, R. A. Mathies, “Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices,” Anal. Chem. 75(20), 5300–5305 (2003).
[CrossRef] [PubMed]

1999

A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, M. L. Dustin, “The immunological synapse: A molecular machine controlling T cell activation,” Science 285(5425), 221–227 (1999).
[CrossRef] [PubMed]

D. M. Underhill, M. Bassetti, A. Rudensky, A. Aderem, “Dynamic interactions of macrophages with T cells during antigen presentation,” J. Exp. Med. 190(12), 1909–1914 (1999).
[CrossRef] [PubMed]

M. B. Lutz, N. Kukutsch, A. L. J. Ogilvie, S. Rössner, F. Koch, N. Romani, G. Schuler, “An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow,” J. Immunol. Methods 223(1), 77–92 (1999).
[CrossRef] [PubMed]

1994

K. Svoboda, S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[CrossRef] [PubMed]

Aderem, A.

D. M. Underhill, M. Bassetti, A. Rudensky, A. Aderem, “Dynamic interactions of macrophages with T cells during antigen presentation,” J. Exp. Med. 190(12), 1909–1914 (1999).
[CrossRef] [PubMed]

Allen, P. M.

A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, M. L. Dustin, “The immunological synapse: A molecular machine controlling T cell activation,” Science 285(5425), 221–227 (1999).
[CrossRef] [PubMed]

Bassetti, M.

D. M. Underhill, M. Bassetti, A. Rudensky, A. Aderem, “Dynamic interactions of macrophages with T cells during antigen presentation,” J. Exp. Med. 190(12), 1909–1914 (1999).
[CrossRef] [PubMed]

Block, S. M.

K. Svoboda, S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[CrossRef] [PubMed]

Bromley, S. K.

A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, M. L. Dustin, “The immunological synapse: A molecular machine controlling T cell activation,” Science 285(5425), 221–227 (1999).
[CrossRef] [PubMed]

Burns, L. D.

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[CrossRef] [PubMed]

Charbon, E.

B. R. Rae, C. Griffin, J. J. D. McKendry, J. M. Girkin, H. X. Zhang, E. Gu, D. Renshaw, E. Charbon, M. D. Dawson, R. K. Henderson, “CMOS driven micro-pixel LEDs integrated with single photon avalanche diodes for time resolved fluorescence measurements,” J. Phys. D Appl. Phys. 41(9), 094011 (2008).
[CrossRef]

Chiou, P. Y.

P. Y. Chiou, A. T. Ohta, M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Choi, W.

H. Hwang, Y.-J. Choi, W. Choi, S.-H. Kim, J. Jang, J.-K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis 29(6), 1203–1212 (2008).
[CrossRef] [PubMed]

Choi, Y.-J.

H. Hwang, Y.-J. Choi, W. Choi, S.-H. Kim, J. Jang, J.-K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis 29(6), 1203–1212 (2008).
[CrossRef] [PubMed]

Cocker, E. D.

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[CrossRef] [PubMed]

Cooper, J. M.

Davis, M. M.

A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, M. L. Dustin, “The immunological synapse: A molecular machine controlling T cell activation,” Science 285(5425), 221–227 (1999).
[CrossRef] [PubMed]

Dawson, M. D.

A. Zarowna-Dabrowska, S. L. Neale, D. Massoubre, J. J. D. McKendry, B. R. Rae, R. K. Henderson, M. J. Rose, H. Yin, J. M. Cooper, E. Gu, M. D. Dawson, “Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays,” Opt. Express 19(3), 2720–2728 (2011).
[CrossRef] [PubMed]

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photonics Technol. Lett. 22(18), 1346–1348 (2010).
[CrossRef]

B. R. Rae, C. Griffin, J. J. D. McKendry, J. M. Girkin, H. X. Zhang, E. Gu, D. Renshaw, E. Charbon, M. D. Dawson, R. K. Henderson, “CMOS driven micro-pixel LEDs integrated with single photon avalanche diodes for time resolved fluorescence measurements,” J. Phys. D Appl. Phys. 41(9), 094011 (2008).
[CrossRef]

Dholakia, K.

Dustin, M. L.

A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, M. L. Dustin, “The immunological synapse: A molecular machine controlling T cell activation,” Science 285(5425), 221–227 (1999).
[CrossRef] [PubMed]

Gamal, A. E.

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[CrossRef] [PubMed]

Garcia, M. M.

J. K. Valley, M. M. Garcia, P. Swinton, S. L. Neale, H.-Y. Hsu, A. Jamshidi, M. C. Wu, “Optoelectronic tweezers for quantitative assessment of embryo developmental stage,” in Proceedings of IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2010), pp. 943–946.
[CrossRef]

Ghosh, K. K.

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[CrossRef] [PubMed]

Girkin, J. M.

B. R. Rae, C. Griffin, J. J. D. McKendry, J. M. Girkin, H. X. Zhang, E. Gu, D. Renshaw, E. Charbon, M. D. Dawson, R. K. Henderson, “CMOS driven micro-pixel LEDs integrated with single photon avalanche diodes for time resolved fluorescence measurements,” J. Phys. D Appl. Phys. 41(9), 094011 (2008).
[CrossRef]

Gong, Z.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photonics Technol. Lett. 22(18), 1346–1348 (2010).
[CrossRef]

Grakoui, A.

A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, M. L. Dustin, “The immunological synapse: A molecular machine controlling T cell activation,” Science 285(5425), 221–227 (1999).
[CrossRef] [PubMed]

Green, R. P.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photonics Technol. Lett. 22(18), 1346–1348 (2010).
[CrossRef]

Griffin, C.

B. R. Rae, C. Griffin, J. J. D. McKendry, J. M. Girkin, H. X. Zhang, E. Gu, D. Renshaw, E. Charbon, M. D. Dawson, R. K. Henderson, “CMOS driven micro-pixel LEDs integrated with single photon avalanche diodes for time resolved fluorescence measurements,” J. Phys. D Appl. Phys. 41(9), 094011 (2008).
[CrossRef]

Gu, E.

A. Zarowna-Dabrowska, S. L. Neale, D. Massoubre, J. J. D. McKendry, B. R. Rae, R. K. Henderson, M. J. Rose, H. Yin, J. M. Cooper, E. Gu, M. D. Dawson, “Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays,” Opt. Express 19(3), 2720–2728 (2011).
[CrossRef] [PubMed]

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photonics Technol. Lett. 22(18), 1346–1348 (2010).
[CrossRef]

B. R. Rae, C. Griffin, J. J. D. McKendry, J. M. Girkin, H. X. Zhang, E. Gu, D. Renshaw, E. Charbon, M. D. Dawson, R. K. Henderson, “CMOS driven micro-pixel LEDs integrated with single photon avalanche diodes for time resolved fluorescence measurements,” J. Phys. D Appl. Phys. 41(9), 094011 (2008).
[CrossRef]

Guilhabert, B.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photonics Technol. Lett. 22(18), 1346–1348 (2010).
[CrossRef]

Henderson, R. K.

A. Zarowna-Dabrowska, S. L. Neale, D. Massoubre, J. J. D. McKendry, B. R. Rae, R. K. Henderson, M. J. Rose, H. Yin, J. M. Cooper, E. Gu, M. D. Dawson, “Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays,” Opt. Express 19(3), 2720–2728 (2011).
[CrossRef] [PubMed]

B. R. Rae, C. Griffin, J. J. D. McKendry, J. M. Girkin, H. X. Zhang, E. Gu, D. Renshaw, E. Charbon, M. D. Dawson, R. K. Henderson, “CMOS driven micro-pixel LEDs integrated with single photon avalanche diodes for time resolved fluorescence measurements,” J. Phys. D Appl. Phys. 41(9), 094011 (2008).
[CrossRef]

Hsu, H.-Y.

S. L. Neale, A. T. Ohta, H.-Y. Hsu, J. K. Valley, A. Jamshidi, M. C. Wu, “Trap profiles of projector based optoelectronic tweezers (OET) with HeLa cells,” Opt. Express 17(7), 5231–5239 (2009).
[CrossRef] [PubMed]

J. K. Valley, A. Jamshidi, A. T. Ohta, H.-Y. Hsu, M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17(2), 342–350 (2008).
[CrossRef] [PubMed]

J. K. Valley, M. M. Garcia, P. Swinton, S. L. Neale, H.-Y. Hsu, A. Jamshidi, M. C. Wu, “Optoelectronic tweezers for quantitative assessment of embryo developmental stage,” in Proceedings of IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2010), pp. 943–946.
[CrossRef]

Hsu, L.

Huang, H.-P.

Hwang, H.

H. Hwang, Y.-J. Choi, W. Choi, S.-H. Kim, J. Jang, J.-K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis 29(6), 1203–1212 (2008).
[CrossRef] [PubMed]

Jamshidi, A.

S. L. Neale, A. T. Ohta, H.-Y. Hsu, J. K. Valley, A. Jamshidi, M. C. Wu, “Trap profiles of projector based optoelectronic tweezers (OET) with HeLa cells,” Opt. Express 17(7), 5231–5239 (2009).
[CrossRef] [PubMed]

J. K. Valley, A. Jamshidi, A. T. Ohta, H.-Y. Hsu, M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17(2), 342–350 (2008).
[CrossRef] [PubMed]

J. K. Valley, M. M. Garcia, P. Swinton, S. L. Neale, H.-Y. Hsu, A. Jamshidi, M. C. Wu, “Optoelectronic tweezers for quantitative assessment of embryo developmental stage,” in Proceedings of IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2010), pp. 943–946.
[CrossRef]

Jang, J.

H. Hwang, Y.-J. Choi, W. Choi, S.-H. Kim, J. Jang, J.-K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis 29(6), 1203–1212 (2008).
[CrossRef] [PubMed]

Kamei, T.

T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, R. A. Mathies, “Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices,” Anal. Chem. 75(20), 5300–5305 (2003).
[CrossRef] [PubMed]

Kelly, A. E.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photonics Technol. Lett. 22(18), 1346–1348 (2010).
[CrossRef]

Kim, S.-H.

H. Hwang, Y.-J. Choi, W. Choi, S.-H. Kim, J. Jang, J.-K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis 29(6), 1203–1212 (2008).
[CrossRef] [PubMed]

Koch, F.

M. B. Lutz, N. Kukutsch, A. L. J. Ogilvie, S. Rössner, F. Koch, N. Romani, G. Schuler, “An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow,” J. Immunol. Methods 223(1), 77–92 (1999).
[CrossRef] [PubMed]

Krauss, T. F.

Ku, M.-Y.

Kukutsch, N.

M. B. Lutz, N. Kukutsch, A. L. J. Ogilvie, S. Rössner, F. Koch, N. Romani, G. Schuler, “An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow,” J. Immunol. Methods 223(1), 77–92 (1999).
[CrossRef] [PubMed]

Liu, C.-H.

Lutz, M. B.

M. B. Lutz, N. Kukutsch, A. L. J. Ogilvie, S. Rössner, F. Koch, N. Romani, G. Schuler, “An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow,” J. Immunol. Methods 223(1), 77–92 (1999).
[CrossRef] [PubMed]

Massoubre, D.

A. Zarowna-Dabrowska, S. L. Neale, D. Massoubre, J. J. D. McKendry, B. R. Rae, R. K. Henderson, M. J. Rose, H. Yin, J. M. Cooper, E. Gu, M. D. Dawson, “Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays,” Opt. Express 19(3), 2720–2728 (2011).
[CrossRef] [PubMed]

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photonics Technol. Lett. 22(18), 1346–1348 (2010).
[CrossRef]

Mathies, R. A.

T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, R. A. Mathies, “Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices,” Anal. Chem. 75(20), 5300–5305 (2003).
[CrossRef] [PubMed]

Mazilu, M.

McKendry, J. J. D.

A. Zarowna-Dabrowska, S. L. Neale, D. Massoubre, J. J. D. McKendry, B. R. Rae, R. K. Henderson, M. J. Rose, H. Yin, J. M. Cooper, E. Gu, M. D. Dawson, “Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays,” Opt. Express 19(3), 2720–2728 (2011).
[CrossRef] [PubMed]

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photonics Technol. Lett. 22(18), 1346–1348 (2010).
[CrossRef]

B. R. Rae, C. Griffin, J. J. D. McKendry, J. M. Girkin, H. X. Zhang, E. Gu, D. Renshaw, E. Charbon, M. D. Dawson, R. K. Henderson, “CMOS driven micro-pixel LEDs integrated with single photon avalanche diodes for time resolved fluorescence measurements,” J. Phys. D Appl. Phys. 41(9), 094011 (2008).
[CrossRef]

Neale, S. L.

Nimmerjahn, A.

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[CrossRef] [PubMed]

Ogilvie, A. L. J.

M. B. Lutz, N. Kukutsch, A. L. J. Ogilvie, S. Rössner, F. Koch, N. Romani, G. Schuler, “An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow,” J. Immunol. Methods 223(1), 77–92 (1999).
[CrossRef] [PubMed]

Ohta, A. T.

S. L. Neale, A. T. Ohta, H.-Y. Hsu, J. K. Valley, A. Jamshidi, M. C. Wu, “Trap profiles of projector based optoelectronic tweezers (OET) with HeLa cells,” Opt. Express 17(7), 5231–5239 (2009).
[CrossRef] [PubMed]

J. K. Valley, A. Jamshidi, A. T. Ohta, H.-Y. Hsu, M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17(2), 342–350 (2008).
[CrossRef] [PubMed]

P. Y. Chiou, A. T. Ohta, M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Paegel, B. M.

T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, R. A. Mathies, “Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices,” Anal. Chem. 75(20), 5300–5305 (2003).
[CrossRef] [PubMed]

Park, J.-K.

H. Hwang, Y.-J. Choi, W. Choi, S.-H. Kim, J. Jang, J.-K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis 29(6), 1203–1212 (2008).
[CrossRef] [PubMed]

Pethig, R.

R. Pethig, “Dielectrophoresis: Status of the theory, technology, and applications,” Biomicrofluidics 4(2), 022811 (2010).
[CrossRef] [PubMed]

Rae, B. R.

A. Zarowna-Dabrowska, S. L. Neale, D. Massoubre, J. J. D. McKendry, B. R. Rae, R. K. Henderson, M. J. Rose, H. Yin, J. M. Cooper, E. Gu, M. D. Dawson, “Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays,” Opt. Express 19(3), 2720–2728 (2011).
[CrossRef] [PubMed]

B. R. Rae, C. Griffin, J. J. D. McKendry, J. M. Girkin, H. X. Zhang, E. Gu, D. Renshaw, E. Charbon, M. D. Dawson, R. K. Henderson, “CMOS driven micro-pixel LEDs integrated with single photon avalanche diodes for time resolved fluorescence measurements,” J. Phys. D Appl. Phys. 41(9), 094011 (2008).
[CrossRef]

Renshaw, D.

B. R. Rae, C. Griffin, J. J. D. McKendry, J. M. Girkin, H. X. Zhang, E. Gu, D. Renshaw, E. Charbon, M. D. Dawson, R. K. Henderson, “CMOS driven micro-pixel LEDs integrated with single photon avalanche diodes for time resolved fluorescence measurements,” J. Phys. D Appl. Phys. 41(9), 094011 (2008).
[CrossRef]

Romani, N.

M. B. Lutz, N. Kukutsch, A. L. J. Ogilvie, S. Rössner, F. Koch, N. Romani, G. Schuler, “An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow,” J. Immunol. Methods 223(1), 77–92 (1999).
[CrossRef] [PubMed]

Rose, M. J.

Rössner, S.

M. B. Lutz, N. Kukutsch, A. L. J. Ogilvie, S. Rössner, F. Koch, N. Romani, G. Schuler, “An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow,” J. Immunol. Methods 223(1), 77–92 (1999).
[CrossRef] [PubMed]

Rudensky, A.

D. M. Underhill, M. Bassetti, A. Rudensky, A. Aderem, “Dynamic interactions of macrophages with T cells during antigen presentation,” J. Exp. Med. 190(12), 1909–1914 (1999).
[CrossRef] [PubMed]

Scherer, J. R.

T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, R. A. Mathies, “Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices,” Anal. Chem. 75(20), 5300–5305 (2003).
[CrossRef] [PubMed]

Schnitzer, M. J.

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[CrossRef] [PubMed]

Schuler, G.

M. B. Lutz, N. Kukutsch, A. L. J. Ogilvie, S. Rössner, F. Koch, N. Romani, G. Schuler, “An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow,” J. Immunol. Methods 223(1), 77–92 (1999).
[CrossRef] [PubMed]

Shaw, A. S.

A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, M. L. Dustin, “The immunological synapse: A molecular machine controlling T cell activation,” Science 285(5425), 221–227 (1999).
[CrossRef] [PubMed]

Skelley, A. M.

T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, R. A. Mathies, “Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices,” Anal. Chem. 75(20), 5300–5305 (2003).
[CrossRef] [PubMed]

Street, R. A.

T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, R. A. Mathies, “Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices,” Anal. Chem. 75(20), 5300–5305 (2003).
[CrossRef] [PubMed]

Sumen, C.

A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, M. L. Dustin, “The immunological synapse: A molecular machine controlling T cell activation,” Science 285(5425), 221–227 (1999).
[CrossRef] [PubMed]

Svoboda, K.

K. Svoboda, S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[CrossRef] [PubMed]

Swinton, P.

J. K. Valley, M. M. Garcia, P. Swinton, S. L. Neale, H.-Y. Hsu, A. Jamshidi, M. C. Wu, “Optoelectronic tweezers for quantitative assessment of embryo developmental stage,” in Proceedings of IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2010), pp. 943–946.
[CrossRef]

Underhill, D. M.

D. M. Underhill, M. Bassetti, A. Rudensky, A. Aderem, “Dynamic interactions of macrophages with T cells during antigen presentation,” J. Exp. Med. 190(12), 1909–1914 (1999).
[CrossRef] [PubMed]

Valley, J. K.

S. L. Neale, A. T. Ohta, H.-Y. Hsu, J. K. Valley, A. Jamshidi, M. C. Wu, “Trap profiles of projector based optoelectronic tweezers (OET) with HeLa cells,” Opt. Express 17(7), 5231–5239 (2009).
[CrossRef] [PubMed]

J. K. Valley, A. Jamshidi, A. T. Ohta, H.-Y. Hsu, M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17(2), 342–350 (2008).
[CrossRef] [PubMed]

J. K. Valley, M. M. Garcia, P. Swinton, S. L. Neale, H.-Y. Hsu, A. Jamshidi, M. C. Wu, “Optoelectronic tweezers for quantitative assessment of embryo developmental stage,” in Proceedings of IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2010), pp. 943–946.
[CrossRef]

Wilson, J. I. B.

Wu, M. C.

M. C. Wu, “Optoelectronic tweezers,” Nat. Photonics 5(6), 322–324 (2011).
[CrossRef]

S. L. Neale, A. T. Ohta, H.-Y. Hsu, J. K. Valley, A. Jamshidi, M. C. Wu, “Trap profiles of projector based optoelectronic tweezers (OET) with HeLa cells,” Opt. Express 17(7), 5231–5239 (2009).
[CrossRef] [PubMed]

J. K. Valley, A. Jamshidi, A. T. Ohta, H.-Y. Hsu, M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17(2), 342–350 (2008).
[CrossRef] [PubMed]

P. Y. Chiou, A. T. Ohta, M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

J. K. Valley, M. M. Garcia, P. Swinton, S. L. Neale, H.-Y. Hsu, A. Jamshidi, M. C. Wu, “Optoelectronic tweezers for quantitative assessment of embryo developmental stage,” in Proceedings of IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2010), pp. 943–946.
[CrossRef]

Yang, S.-M.

Yin, H.

Yu, T.-M.

Zarowna-Dabrowska, A.

Zhang, H. X.

B. R. Rae, C. Griffin, J. J. D. McKendry, J. M. Girkin, H. X. Zhang, E. Gu, D. Renshaw, E. Charbon, M. D. Dawson, R. K. Henderson, “CMOS driven micro-pixel LEDs integrated with single photon avalanche diodes for time resolved fluorescence measurements,” J. Phys. D Appl. Phys. 41(9), 094011 (2008).
[CrossRef]

Ziv, Y.

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[CrossRef] [PubMed]

Anal. Chem.

T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, R. A. Mathies, “Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices,” Anal. Chem. 75(20), 5300–5305 (2003).
[CrossRef] [PubMed]

Annu. Rev. Biophys. Biomol. Struct.

K. Svoboda, S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[CrossRef] [PubMed]

Biomicrofluidics

R. Pethig, “Dielectrophoresis: Status of the theory, technology, and applications,” Biomicrofluidics 4(2), 022811 (2010).
[CrossRef] [PubMed]

Electrophoresis

H. Hwang, Y.-J. Choi, W. Choi, S.-H. Kim, J. Jang, J.-K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis 29(6), 1203–1212 (2008).
[CrossRef] [PubMed]

IEEE Photonics Technol. Lett.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photonics Technol. Lett. 22(18), 1346–1348 (2010).
[CrossRef]

J. Exp. Med.

D. M. Underhill, M. Bassetti, A. Rudensky, A. Aderem, “Dynamic interactions of macrophages with T cells during antigen presentation,” J. Exp. Med. 190(12), 1909–1914 (1999).
[CrossRef] [PubMed]

J. Immunol. Methods

M. B. Lutz, N. Kukutsch, A. L. J. Ogilvie, S. Rössner, F. Koch, N. Romani, G. Schuler, “An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow,” J. Immunol. Methods 223(1), 77–92 (1999).
[CrossRef] [PubMed]

J. Microelectromech. Syst.

J. K. Valley, A. Jamshidi, A. T. Ohta, H.-Y. Hsu, M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17(2), 342–350 (2008).
[CrossRef] [PubMed]

J. Phys. D Appl. Phys.

B. R. Rae, C. Griffin, J. J. D. McKendry, J. M. Girkin, H. X. Zhang, E. Gu, D. Renshaw, E. Charbon, M. D. Dawson, R. K. Henderson, “CMOS driven micro-pixel LEDs integrated with single photon avalanche diodes for time resolved fluorescence measurements,” J. Phys. D Appl. Phys. 41(9), 094011 (2008).
[CrossRef]

Nat. Methods

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[CrossRef] [PubMed]

Nat. Photonics

M. C. Wu, “Optoelectronic tweezers,” Nat. Photonics 5(6), 322–324 (2011).
[CrossRef]

Nature

P. Y. Chiou, A. T. Ohta, M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Science

A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, M. L. Dustin, “The immunological synapse: A molecular machine controlling T cell activation,” Science 285(5425), 221–227 (1999).
[CrossRef] [PubMed]

Other

A. T. Ohta, P.-Y. Chiou, and M. C. Wu, “Dynamic DMD-driven optoelectronic tweezers for microscopic particle manipulation,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Vol. 1 of 2004 OSA Technical Digest Series (Optical Society of America, 2004), paper CWS5.

H. Y. Hsu, A. T. Ohta, P. Y. Chiou, A. Jamshidi, and M. C. Wu, “Phototransistor-based optoelectronic tweezers for cell manipulation in highly conductive solution,” in Proceedings of Solid-State Sensors, Actuators and Microsystems International Conference (Transducers, 2007), pp. 477–480.
[CrossRef]

J. K. Valley, M. M. Garcia, P. Swinton, S. L. Neale, H.-Y. Hsu, A. Jamshidi, M. C. Wu, “Optoelectronic tweezers for quantitative assessment of embryo developmental stage,” in Proceedings of IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2010), pp. 943–946.
[CrossRef]

Life Technology, “CellTracker™ Probes for Long-Term Tracing of Living Cells,” http://tools.invitrogen.com/content/sfs/manuals/mp02925.pdf .

M. P. Hughes, Nanoelectromechanics in Engineering and Biology (CRC Press, 2003).

Supplementary Material (2)

» Media 1: MP4 (1012 KB)     
» Media 2: MP4 (2013 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

a) Photograph of chequerboard array of 16 x 16 micro-LED pixels 99 x 99 μm, on a pitch of 100 μm; b) schematic of an OET device consisting of two opposing ITO coated glass slides with an additional layer of a photoconductor (amorphous silicon, a-Si:H) deposited onto the lower slide. ‘Virtual electrodes’ are created within the device when a light pattern is focused onto the photoconductive surface; and c) schematic of the micro-LED projection system consisting of two microscope objectives to reduce the size of pixels imaged onto the OET device.

Fig. 2
Fig. 2

a) Plot of the max average T-lymphocyte velocity (n = 5 per data points) as a function of applied voltage at 30 kHz with corresponding quadratic fits; b) plot of max average T-lymphocyte displacement (n = 5 per data points) at varying applied forces at 20 Vp-p applied voltage (30 kHz) with corresponding linear fits. Error bars represent +/− 1σ.

Fig. 3
Fig. 3

Selected frames from Media 1 and Media 2 showing trapping of live immune cells using a λmax 450 nm micro-LED array at 25 μm projected pixel size was used. Frames captured during trapping of a targeted T-lymphocyte and dendritic cell are shown in a)-d) and e)-h), respectively; a) and e) before micro-LED pattern turn on; b) and f) immediately after the start of a pixel animation; c) and g) after pixel animation; d) and h) fluorescence image showing CFSE labelled cells after pixel animation. Applied voltage 20 Vp-p, 30 kHz. Scale bar (shown in a) and e)) is 25 μm.

Fig. 4
Fig. 4

Image sequence showing trapping, identification and controlled single cell interaction of T-lymphocytes and dendritic cells with a λmax 450 nm micro-LED array at a projected pixel size of 25 μm; a) before micro-LED turn on (0 s); b) after micro-LED turn on (2 s); c) fluorescence image showing T-lymphocyte (orange, solid arrowhead) and dendritic cell (green, hollow arrowhead); d) first frame of pixel animation as cells are manipulated into contact (31 s); e) second frame of pixel animation as cells interact (37 s); f) final frame of pixel animation in which cell-contact is interrupted (39 s). Applied voltage 20 Vp-p, 30 kHz. Scale bar is 25 μm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F DEP =2π ε m R 3 Re[CM]( E 2 )
v = F DEP 6πηr

Metrics