Abstract

Multiple-beam optical traps facilitate advanced trapping geometries and exciting discoveries. However, the increased manipulation capabilities come at the price of more challenging position and force detection. Due to unrivaled bandwidth and resolution, photodiode based detection is preferred over camera based detection in most single/dual-beam optical traps assays. However, it has not been trivial to implement photodiode based detection for multiple-beam optical traps. Here, we present a simple and efficient method based on spatial filtering for parallel photodiode detection of multiple traps. The technique enables fast and accurate 3D force and distance detection of multiple objects simultaneously manipulated by multiple-beam optical tweezers.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional magneto-optic trap for micro-object manipulation

L. Sacconi, G. Romano, R. Ballerini, M. Capitanio, M. De Pas, M. Giuntini, D. Dunlap, L. Finzi, and F. S. Pavone
Opt. Lett. 26(17) 1359-1361 (2001)

Two particle tracking and detection in a single Gaussian beam optical trap

P. Praveen, Yogesha, Shruthi S. Iyengar, Sarbari Bhattacharya, and Sharath Ananthamurthy
Appl. Opt. 55(3) 585-594 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. T. Dame, M. C. Noom, and G. J. L. Wuite, “Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation,” Nature 444, 387–390 (2006).
    [Crossref] [PubMed]
  2. M. Noom, B. V. D. Broek, J. van Mameren, and G. J. L. Wuite, “Visualizing single DNA-bound proteins using DNA as a scanning probe,” Nat. Methods 4, 1031–1036 (2007).
    [Crossref] [PubMed]
  3. H. Kress, J.-G. Park, C. O. Mejean, J. D. Forster, J. Park, S. S. Walse, Y. Zhang, D. Wu, O. D. Weiner, T. M. Fahmy, and E. R. Dufresne, “Cell stimulation with optically manipulated microsources,” Nat. Methods 6, 905– 909 (2009).
    [Crossref] [PubMed]
  4. M. Polin, D. Grier, and S. Quake, “Anomalous vibrational dispersion in holographically trapped colloidal arrays,” Phys. Rev. Lett. 96, 088101 (2006).
    [Crossref] [PubMed]
  5. M. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip 11, 1196–1205 (2011).
    [Crossref] [PubMed]
  6. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon. 4, 388–394 (2010).
    [Crossref]
  7. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
    [Crossref]
  8. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810 (2001).
    [Crossref]
  9. J. Curtis, B. Koss, and D. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
    [Crossref]
  10. C. Schmitz, J. Spatz, and J. Curtis, “High-precision steering of multiple holographic optical traps,” Opt. Express 13, 8678–8685 (2005).
    [Crossref] [PubMed]
  11. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
    [Crossref]
  12. K. Visscher, S. Gross, and S. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quant. Electron. 2, 1066–1076 (1996).
    [Crossref]
  13. F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Opt. Lett. 23, 7–9 (1998).
    [Crossref]
  14. A. Pralle, M. Prummer, E. L. Florin, E. H. Stelzer, and J. K. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44, 378–386 (1999).
    [Crossref] [PubMed]
  15. S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A: Pure Appl. Opt. 9, 264–266 (2007).
    [Crossref]
  16. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77, 205–228 (2008).
    [Crossref] [PubMed]
  17. C. Pacoret and S. Régnier, “Invited article: a review of haptic optical tweezers for an interactive microworld exploration,” Rev. Sci. Instrum. 84, 081301 (2013).
    [Crossref] [PubMed]
  18. R. Bowman, G. Gibson, and M. Padgett, “Particle tracking stereomicroscopy in optical tweezers: control of trap shape,” Opt. Express 18, 11785–11790 (2010).
    [Crossref] [PubMed]
  19. R. F. Hay, G. M. Gibson, M. P. Lee, M. J. Padgett, and D. B. Phillips, “Four-directional stereo-microscopy for 3D particle tracking with real-time error evaluation,” Opt. Express 22, 18662–18667 (2014).
    [Crossref] [PubMed]
  20. D. B. Conkey, R. P. Trivedi, S. R. P. Pavani, I. I. Smalyukh, and R. Piestun, “Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions,” Opt. Express 19, 3835–3842 (2011).
    [Crossref] [PubMed]
  21. S. Lee, Y. Roichman, G. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007).
    [Crossref] [PubMed]
  22. F. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13071–13079 (2009).
    [Crossref] [PubMed]
  23. F. Cheong, B. Krishnatreya, and D. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18, 13563–13573 (2010).
    [Crossref] [PubMed]
  24. L. Miccio, P. Memmolo, F. Merola, S. Fusco, V. Embrione, A. Paciello, M. Ventre, P. A. Netti, and P. Ferraro, “Particle tracking by full-field complex wavefront subtraction in digital holography microscopy,” Lab Chip 14, 1129–1134 (2014).
    [Crossref] [PubMed]
  25. R. Di Leonardo, S. Keen, J. Leach, C. Saunter, G. Love, G. Ruocco, and M. Padgett, “Eigenmodes of a hydrodynamically coupled micron-size multiple-particle ring,” Phys. Rev. E 76, 061402 (2007).
    [Crossref]
  26. G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express 16, 14561–14570 (2008).
    [Crossref] [PubMed]
  27. M. Towrie, S. W. Botchway, A. Clark, E. Freeman, R. Halsall, A. W. Parker, M. Prydderch, R. Turchetta, A. D. Ward, and M. R. Pollard, “Dynamic position and force measurement for multiple optically trapped particles using a high-speed active pixel sensor,” Rev. Sci. Instrum. 80, 103704 (2009).
    [Crossref] [PubMed]
  28. O. Otto, F. Czerwinski, J. L. Gornall, G. Stober, L. B. Oddershede, R. Seidel, and U. F. Keyser, “Real-time particle tracking at 10,000 fps using optical fiber illumination,” Opt. Express 18, 22722–22733 (2010).
    [Crossref] [PubMed]
  29. R. Huang, I. Chavez, K. M. Taute, B. Lukić, S. Jeney, M. G. Raizen, and E.-L. Florin, “Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid,” Nature Phys. 7, 576–580 (2011).
    [Crossref]
  30. F. Marsà, A. Farré, E. Martín-Badosa, and M. Montes-Usategui, “Holographic optical tweezers combined with back-focal-plane displacement detection,” Opt. Express 21, 30282–30294 (2013).
    [Crossref]
  31. W. H. Guilford, J. A. Tournas, D. Dascalu, and D. S. Watson, “Creating multiple time-shared laser traps with simultaneous displacement detection using digital signal processing hardware,” Anal. Biochem. 326, 153–166 (2004).
    [Crossref] [PubMed]
  32. D. Ruh, B. Tränkle, and A. Rohrbach, “Fast parallel interferometric 3D tracking of numerous optically trapped particles and their hydrodynamic interaction,” Opt. Express 19, 21627–21642 (2011).
    [Crossref] [PubMed]
  33. D. Ott, S. N. S. Reihani, and L. B. Oddershede, “Crosstalk elimination in the detection of dual-beam optical tweezers by spatial filtering,” Rev. Sci. Instrum. 85, 053108 (2014).
    [Crossref] [PubMed]
  34. E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69, 1974 (1998).
    [Crossref]
  35. P. M. Hansen, I. M. Tolić-Nørrelykke, H. Flyvbjerg, and K. Berg-Sørensen, “tweezercalib 2.0: faster version of MatLab package for precise calibration of optical tweezers,” Comput. Phys. Commun. 174, 518–520 (2006).
    [Crossref]
  36. K. Berg-Sørensen, L. Oddershede, E.-L. Florin, and H. Flyvbjerg, “Unintended filtering in a typical photodiode detection system for optical tweezers,” J. Appl. Phys. 93, 3167 (2003).
    [Crossref]
  37. A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett. 95, 168102 (2005).
    [Crossref] [PubMed]
  38. W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence optical microscope,” Nat. Protoc. 2, 3226–3238 (2007).
    [Crossref] [PubMed]
  39. J. K. Dreyer, K. Berg-Sørensen, and L. Oddershede, “Improved axial position detection in optical tweezers measurements,” Appl. Opt. 43, 1991–1995 (2004).
    [Crossref] [PubMed]
  40. R. L. Eriksen, P. C. Mogensen, and J. Glückstad, “Multiple-beam optical tweezers generated by the generalized phase-contrast method,” Opt. Lett. 27, 267–269 (2002).
    [Crossref]

2014 (3)

R. F. Hay, G. M. Gibson, M. P. Lee, M. J. Padgett, and D. B. Phillips, “Four-directional stereo-microscopy for 3D particle tracking with real-time error evaluation,” Opt. Express 22, 18662–18667 (2014).
[Crossref] [PubMed]

L. Miccio, P. Memmolo, F. Merola, S. Fusco, V. Embrione, A. Paciello, M. Ventre, P. A. Netti, and P. Ferraro, “Particle tracking by full-field complex wavefront subtraction in digital holography microscopy,” Lab Chip 14, 1129–1134 (2014).
[Crossref] [PubMed]

D. Ott, S. N. S. Reihani, and L. B. Oddershede, “Crosstalk elimination in the detection of dual-beam optical tweezers by spatial filtering,” Rev. Sci. Instrum. 85, 053108 (2014).
[Crossref] [PubMed]

2013 (2)

F. Marsà, A. Farré, E. Martín-Badosa, and M. Montes-Usategui, “Holographic optical tweezers combined with back-focal-plane displacement detection,” Opt. Express 21, 30282–30294 (2013).
[Crossref]

C. Pacoret and S. Régnier, “Invited article: a review of haptic optical tweezers for an interactive microworld exploration,” Rev. Sci. Instrum. 84, 081301 (2013).
[Crossref] [PubMed]

2011 (4)

M. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip 11, 1196–1205 (2011).
[Crossref] [PubMed]

R. Huang, I. Chavez, K. M. Taute, B. Lukić, S. Jeney, M. G. Raizen, and E.-L. Florin, “Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid,” Nature Phys. 7, 576–580 (2011).
[Crossref]

D. B. Conkey, R. P. Trivedi, S. R. P. Pavani, I. I. Smalyukh, and R. Piestun, “Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions,” Opt. Express 19, 3835–3842 (2011).
[Crossref] [PubMed]

D. Ruh, B. Tränkle, and A. Rohrbach, “Fast parallel interferometric 3D tracking of numerous optically trapped particles and their hydrodynamic interaction,” Opt. Express 19, 21627–21642 (2011).
[Crossref] [PubMed]

2010 (4)

2009 (3)

H. Kress, J.-G. Park, C. O. Mejean, J. D. Forster, J. Park, S. S. Walse, Y. Zhang, D. Wu, O. D. Weiner, T. M. Fahmy, and E. R. Dufresne, “Cell stimulation with optically manipulated microsources,” Nat. Methods 6, 905– 909 (2009).
[Crossref] [PubMed]

F. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13071–13079 (2009).
[Crossref] [PubMed]

M. Towrie, S. W. Botchway, A. Clark, E. Freeman, R. Halsall, A. W. Parker, M. Prydderch, R. Turchetta, A. D. Ward, and M. R. Pollard, “Dynamic position and force measurement for multiple optically trapped particles using a high-speed active pixel sensor,” Rev. Sci. Instrum. 80, 103704 (2009).
[Crossref] [PubMed]

2008 (2)

2007 (5)

S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A: Pure Appl. Opt. 9, 264–266 (2007).
[Crossref]

M. Noom, B. V. D. Broek, J. van Mameren, and G. J. L. Wuite, “Visualizing single DNA-bound proteins using DNA as a scanning probe,” Nat. Methods 4, 1031–1036 (2007).
[Crossref] [PubMed]

R. Di Leonardo, S. Keen, J. Leach, C. Saunter, G. Love, G. Ruocco, and M. Padgett, “Eigenmodes of a hydrodynamically coupled micron-size multiple-particle ring,” Phys. Rev. E 76, 061402 (2007).
[Crossref]

S. Lee, Y. Roichman, G. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007).
[Crossref] [PubMed]

W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence optical microscope,” Nat. Protoc. 2, 3226–3238 (2007).
[Crossref] [PubMed]

2006 (3)

P. M. Hansen, I. M. Tolić-Nørrelykke, H. Flyvbjerg, and K. Berg-Sørensen, “tweezercalib 2.0: faster version of MatLab package for precise calibration of optical tweezers,” Comput. Phys. Commun. 174, 518–520 (2006).
[Crossref]

R. T. Dame, M. C. Noom, and G. J. L. Wuite, “Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation,” Nature 444, 387–390 (2006).
[Crossref] [PubMed]

M. Polin, D. Grier, and S. Quake, “Anomalous vibrational dispersion in holographically trapped colloidal arrays,” Phys. Rev. Lett. 96, 088101 (2006).
[Crossref] [PubMed]

2005 (2)

C. Schmitz, J. Spatz, and J. Curtis, “High-precision steering of multiple holographic optical traps,” Opt. Express 13, 8678–8685 (2005).
[Crossref] [PubMed]

A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett. 95, 168102 (2005).
[Crossref] [PubMed]

2004 (3)

J. K. Dreyer, K. Berg-Sørensen, and L. Oddershede, “Improved axial position detection in optical tweezers measurements,” Appl. Opt. 43, 1991–1995 (2004).
[Crossref] [PubMed]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

W. H. Guilford, J. A. Tournas, D. Dascalu, and D. S. Watson, “Creating multiple time-shared laser traps with simultaneous displacement detection using digital signal processing hardware,” Anal. Biochem. 326, 153–166 (2004).
[Crossref] [PubMed]

2003 (1)

K. Berg-Sørensen, L. Oddershede, E.-L. Florin, and H. Flyvbjerg, “Unintended filtering in a typical photodiode detection system for optical tweezers,” J. Appl. Phys. 93, 3167 (2003).
[Crossref]

2002 (2)

2001 (1)

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810 (2001).
[Crossref]

2000 (1)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
[Crossref]

1999 (1)

A. Pralle, M. Prummer, E. L. Florin, E. H. Stelzer, and J. K. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44, 378–386 (1999).
[Crossref] [PubMed]

1998 (2)

F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Opt. Lett. 23, 7–9 (1998).
[Crossref]

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69, 1974 (1998).
[Crossref]

1996 (1)

K. Visscher, S. Gross, and S. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quant. Electron. 2, 1066–1076 (1996).
[Crossref]

Amato-Grill, J.

Berg-Sørensen, K.

P. M. Hansen, I. M. Tolić-Nørrelykke, H. Flyvbjerg, and K. Berg-Sørensen, “tweezercalib 2.0: faster version of MatLab package for precise calibration of optical tweezers,” Comput. Phys. Commun. 174, 518–520 (2006).
[Crossref]

J. K. Dreyer, K. Berg-Sørensen, and L. Oddershede, “Improved axial position detection in optical tweezers measurements,” Appl. Opt. 43, 1991–1995 (2004).
[Crossref] [PubMed]

K. Berg-Sørensen, L. Oddershede, E.-L. Florin, and H. Flyvbjerg, “Unintended filtering in a typical photodiode detection system for optical tweezers,” J. Appl. Phys. 93, 3167 (2003).
[Crossref]

Block, S.

K. Visscher, S. Gross, and S. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quant. Electron. 2, 1066–1076 (1996).
[Crossref]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Botchway, S. W.

M. Towrie, S. W. Botchway, A. Clark, E. Freeman, R. Halsall, A. W. Parker, M. Prydderch, R. Turchetta, A. D. Ward, and M. R. Pollard, “Dynamic position and force measurement for multiple optically trapped particles using a high-speed active pixel sensor,” Rev. Sci. Instrum. 80, 103704 (2009).
[Crossref] [PubMed]

Bowman, R.

Broek, B. V. D.

M. Noom, B. V. D. Broek, J. van Mameren, and G. J. L. Wuite, “Visualizing single DNA-bound proteins using DNA as a scanning probe,” Nat. Methods 4, 1031–1036 (2007).
[Crossref] [PubMed]

Bustamante, C.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77, 205–228 (2008).
[Crossref] [PubMed]

Chavez, I.

R. Huang, I. Chavez, K. M. Taute, B. Lukić, S. Jeney, M. G. Raizen, and E.-L. Florin, “Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid,” Nature Phys. 7, 576–580 (2011).
[Crossref]

Chemla, Y. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77, 205–228 (2008).
[Crossref] [PubMed]

Cheong, F.

Cižmár, T.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon. 4, 388–394 (2010).
[Crossref]

Clark, A.

M. Towrie, S. W. Botchway, A. Clark, E. Freeman, R. Halsall, A. W. Parker, M. Prydderch, R. Turchetta, A. D. Ward, and M. R. Pollard, “Dynamic position and force measurement for multiple optically trapped particles using a high-speed active pixel sensor,” Rev. Sci. Instrum. 80, 103704 (2009).
[Crossref] [PubMed]

Conkey, D. B.

Curtis, J.

C. Schmitz, J. Spatz, and J. Curtis, “High-precision steering of multiple holographic optical traps,” Opt. Express 13, 8678–8685 (2005).
[Crossref] [PubMed]

J. Curtis, B. Koss, and D. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Czerwinski, F.

Dame, R. T.

R. T. Dame, M. C. Noom, and G. J. L. Wuite, “Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation,” Nature 444, 387–390 (2006).
[Crossref] [PubMed]

Dascalu, D.

W. H. Guilford, J. A. Tournas, D. Dascalu, and D. S. Watson, “Creating multiple time-shared laser traps with simultaneous displacement detection using digital signal processing hardware,” Anal. Biochem. 326, 153–166 (2004).
[Crossref] [PubMed]

Dearing, M. T.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810 (2001).
[Crossref]

Dholakia, K.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon. 4, 388–394 (2010).
[Crossref]

W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence optical microscope,” Nat. Protoc. 2, 3226–3238 (2007).
[Crossref] [PubMed]

Di Leonardo, R.

M. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip 11, 1196–1205 (2011).
[Crossref] [PubMed]

R. Di Leonardo, S. Keen, J. Leach, C. Saunter, G. Love, G. Ruocco, and M. Padgett, “Eigenmodes of a hydrodynamically coupled micron-size multiple-particle ring,” Phys. Rev. E 76, 061402 (2007).
[Crossref]

Dixon, L.

Dreyer, J. K.

Dreyfus, R.

Dufresne, E. R.

H. Kress, J.-G. Park, C. O. Mejean, J. D. Forster, J. Park, S. S. Walse, Y. Zhang, D. Wu, O. D. Weiner, T. M. Fahmy, and E. R. Dufresne, “Cell stimulation with optically manipulated microsources,” Nat. Methods 6, 905– 909 (2009).
[Crossref] [PubMed]

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810 (2001).
[Crossref]

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69, 1974 (1998).
[Crossref]

Embrione, V.

L. Miccio, P. Memmolo, F. Merola, S. Fusco, V. Embrione, A. Paciello, M. Ventre, P. A. Netti, and P. Ferraro, “Particle tracking by full-field complex wavefront subtraction in digital holography microscopy,” Lab Chip 14, 1129–1134 (2014).
[Crossref] [PubMed]

Eriksen, R. L.

Fahmy, T. M.

H. Kress, J.-G. Park, C. O. Mejean, J. D. Forster, J. Park, S. S. Walse, Y. Zhang, D. Wu, O. D. Weiner, T. M. Fahmy, and E. R. Dufresne, “Cell stimulation with optically manipulated microsources,” Nat. Methods 6, 905– 909 (2009).
[Crossref] [PubMed]

Farré, A.

Ferraro, P.

L. Miccio, P. Memmolo, F. Merola, S. Fusco, V. Embrione, A. Paciello, M. Ventre, P. A. Netti, and P. Ferraro, “Particle tracking by full-field complex wavefront subtraction in digital holography microscopy,” Lab Chip 14, 1129–1134 (2014).
[Crossref] [PubMed]

Florin, E. L.

A. Pralle, M. Prummer, E. L. Florin, E. H. Stelzer, and J. K. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44, 378–386 (1999).
[Crossref] [PubMed]

Florin, E.-L.

R. Huang, I. Chavez, K. M. Taute, B. Lukić, S. Jeney, M. G. Raizen, and E.-L. Florin, “Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid,” Nature Phys. 7, 576–580 (2011).
[Crossref]

K. Berg-Sørensen, L. Oddershede, E.-L. Florin, and H. Flyvbjerg, “Unintended filtering in a typical photodiode detection system for optical tweezers,” J. Appl. Phys. 93, 3167 (2003).
[Crossref]

Flyvbjerg, H.

P. M. Hansen, I. M. Tolić-Nørrelykke, H. Flyvbjerg, and K. Berg-Sørensen, “tweezercalib 2.0: faster version of MatLab package for precise calibration of optical tweezers,” Comput. Phys. Commun. 174, 518–520 (2006).
[Crossref]

K. Berg-Sørensen, L. Oddershede, E.-L. Florin, and H. Flyvbjerg, “Unintended filtering in a typical photodiode detection system for optical tweezers,” J. Appl. Phys. 93, 3167 (2003).
[Crossref]

Forster, J. D.

H. Kress, J.-G. Park, C. O. Mejean, J. D. Forster, J. Park, S. S. Walse, Y. Zhang, D. Wu, O. D. Weiner, T. M. Fahmy, and E. R. Dufresne, “Cell stimulation with optically manipulated microsources,” Nat. Methods 6, 905– 909 (2009).
[Crossref] [PubMed]

Freeman, E.

M. Towrie, S. W. Botchway, A. Clark, E. Freeman, R. Halsall, A. W. Parker, M. Prydderch, R. Turchetta, A. D. Ward, and M. R. Pollard, “Dynamic position and force measurement for multiple optically trapped particles using a high-speed active pixel sensor,” Rev. Sci. Instrum. 80, 103704 (2009).
[Crossref] [PubMed]

Fusco, S.

L. Miccio, P. Memmolo, F. Merola, S. Fusco, V. Embrione, A. Paciello, M. Ventre, P. A. Netti, and P. Ferraro, “Particle tracking by full-field complex wavefront subtraction in digital holography microscopy,” Lab Chip 14, 1129–1134 (2014).
[Crossref] [PubMed]

Gibson, G.

R. Bowman, G. Gibson, and M. Padgett, “Particle tracking stereomicroscopy in optical tweezers: control of trap shape,” Opt. Express 18, 11785–11790 (2010).
[Crossref] [PubMed]

S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A: Pure Appl. Opt. 9, 264–266 (2007).
[Crossref]

Gibson, G. M.

Gittes, F.

Glückstad, J.

Gornall, J. L.

Grier, D.

F. Cheong, B. Krishnatreya, and D. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18, 13563–13573 (2010).
[Crossref] [PubMed]

M. Polin, D. Grier, and S. Quake, “Anomalous vibrational dispersion in holographically trapped colloidal arrays,” Phys. Rev. Lett. 96, 088101 (2006).
[Crossref] [PubMed]

J. Curtis, B. Koss, and D. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Grier, D. G.

Gross, S.

K. Visscher, S. Gross, and S. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quant. Electron. 2, 1066–1076 (1996).
[Crossref]

Guilford, W. H.

W. H. Guilford, J. A. Tournas, D. Dascalu, and D. S. Watson, “Creating multiple time-shared laser traps with simultaneous displacement detection using digital signal processing hardware,” Anal. Biochem. 326, 153–166 (2004).
[Crossref] [PubMed]

Haist, T.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
[Crossref]

Halsall, R.

M. Towrie, S. W. Botchway, A. Clark, E. Freeman, R. Halsall, A. W. Parker, M. Prydderch, R. Turchetta, A. D. Ward, and M. R. Pollard, “Dynamic position and force measurement for multiple optically trapped particles using a high-speed active pixel sensor,” Rev. Sci. Instrum. 80, 103704 (2009).
[Crossref] [PubMed]

Hansen, P. M.

P. M. Hansen, I. M. Tolić-Nørrelykke, H. Flyvbjerg, and K. Berg-Sørensen, “tweezercalib 2.0: faster version of MatLab package for precise calibration of optical tweezers,” Comput. Phys. Commun. 174, 518–520 (2006).
[Crossref]

Hay, R. F.

Hörber, J. K.

A. Pralle, M. Prummer, E. L. Florin, E. H. Stelzer, and J. K. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44, 378–386 (1999).
[Crossref] [PubMed]

Huang, R.

R. Huang, I. Chavez, K. M. Taute, B. Lukić, S. Jeney, M. G. Raizen, and E.-L. Florin, “Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid,” Nature Phys. 7, 576–580 (2011).
[Crossref]

Jeney, S.

R. Huang, I. Chavez, K. M. Taute, B. Lukić, S. Jeney, M. G. Raizen, and E.-L. Florin, “Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid,” Nature Phys. 7, 576–580 (2011).
[Crossref]

Keen, S.

G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express 16, 14561–14570 (2008).
[Crossref] [PubMed]

R. Di Leonardo, S. Keen, J. Leach, C. Saunter, G. Love, G. Ruocco, and M. Padgett, “Eigenmodes of a hydrodynamically coupled micron-size multiple-particle ring,” Phys. Rev. E 76, 061402 (2007).
[Crossref]

S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A: Pure Appl. Opt. 9, 264–266 (2007).
[Crossref]

Keyser, U. F.

Kim, S.-H.

Koss, B.

J. Curtis, B. Koss, and D. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Kress, H.

H. Kress, J.-G. Park, C. O. Mejean, J. D. Forster, J. Park, S. S. Walse, Y. Zhang, D. Wu, O. D. Weiner, T. M. Fahmy, and E. R. Dufresne, “Cell stimulation with optically manipulated microsources,” Nat. Methods 6, 905– 909 (2009).
[Crossref] [PubMed]

Krishnatreya, B.

Leach, J.

G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express 16, 14561–14570 (2008).
[Crossref] [PubMed]

R. Di Leonardo, S. Keen, J. Leach, C. Saunter, G. Love, G. Ruocco, and M. Padgett, “Eigenmodes of a hydrodynamically coupled micron-size multiple-particle ring,” Phys. Rev. E 76, 061402 (2007).
[Crossref]

S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A: Pure Appl. Opt. 9, 264–266 (2007).
[Crossref]

Lee, M. P.

Lee, S.

Lee, W. M.

W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence optical microscope,” Nat. Protoc. 2, 3226–3238 (2007).
[Crossref] [PubMed]

Liesener, J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
[Crossref]

Love, G.

R. Di Leonardo, S. Keen, J. Leach, C. Saunter, G. Love, G. Ruocco, and M. Padgett, “Eigenmodes of a hydrodynamically coupled micron-size multiple-particle ring,” Phys. Rev. E 76, 061402 (2007).
[Crossref]

Lukic, B.

R. Huang, I. Chavez, K. M. Taute, B. Lukić, S. Jeney, M. G. Raizen, and E.-L. Florin, “Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid,” Nature Phys. 7, 576–580 (2011).
[Crossref]

Marchington, R. F.

W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence optical microscope,” Nat. Protoc. 2, 3226–3238 (2007).
[Crossref] [PubMed]

Marsà, F.

Martín-Badosa, E.

Mazilu, M.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon. 4, 388–394 (2010).
[Crossref]

Mejean, C. O.

H. Kress, J.-G. Park, C. O. Mejean, J. D. Forster, J. Park, S. S. Walse, Y. Zhang, D. Wu, O. D. Weiner, T. M. Fahmy, and E. R. Dufresne, “Cell stimulation with optically manipulated microsources,” Nat. Methods 6, 905– 909 (2009).
[Crossref] [PubMed]

Memmolo, P.

L. Miccio, P. Memmolo, F. Merola, S. Fusco, V. Embrione, A. Paciello, M. Ventre, P. A. Netti, and P. Ferraro, “Particle tracking by full-field complex wavefront subtraction in digital holography microscopy,” Lab Chip 14, 1129–1134 (2014).
[Crossref] [PubMed]

Merola, F.

L. Miccio, P. Memmolo, F. Merola, S. Fusco, V. Embrione, A. Paciello, M. Ventre, P. A. Netti, and P. Ferraro, “Particle tracking by full-field complex wavefront subtraction in digital holography microscopy,” Lab Chip 14, 1129–1134 (2014).
[Crossref] [PubMed]

Metzger, N. K.

W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence optical microscope,” Nat. Protoc. 2, 3226–3238 (2007).
[Crossref] [PubMed]

Miccio, L.

L. Miccio, P. Memmolo, F. Merola, S. Fusco, V. Embrione, A. Paciello, M. Ventre, P. A. Netti, and P. Ferraro, “Particle tracking by full-field complex wavefront subtraction in digital holography microscopy,” Lab Chip 14, 1129–1134 (2014).
[Crossref] [PubMed]

Moffitt, J. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77, 205–228 (2008).
[Crossref] [PubMed]

Mogensen, P. C.

Montes-Usategui, M.

Netti, P. A.

L. Miccio, P. Memmolo, F. Merola, S. Fusco, V. Embrione, A. Paciello, M. Ventre, P. A. Netti, and P. Ferraro, “Particle tracking by full-field complex wavefront subtraction in digital holography microscopy,” Lab Chip 14, 1129–1134 (2014).
[Crossref] [PubMed]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Noom, M.

M. Noom, B. V. D. Broek, J. van Mameren, and G. J. L. Wuite, “Visualizing single DNA-bound proteins using DNA as a scanning probe,” Nat. Methods 4, 1031–1036 (2007).
[Crossref] [PubMed]

Noom, M. C.

R. T. Dame, M. C. Noom, and G. J. L. Wuite, “Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation,” Nature 444, 387–390 (2006).
[Crossref] [PubMed]

Oddershede, L.

J. K. Dreyer, K. Berg-Sørensen, and L. Oddershede, “Improved axial position detection in optical tweezers measurements,” Appl. Opt. 43, 1991–1995 (2004).
[Crossref] [PubMed]

K. Berg-Sørensen, L. Oddershede, E.-L. Florin, and H. Flyvbjerg, “Unintended filtering in a typical photodiode detection system for optical tweezers,” J. Appl. Phys. 93, 3167 (2003).
[Crossref]

Oddershede, L. B.

D. Ott, S. N. S. Reihani, and L. B. Oddershede, “Crosstalk elimination in the detection of dual-beam optical tweezers by spatial filtering,” Rev. Sci. Instrum. 85, 053108 (2014).
[Crossref] [PubMed]

O. Otto, F. Czerwinski, J. L. Gornall, G. Stober, L. B. Oddershede, R. Seidel, and U. F. Keyser, “Real-time particle tracking at 10,000 fps using optical fiber illumination,” Opt. Express 18, 22722–22733 (2010).
[Crossref] [PubMed]

Ott, D.

D. Ott, S. N. S. Reihani, and L. B. Oddershede, “Crosstalk elimination in the detection of dual-beam optical tweezers by spatial filtering,” Rev. Sci. Instrum. 85, 053108 (2014).
[Crossref] [PubMed]

Otto, O.

Paciello, A.

L. Miccio, P. Memmolo, F. Merola, S. Fusco, V. Embrione, A. Paciello, M. Ventre, P. A. Netti, and P. Ferraro, “Particle tracking by full-field complex wavefront subtraction in digital holography microscopy,” Lab Chip 14, 1129–1134 (2014).
[Crossref] [PubMed]

Pacoret, C.

C. Pacoret and S. Régnier, “Invited article: a review of haptic optical tweezers for an interactive microworld exploration,” Rev. Sci. Instrum. 84, 081301 (2013).
[Crossref] [PubMed]

Padgett, M.

M. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip 11, 1196–1205 (2011).
[Crossref] [PubMed]

R. Bowman, G. Gibson, and M. Padgett, “Particle tracking stereomicroscopy in optical tweezers: control of trap shape,” Opt. Express 18, 11785–11790 (2010).
[Crossref] [PubMed]

R. Di Leonardo, S. Keen, J. Leach, C. Saunter, G. Love, G. Ruocco, and M. Padgett, “Eigenmodes of a hydrodynamically coupled micron-size multiple-particle ring,” Phys. Rev. E 76, 061402 (2007).
[Crossref]

Padgett, M. J.

Park, J.

H. Kress, J.-G. Park, C. O. Mejean, J. D. Forster, J. Park, S. S. Walse, Y. Zhang, D. Wu, O. D. Weiner, T. M. Fahmy, and E. R. Dufresne, “Cell stimulation with optically manipulated microsources,” Nat. Methods 6, 905– 909 (2009).
[Crossref] [PubMed]

Park, J.-G.

H. Kress, J.-G. Park, C. O. Mejean, J. D. Forster, J. Park, S. S. Walse, Y. Zhang, D. Wu, O. D. Weiner, T. M. Fahmy, and E. R. Dufresne, “Cell stimulation with optically manipulated microsources,” Nat. Methods 6, 905– 909 (2009).
[Crossref] [PubMed]

Parker, A. W.

M. Towrie, S. W. Botchway, A. Clark, E. Freeman, R. Halsall, A. W. Parker, M. Prydderch, R. Turchetta, A. D. Ward, and M. R. Pollard, “Dynamic position and force measurement for multiple optically trapped particles using a high-speed active pixel sensor,” Rev. Sci. Instrum. 80, 103704 (2009).
[Crossref] [PubMed]

Pavani, S. R. P.

Phillips, D. B.

Piestun, R.

Polin, M.

M. Polin, D. Grier, and S. Quake, “Anomalous vibrational dispersion in holographically trapped colloidal arrays,” Phys. Rev. Lett. 96, 088101 (2006).
[Crossref] [PubMed]

Pollard, M. R.

M. Towrie, S. W. Botchway, A. Clark, E. Freeman, R. Halsall, A. W. Parker, M. Prydderch, R. Turchetta, A. D. Ward, and M. R. Pollard, “Dynamic position and force measurement for multiple optically trapped particles using a high-speed active pixel sensor,” Rev. Sci. Instrum. 80, 103704 (2009).
[Crossref] [PubMed]

Pralle, A.

A. Pralle, M. Prummer, E. L. Florin, E. H. Stelzer, and J. K. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44, 378–386 (1999).
[Crossref] [PubMed]

Prummer, M.

A. Pralle, M. Prummer, E. L. Florin, E. H. Stelzer, and J. K. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44, 378–386 (1999).
[Crossref] [PubMed]

Prydderch, M.

M. Towrie, S. W. Botchway, A. Clark, E. Freeman, R. Halsall, A. W. Parker, M. Prydderch, R. Turchetta, A. D. Ward, and M. R. Pollard, “Dynamic position and force measurement for multiple optically trapped particles using a high-speed active pixel sensor,” Rev. Sci. Instrum. 80, 103704 (2009).
[Crossref] [PubMed]

Quake, S.

M. Polin, D. Grier, and S. Quake, “Anomalous vibrational dispersion in holographically trapped colloidal arrays,” Phys. Rev. Lett. 96, 088101 (2006).
[Crossref] [PubMed]

Raizen, M. G.

R. Huang, I. Chavez, K. M. Taute, B. Lukić, S. Jeney, M. G. Raizen, and E.-L. Florin, “Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid,” Nature Phys. 7, 576–580 (2011).
[Crossref]

Reece, P. J.

W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence optical microscope,” Nat. Protoc. 2, 3226–3238 (2007).
[Crossref] [PubMed]

Régnier, S.

C. Pacoret and S. Régnier, “Invited article: a review of haptic optical tweezers for an interactive microworld exploration,” Rev. Sci. Instrum. 84, 081301 (2013).
[Crossref] [PubMed]

Reicherter, M.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
[Crossref]

Reihani, S. N. S.

D. Ott, S. N. S. Reihani, and L. B. Oddershede, “Crosstalk elimination in the detection of dual-beam optical tweezers by spatial filtering,” Rev. Sci. Instrum. 85, 053108 (2014).
[Crossref] [PubMed]

Rohrbach, A.

Roichman, Y.

Ruh, D.

Ruocco, G.

R. Di Leonardo, S. Keen, J. Leach, C. Saunter, G. Love, G. Ruocco, and M. Padgett, “Eigenmodes of a hydrodynamically coupled micron-size multiple-particle ring,” Phys. Rev. E 76, 061402 (2007).
[Crossref]

Saunter, C.

R. Di Leonardo, S. Keen, J. Leach, C. Saunter, G. Love, G. Ruocco, and M. Padgett, “Eigenmodes of a hydrodynamically coupled micron-size multiple-particle ring,” Phys. Rev. E 76, 061402 (2007).
[Crossref]

Schmidt, C. F.

Schmitz, C.

Seidel, R.

Sheets, S. A.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810 (2001).
[Crossref]

Smalyukh, I. I.

Smith, S. B.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77, 205–228 (2008).
[Crossref] [PubMed]

Spalding, G. C.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810 (2001).
[Crossref]

Spatz, J.

Stelzer, E. H.

A. Pralle, M. Prummer, E. L. Florin, E. H. Stelzer, and J. K. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44, 378–386 (1999).
[Crossref] [PubMed]

Stober, G.

Sun, B.

Taute, K. M.

R. Huang, I. Chavez, K. M. Taute, B. Lukić, S. Jeney, M. G. Raizen, and E.-L. Florin, “Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid,” Nature Phys. 7, 576–580 (2011).
[Crossref]

Tiziani, H. J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
[Crossref]

Tolic-Nørrelykke, I. M.

P. M. Hansen, I. M. Tolić-Nørrelykke, H. Flyvbjerg, and K. Berg-Sørensen, “tweezercalib 2.0: faster version of MatLab package for precise calibration of optical tweezers,” Comput. Phys. Commun. 174, 518–520 (2006).
[Crossref]

Tournas, J. A.

W. H. Guilford, J. A. Tournas, D. Dascalu, and D. S. Watson, “Creating multiple time-shared laser traps with simultaneous displacement detection using digital signal processing hardware,” Anal. Biochem. 326, 153–166 (2004).
[Crossref] [PubMed]

Towrie, M.

M. Towrie, S. W. Botchway, A. Clark, E. Freeman, R. Halsall, A. W. Parker, M. Prydderch, R. Turchetta, A. D. Ward, and M. R. Pollard, “Dynamic position and force measurement for multiple optically trapped particles using a high-speed active pixel sensor,” Rev. Sci. Instrum. 80, 103704 (2009).
[Crossref] [PubMed]

Tränkle, B.

Trivedi, R. P.

Turchetta, R.

M. Towrie, S. W. Botchway, A. Clark, E. Freeman, R. Halsall, A. W. Parker, M. Prydderch, R. Turchetta, A. D. Ward, and M. R. Pollard, “Dynamic position and force measurement for multiple optically trapped particles using a high-speed active pixel sensor,” Rev. Sci. Instrum. 80, 103704 (2009).
[Crossref] [PubMed]

van Blaaderen, A.

van Mameren, J.

M. Noom, B. V. D. Broek, J. van Mameren, and G. J. L. Wuite, “Visualizing single DNA-bound proteins using DNA as a scanning probe,” Nat. Methods 4, 1031–1036 (2007).
[Crossref] [PubMed]

van Oostrum, P.

Ventre, M.

L. Miccio, P. Memmolo, F. Merola, S. Fusco, V. Embrione, A. Paciello, M. Ventre, P. A. Netti, and P. Ferraro, “Particle tracking by full-field complex wavefront subtraction in digital holography microscopy,” Lab Chip 14, 1129–1134 (2014).
[Crossref] [PubMed]

Visscher, K.

K. Visscher, S. Gross, and S. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quant. Electron. 2, 1066–1076 (1996).
[Crossref]

Walse, S. S.

H. Kress, J.-G. Park, C. O. Mejean, J. D. Forster, J. Park, S. S. Walse, Y. Zhang, D. Wu, O. D. Weiner, T. M. Fahmy, and E. R. Dufresne, “Cell stimulation with optically manipulated microsources,” Nat. Methods 6, 905– 909 (2009).
[Crossref] [PubMed]

Ward, A. D.

M. Towrie, S. W. Botchway, A. Clark, E. Freeman, R. Halsall, A. W. Parker, M. Prydderch, R. Turchetta, A. D. Ward, and M. R. Pollard, “Dynamic position and force measurement for multiple optically trapped particles using a high-speed active pixel sensor,” Rev. Sci. Instrum. 80, 103704 (2009).
[Crossref] [PubMed]

Watson, D. S.

W. H. Guilford, J. A. Tournas, D. Dascalu, and D. S. Watson, “Creating multiple time-shared laser traps with simultaneous displacement detection using digital signal processing hardware,” Anal. Biochem. 326, 153–166 (2004).
[Crossref] [PubMed]

Weiner, O. D.

H. Kress, J.-G. Park, C. O. Mejean, J. D. Forster, J. Park, S. S. Walse, Y. Zhang, D. Wu, O. D. Weiner, T. M. Fahmy, and E. R. Dufresne, “Cell stimulation with optically manipulated microsources,” Nat. Methods 6, 905– 909 (2009).
[Crossref] [PubMed]

Wright, A. J.

Wu, D.

H. Kress, J.-G. Park, C. O. Mejean, J. D. Forster, J. Park, S. S. Walse, Y. Zhang, D. Wu, O. D. Weiner, T. M. Fahmy, and E. R. Dufresne, “Cell stimulation with optically manipulated microsources,” Nat. Methods 6, 905– 909 (2009).
[Crossref] [PubMed]

Wuite, G. J. L.

M. Noom, B. V. D. Broek, J. van Mameren, and G. J. L. Wuite, “Visualizing single DNA-bound proteins using DNA as a scanning probe,” Nat. Methods 4, 1031–1036 (2007).
[Crossref] [PubMed]

R. T. Dame, M. C. Noom, and G. J. L. Wuite, “Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation,” Nature 444, 387–390 (2006).
[Crossref] [PubMed]

Xiao, K.

Yang, S.-M.

Yi, G.

Zhang, Y.

H. Kress, J.-G. Park, C. O. Mejean, J. D. Forster, J. Park, S. S. Walse, Y. Zhang, D. Wu, O. D. Weiner, T. M. Fahmy, and E. R. Dufresne, “Cell stimulation with optically manipulated microsources,” Nat. Methods 6, 905– 909 (2009).
[Crossref] [PubMed]

Anal. Biochem. (1)

W. H. Guilford, J. A. Tournas, D. Dascalu, and D. S. Watson, “Creating multiple time-shared laser traps with simultaneous displacement detection using digital signal processing hardware,” Anal. Biochem. 326, 153–166 (2004).
[Crossref] [PubMed]

Annu. Rev. Biochem. (1)

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77, 205–228 (2008).
[Crossref] [PubMed]

Appl. Opt. (1)

Comput. Phys. Commun. (1)

P. M. Hansen, I. M. Tolić-Nørrelykke, H. Flyvbjerg, and K. Berg-Sørensen, “tweezercalib 2.0: faster version of MatLab package for precise calibration of optical tweezers,” Comput. Phys. Commun. 174, 518–520 (2006).
[Crossref]

IEEE J. Sel. Top. Quant. Electron. (1)

K. Visscher, S. Gross, and S. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quant. Electron. 2, 1066–1076 (1996).
[Crossref]

J. Appl. Phys. (1)

K. Berg-Sørensen, L. Oddershede, E.-L. Florin, and H. Flyvbjerg, “Unintended filtering in a typical photodiode detection system for optical tweezers,” J. Appl. Phys. 93, 3167 (2003).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A: Pure Appl. Opt. 9, 264–266 (2007).
[Crossref]

Lab Chip (2)

L. Miccio, P. Memmolo, F. Merola, S. Fusco, V. Embrione, A. Paciello, M. Ventre, P. A. Netti, and P. Ferraro, “Particle tracking by full-field complex wavefront subtraction in digital holography microscopy,” Lab Chip 14, 1129–1134 (2014).
[Crossref] [PubMed]

M. Padgett and R. Di Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip 11, 1196–1205 (2011).
[Crossref] [PubMed]

Microsc. Res. Tech. (1)

A. Pralle, M. Prummer, E. L. Florin, E. H. Stelzer, and J. K. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech. 44, 378–386 (1999).
[Crossref] [PubMed]

Nat. Methods (2)

M. Noom, B. V. D. Broek, J. van Mameren, and G. J. L. Wuite, “Visualizing single DNA-bound proteins using DNA as a scanning probe,” Nat. Methods 4, 1031–1036 (2007).
[Crossref] [PubMed]

H. Kress, J.-G. Park, C. O. Mejean, J. D. Forster, J. Park, S. S. Walse, Y. Zhang, D. Wu, O. D. Weiner, T. M. Fahmy, and E. R. Dufresne, “Cell stimulation with optically manipulated microsources,” Nat. Methods 6, 905– 909 (2009).
[Crossref] [PubMed]

Nat. Protoc. (1)

W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence optical microscope,” Nat. Protoc. 2, 3226–3238 (2007).
[Crossref] [PubMed]

Nature (1)

R. T. Dame, M. C. Noom, and G. J. L. Wuite, “Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation,” Nature 444, 387–390 (2006).
[Crossref] [PubMed]

Nature Photon. (1)

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nature Photon. 4, 388–394 (2010).
[Crossref]

Nature Phys. (1)

R. Huang, I. Chavez, K. M. Taute, B. Lukić, S. Jeney, M. G. Raizen, and E.-L. Florin, “Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid,” Nature Phys. 7, 576–580 (2011).
[Crossref]

Opt. Commun. (2)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
[Crossref]

J. Curtis, B. Koss, and D. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Opt. Express (11)

C. Schmitz, J. Spatz, and J. Curtis, “High-precision steering of multiple holographic optical traps,” Opt. Express 13, 8678–8685 (2005).
[Crossref] [PubMed]

R. Bowman, G. Gibson, and M. Padgett, “Particle tracking stereomicroscopy in optical tweezers: control of trap shape,” Opt. Express 18, 11785–11790 (2010).
[Crossref] [PubMed]

R. F. Hay, G. M. Gibson, M. P. Lee, M. J. Padgett, and D. B. Phillips, “Four-directional stereo-microscopy for 3D particle tracking with real-time error evaluation,” Opt. Express 22, 18662–18667 (2014).
[Crossref] [PubMed]

D. B. Conkey, R. P. Trivedi, S. R. P. Pavani, I. I. Smalyukh, and R. Piestun, “Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions,” Opt. Express 19, 3835–3842 (2011).
[Crossref] [PubMed]

S. Lee, Y. Roichman, G. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007).
[Crossref] [PubMed]

F. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13071–13079 (2009).
[Crossref] [PubMed]

F. Cheong, B. Krishnatreya, and D. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18, 13563–13573 (2010).
[Crossref] [PubMed]

F. Marsà, A. Farré, E. Martín-Badosa, and M. Montes-Usategui, “Holographic optical tweezers combined with back-focal-plane displacement detection,” Opt. Express 21, 30282–30294 (2013).
[Crossref]

D. Ruh, B. Tränkle, and A. Rohrbach, “Fast parallel interferometric 3D tracking of numerous optically trapped particles and their hydrodynamic interaction,” Opt. Express 19, 21627–21642 (2011).
[Crossref] [PubMed]

O. Otto, F. Czerwinski, J. L. Gornall, G. Stober, L. B. Oddershede, R. Seidel, and U. F. Keyser, “Real-time particle tracking at 10,000 fps using optical fiber illumination,” Opt. Express 18, 22722–22733 (2010).
[Crossref] [PubMed]

G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express 16, 14561–14570 (2008).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. E (1)

R. Di Leonardo, S. Keen, J. Leach, C. Saunter, G. Love, G. Ruocco, and M. Padgett, “Eigenmodes of a hydrodynamically coupled micron-size multiple-particle ring,” Phys. Rev. E 76, 061402 (2007).
[Crossref]

Phys. Rev. Lett. (2)

A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett. 95, 168102 (2005).
[Crossref] [PubMed]

M. Polin, D. Grier, and S. Quake, “Anomalous vibrational dispersion in holographically trapped colloidal arrays,” Phys. Rev. Lett. 96, 088101 (2006).
[Crossref] [PubMed]

Rev. Sci. Instrum. (6)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810 (2001).
[Crossref]

D. Ott, S. N. S. Reihani, and L. B. Oddershede, “Crosstalk elimination in the detection of dual-beam optical tweezers by spatial filtering,” Rev. Sci. Instrum. 85, 053108 (2014).
[Crossref] [PubMed]

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69, 1974 (1998).
[Crossref]

C. Pacoret and S. Régnier, “Invited article: a review of haptic optical tweezers for an interactive microworld exploration,” Rev. Sci. Instrum. 84, 081301 (2013).
[Crossref] [PubMed]

M. Towrie, S. W. Botchway, A. Clark, E. Freeman, R. Halsall, A. W. Parker, M. Prydderch, R. Turchetta, A. D. Ward, and M. R. Pollard, “Dynamic position and force measurement for multiple optically trapped particles using a high-speed active pixel sensor,” Rev. Sci. Instrum. 80, 103704 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Illustration of the detection method. A diffractive optical element (DOE) is used to modify the wavefront of the trapping beam to holographically generate a complex trapping landscape in the sample plane, e.g., a hexagonal arrangement of seven optical traps. By means of a relay lens, the back-focal-plane of the condenser is imaged onto a quadrant photodiode (QPD). A pinhole, placed in the intermediate plane, which is optically conjugate to the sample plane, selects a single trap for transmission and detection. Inset a: Visualization of trapping geometry in the sample plane. Inset b: Top view captured by camera, bead diameter = 1 μm. Inset c: Visualization of spatial filtering in the conjugate plane.

Fig. 2
Fig. 2

Examination of spatial filtering in a multi-trap setup. a)–c) Illustrations of the three different experimental conditions, the pinhole allows light from the central trap to be passed on to the photodiode. d) Overlay of the measured power spectra for the situations shown in a) (purple squares), b) (green circles), and c) (orange triangles). Solid lines are fits to the experimental data for situations a) (purple) and b) (green) using the calibration program from Ref. [35] (the fitting range was 120Hz to 11kHz). Within the error bars (dashed lines) the two fitted power spectra overlap. The signal levels of an empty trap of interest (orange triangles) are orders of magnitude lower than for a full trap of interest. e) Position histogram of a trapped particle overlayed by a fit based on the theoretically expected Gaussian distribution.

Fig. 3
Fig. 3

Lateral force and displacement detection. a) The main graph shows the linear dependency of the trap stiffness versus laser power in the x-direction for all seven traps, the mean and one standard deviation of the measurements (N=30 per data point) are drawn in black. Full lines (color-coding according to Fig. 2(a)) are linear ordinary least square fits (R2 > 0.97) to the data originating from each trap. The abscissa values denote the power of a single trap in the focal plane. Lower right inset: QPD voltage signal as a function of distance travelled by the bead in the x-direction. Upper left inset: Two-dimensional conversion factor scan, showing the dependency of the QPD voltage signal as function of both the x- and y-directions. b) Same as a), but for the Y-direction.

Fig. 4
Fig. 4

Axial detection. The main graph shows the experimental axial power spectrum fitted by a Lorentzian function. Insets: a) Histogram of the axial displacement of a trapped bead. b) The axial spring constant as a function of laser power in the trap. The linear fit (R2 > 0.97) has a slope of 0.345 pN μ m mW . c) The total QPD signal as a function of the bead’s axial displacement. d) Two-dimensional scan of the total QPD signal for XZ-displacement. As expected, around the equilibrium position, the total signal depends mainly on the axial position, while being nearly insensitive to lateral displacement in x-direction.

Fig. 5
Fig. 5

Simultaneous detection of multiple beads occupying multiple traps. a) Schematic of how the detection part of the setup was modified in order to track three trapped beads simultaneously using photodiodes. b) The left schematics show the occupancy of the traps during each of the three types of measurements. The right graphs show corresponding lateral (purple) and axial (green) power spectra. For these experiments the pinhole diameter was 30μm.

Tables (1)

Tables Icon

Table 1 The measured corner frequencies from multiple traps detected simultaneously. The traps are numbered and filled as shown in Fig. 5(b). Experiments were done using pinholes with diameters of either 30μm (upper part of table) or 50μm (lower part of table). Each number denotes the average of 10 measurements and the error is given as one standard deviation. A ’-’ denotes that the trap was empty and the power spectrum non-Lorentzian.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

m x ¨ ( t ) + γ x ˙ ( t ) + κ x ( t ) = F therm ( t ) ,
P ( f ) = P exp ( f ) = A f c 2 + f 2 .

Metrics