Abstract

We present a reflective-type optical delay line using waveguide side-coupled 13 microring resonators terminated with a sagnac loop reflector. Light passes through the microring resonator sequence twice, doubling the delay-bandwidth product. Group delay is tuned by p-i-p type microheaters integrated directly in the microring waveguides. Experiment demonstrates that the delay line can potentially buffer 18 bits and the delay can be continuously tuned for 100 ps with a power tuning efficiency of 0.34 ps/mW. Eye diagrams of a 20-Gbps PRBS signal after 10 and 110 ps delays are also examined.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Parra, J. R. Lowell, “Toward applications of slow light technology,” Opt. Photonics News 18(11), 40–45 (2007).
    [CrossRef]
  2. J. T. Mok, B. J. Eggleton, “Photonics: Expect more delays,” Nature 433(7028), 811–812 (2005).
    [CrossRef] [PubMed]
  3. D. Gauthier, “Slow light brings faster communications,” Phys. World 18, 30–32 (2005).
  4. R. S. Tucker, P.-C. Ku, C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23(12), 4046–4066 (2005).
    [CrossRef]
  5. M. Asghari, A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
    [CrossRef]
  6. F. Xia, L. Sekaric, Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
    [CrossRef]
  7. Q. Xu, P. Dong, M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
    [CrossRef]
  8. H. Lee, T. Chen, J. Li, O. Painter, K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat Commun 3, 867 (2012).
    [CrossRef] [PubMed]
  9. A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O'Faolain, T. Krauss, R. De La Rue, A. Samarelli, M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
    [CrossRef]
  10. F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15(25), 17273–17282 (2007).
    [CrossRef] [PubMed]
  11. L. Yosef Mario, M. K. Chin, “Optical buffer with higher delay-bandwidth product in a two-ring system,” Opt. Express 16(3), 1796–1807 (2008).
    [CrossRef] [PubMed]
  12. G. Lenz, B. Eggleton, C. K. Madsen, R. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37(4), 525–532 (2001).
    [CrossRef]
  13. A. Yariv, Y. Xu, R. K. Lee, A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999).
    [CrossRef] [PubMed]
  14. A. Melloni, F. Morichetti, C. Ferrari, M. Martinelli, “Continuously tunable 1 byte delay in coupled-resonator optical waveguides,” Opt. Lett. 33(20), 2389–2391 (2008).
    [CrossRef] [PubMed]
  15. M. L. Cooper, G. Gupta, M. A. Schneider, W. M. Green, S. Assefa, F. Xia, D. K. Gifford, S. Mookherjea, “Waveguide dispersion effects in silicon-on-insulator coupled-resonator optical waveguides,” Opt. Lett. 35(18), 3030–3032 (2010).
    [CrossRef] [PubMed]
  16. M. L. Cooper, G. Gupta, M. A. Schneider, W. M. Green, S. Assefa, F. Xia, Y. A. Vlasov, S. Mookherjea, “Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides,” Opt. Express 18(25), 26505–26516 (2010).
    [CrossRef] [PubMed]
  17. J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18(25), 26525–26534 (2010).
    [CrossRef] [PubMed]
  18. J. B. Khurgin, P. A. Morton, “Tunable wideband optical delay line based on balanced coupled resonator structures,” Opt. Lett. 34(17), 2655–2657 (2009).
    [CrossRef] [PubMed]
  19. F. Shinobu, N. Ishikura, Y. Arita, T. Tamanuki, T. Baba, “Continuously tunable slow-light device consisting of heater-controlled silicon microring array,” Opt. Express 19(14), 13557–13564 (2011).
    [CrossRef] [PubMed]
  20. R. L. Espinola, T. Izuhara, M.-C. Tsai, R. M. Osgood, H. Dötsch, “Magneto-optical nonreciprocal phase shift in garnet/silicon-on-insulator waveguides,” Opt. Lett. 29(9), 941–943 (2004).
    [CrossRef] [PubMed]
  21. Y. Shirato, Y. Shoji, T. Mizumoto, “Over 20-dB isolation with 8-nm bandwidth in silicon MZI optical isolator,” in Proceedings of IEEE Conference on Group IV Photonics (GFP), Seoul, Korea (2013).
  22. K. Mitsuya, Y. Shoji, and T. Mizumoto, “The First Demonstration of Silicon Waveguide Optical Circulator,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, Technical Digest (online) (Optical Society of America, 2013), paper JTh2A.25.
  23. L. Zhou, X. Zhang, L. Lu, J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photonics J. 5(4), 6601211 (2013).
    [CrossRef]
  24. P. Sun, R. M. Reano, “Cantilever couplers for intra-chip coupling to silicon photonic integrated circuits,” Opt. Express 17(6), 4565–4574 (2009).
    [CrossRef] [PubMed]
  25. L. Chen, C. R. Doerr, Y.-K. Chen, T.-Y. Liow, “Low-Loss and Broadband Cantilever Couplers Between Standard Cleaved Fibers and High-Index-Contrast Si3N4 or Si Waveguides,” IEEE Photon. Technol. Lett. 22(23), 1744–1746 (2010).
    [CrossRef]

2013 (1)

L. Zhou, X. Zhang, L. Lu, J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photonics J. 5(4), 6601211 (2013).
[CrossRef]

2012 (1)

H. Lee, T. Chen, J. Li, O. Painter, K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat Commun 3, 867 (2012).
[CrossRef] [PubMed]

2011 (2)

2010 (5)

2009 (2)

2008 (2)

2007 (4)

F. Xia, L. Sekaric, Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Q. Xu, P. Dong, M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
[CrossRef]

E. Parra, J. R. Lowell, “Toward applications of slow light technology,” Opt. Photonics News 18(11), 40–45 (2007).
[CrossRef]

F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15(25), 17273–17282 (2007).
[CrossRef] [PubMed]

2005 (3)

J. T. Mok, B. J. Eggleton, “Photonics: Expect more delays,” Nature 433(7028), 811–812 (2005).
[CrossRef] [PubMed]

D. Gauthier, “Slow light brings faster communications,” Phys. World 18, 30–32 (2005).

R. S. Tucker, P.-C. Ku, C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23(12), 4046–4066 (2005).
[CrossRef]

2004 (1)

2001 (1)

G. Lenz, B. Eggleton, C. K. Madsen, R. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37(4), 525–532 (2001).
[CrossRef]

1999 (1)

Arita, Y.

Asghari, M.

M. Asghari, A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[CrossRef]

Assefa, S.

Baba, T.

Breda, A.

Canciamilla, A.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O'Faolain, T. Krauss, R. De La Rue, A. Samarelli, M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[CrossRef]

F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15(25), 17273–17282 (2007).
[CrossRef] [PubMed]

Cardenas, J.

Chang-Hasnain, C. J.

Chen, J.

L. Zhou, X. Zhang, L. Lu, J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photonics J. 5(4), 6601211 (2013).
[CrossRef]

Chen, L.

L. Chen, C. R. Doerr, Y.-K. Chen, T.-Y. Liow, “Low-Loss and Broadband Cantilever Couplers Between Standard Cleaved Fibers and High-Index-Contrast Si3N4 or Si Waveguides,” IEEE Photon. Technol. Lett. 22(23), 1744–1746 (2010).
[CrossRef]

Chen, T.

H. Lee, T. Chen, J. Li, O. Painter, K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat Commun 3, 867 (2012).
[CrossRef] [PubMed]

Chen, Y.-K.

L. Chen, C. R. Doerr, Y.-K. Chen, T.-Y. Liow, “Low-Loss and Broadband Cantilever Couplers Between Standard Cleaved Fibers and High-Index-Contrast Si3N4 or Si Waveguides,” IEEE Photon. Technol. Lett. 22(23), 1744–1746 (2010).
[CrossRef]

Chin, M. K.

Cooper, M. L.

De La Rue, R.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O'Faolain, T. Krauss, R. De La Rue, A. Samarelli, M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[CrossRef]

Doerr, C. R.

L. Chen, C. R. Doerr, Y.-K. Chen, T.-Y. Liow, “Low-Loss and Broadband Cantilever Couplers Between Standard Cleaved Fibers and High-Index-Contrast Si3N4 or Si Waveguides,” IEEE Photon. Technol. Lett. 22(23), 1744–1746 (2010).
[CrossRef]

Dong, P.

Q. Xu, P. Dong, M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
[CrossRef]

Dötsch, H.

Eggleton, B.

G. Lenz, B. Eggleton, C. K. Madsen, R. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37(4), 525–532 (2001).
[CrossRef]

Eggleton, B. J.

J. T. Mok, B. J. Eggleton, “Photonics: Expect more delays,” Nature 433(7028), 811–812 (2005).
[CrossRef] [PubMed]

Espinola, R. L.

Ferrari, C.

Foster, M. A.

Gaeta, A. L.

Gauthier, D.

D. Gauthier, “Slow light brings faster communications,” Phys. World 18, 30–32 (2005).

Gifford, D. K.

Green, W. M.

Gupta, G.

Ishikura, N.

Izuhara, T.

Khurgin, J. B.

Krauss, T.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O'Faolain, T. Krauss, R. De La Rue, A. Samarelli, M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[CrossRef]

Krishnamoorthy, A. V.

M. Asghari, A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[CrossRef]

Ku, P.-C.

Lee, H.

H. Lee, T. Chen, J. Li, O. Painter, K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat Commun 3, 867 (2012).
[CrossRef] [PubMed]

Lee, R. K.

Lenz, G.

G. Lenz, B. Eggleton, C. K. Madsen, R. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37(4), 525–532 (2001).
[CrossRef]

Li, J.

H. Lee, T. Chen, J. Li, O. Painter, K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat Commun 3, 867 (2012).
[CrossRef] [PubMed]

Liow, T.-Y.

L. Chen, C. R. Doerr, Y.-K. Chen, T.-Y. Liow, “Low-Loss and Broadband Cantilever Couplers Between Standard Cleaved Fibers and High-Index-Contrast Si3N4 or Si Waveguides,” IEEE Photon. Technol. Lett. 22(23), 1744–1746 (2010).
[CrossRef]

Lipson, M.

Lira, H. L.

Lowell, J. R.

E. Parra, J. R. Lowell, “Toward applications of slow light technology,” Opt. Photonics News 18(11), 40–45 (2007).
[CrossRef]

Lu, L.

L. Zhou, X. Zhang, L. Lu, J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photonics J. 5(4), 6601211 (2013).
[CrossRef]

Madsen, C. K.

G. Lenz, B. Eggleton, C. K. Madsen, R. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37(4), 525–532 (2001).
[CrossRef]

Martinelli, M.

Melloni, A.

Mizumoto, T.

Y. Shirato, Y. Shoji, T. Mizumoto, “Over 20-dB isolation with 8-nm bandwidth in silicon MZI optical isolator,” in Proceedings of IEEE Conference on Group IV Photonics (GFP), Seoul, Korea (2013).

Mok, J. T.

J. T. Mok, B. J. Eggleton, “Photonics: Expect more delays,” Nature 433(7028), 811–812 (2005).
[CrossRef] [PubMed]

Mookherjea, S.

Morichetti, F.

Morton, P.

Morton, P. A.

O'Faolain, L.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O'Faolain, T. Krauss, R. De La Rue, A. Samarelli, M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[CrossRef]

Osgood, R. M.

Painter, O.

H. Lee, T. Chen, J. Li, O. Painter, K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat Commun 3, 867 (2012).
[CrossRef] [PubMed]

Parra, E.

E. Parra, J. R. Lowell, “Toward applications of slow light technology,” Opt. Photonics News 18(11), 40–45 (2007).
[CrossRef]

Poitras, C. B.

Reano, R. M.

Samarelli, A.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O'Faolain, T. Krauss, R. De La Rue, A. Samarelli, M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[CrossRef]

Scherer, A.

Schneider, M. A.

Sekaric, L.

F. Xia, L. Sekaric, Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Sherwood-Droz, N.

Shinobu, F.

Shirato, Y.

Y. Shirato, Y. Shoji, T. Mizumoto, “Over 20-dB isolation with 8-nm bandwidth in silicon MZI optical isolator,” in Proceedings of IEEE Conference on Group IV Photonics (GFP), Seoul, Korea (2013).

Shoji, Y.

Y. Shirato, Y. Shoji, T. Mizumoto, “Over 20-dB isolation with 8-nm bandwidth in silicon MZI optical isolator,” in Proceedings of IEEE Conference on Group IV Photonics (GFP), Seoul, Korea (2013).

Slusher, R.

G. Lenz, B. Eggleton, C. K. Madsen, R. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37(4), 525–532 (2001).
[CrossRef]

Sorel, M.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O'Faolain, T. Krauss, R. De La Rue, A. Samarelli, M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[CrossRef]

Sun, P.

Tamanuki, T.

Tsai, M.-C.

Tucker, R. S.

Vahala, K. J.

H. Lee, T. Chen, J. Li, O. Painter, K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat Commun 3, 867 (2012).
[CrossRef] [PubMed]

Vlasov, Y.

F. Xia, L. Sekaric, Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Vlasov, Y. A.

Xia, F.

Xu, Q.

Q. Xu, P. Dong, M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
[CrossRef]

Xu, Y.

Yariv, A.

Yosef Mario, L.

Zhang, B.

Zhang, X.

L. Zhou, X. Zhang, L. Lu, J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photonics J. 5(4), 6601211 (2013).
[CrossRef]

Zhou, L.

L. Zhou, X. Zhang, L. Lu, J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photonics J. 5(4), 6601211 (2013).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Lenz, B. Eggleton, C. K. Madsen, R. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37(4), 525–532 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L. Chen, C. R. Doerr, Y.-K. Chen, T.-Y. Liow, “Low-Loss and Broadband Cantilever Couplers Between Standard Cleaved Fibers and High-Index-Contrast Si3N4 or Si Waveguides,” IEEE Photon. Technol. Lett. 22(23), 1744–1746 (2010).
[CrossRef]

IEEE Photonics J. (2)

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O'Faolain, T. Krauss, R. De La Rue, A. Samarelli, M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photonics J. 2(2), 181–194 (2010).
[CrossRef]

L. Zhou, X. Zhang, L. Lu, J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photonics J. 5(4), 6601211 (2013).
[CrossRef]

J. Lightwave Technol. (1)

Nat Commun (1)

H. Lee, T. Chen, J. Li, O. Painter, K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat Commun 3, 867 (2012).
[CrossRef] [PubMed]

Nat. Photonics (2)

M. Asghari, A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[CrossRef]

F. Xia, L. Sekaric, Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Nat. Phys. (1)

Q. Xu, P. Dong, M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007).
[CrossRef]

Nature (1)

J. T. Mok, B. J. Eggleton, “Photonics: Expect more delays,” Nature 433(7028), 811–812 (2005).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (5)

Opt. Photonics News (1)

E. Parra, J. R. Lowell, “Toward applications of slow light technology,” Opt. Photonics News 18(11), 40–45 (2007).
[CrossRef]

Phys. World (1)

D. Gauthier, “Slow light brings faster communications,” Phys. World 18, 30–32 (2005).

Other (2)

Y. Shirato, Y. Shoji, T. Mizumoto, “Over 20-dB isolation with 8-nm bandwidth in silicon MZI optical isolator,” in Proceedings of IEEE Conference on Group IV Photonics (GFP), Seoul, Korea (2013).

K. Mitsuya, Y. Shoji, and T. Mizumoto, “The First Demonstration of Silicon Waveguide Optical Circulator,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, Technical Digest (online) (Optical Society of America, 2013), paper JTh2A.25.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the reflective-type SCISSOR delay line. Inset shows the cross section of the p-i-p microheater. (b) Optical microscope image of the entire delay line. (c) Magnified image of the sagnac loop reflector. (d) Optical image showing Au wire-bonding between device pads on chip and Au wires on PCB.

Fig. 2
Fig. 2

(a) Experimental setup for modulation phase shift method. PC: polarization controller; AM: amplitude modulator; PD: photodetector; RF: radio frequency signal; DUT: device under test. (b) Measured optical power spectrum of the device without active tuning. (c) Corresponding group delay spectrum.

Fig. 3
Fig. 3

(a) Measured I-V curve of the p-i-p junction after wire bonding. (b) Group delay tuning spectra of the device. (c) Power consumption versus group delay.

Fig. 4
Fig. 4

(a) Experimental setup for optical signal transmission measurement. PPG: pulse pattern generator; BPF: band-pass filter; OSC: Oscilloscope. (b)-(d) Eye diagrams of 20 Gbps 251 −1 PRBS signal output from the device with (b) no delay at off-resonance wavelength, (c) 10 ps group delay, and (d) 110 ps group delay.

Metrics