Abstract

A sensitive surface enhanced Raman scattering (SERS) substrate with metallic nanogap array (MNGA) is fabricated by etching of an assembled polystyrene (PS) spheres array, followed by the coating of a metal film. The substrate is reproducible in fabrication and sensitive due to the nanogap coupling resonance (NGCR) enhancement. The NGCR is analyzed with the finite difference time domain (FDTD) method, and the relationship between the gap parameter and the field enhancement is obtained. Experimental measurements of R6G on demonstrate that the enhancement factor (EF) of the MNGA SERS substrate is increased by more than two fold compared with the control sample.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Premasiri, D. T. Moir, M. S. Klempner, N. Krieger, G. Jones, and L. D. Ziegler, “Characterization of the Surface Enhanced Raman Scattering (SERS) of Bacteria,” J. Phys. Chem. B109(1), 312–320 (2005).
    [CrossRef] [PubMed]
  2. T. Chen, H. Wang, G. Chen, Y. Wang, Y. Feng, W. S. Teo, T. Wu, and H. Chen, “Hotspot-Induced Transformation of Surface-Enhanced Raman Scattering Fingerprints,” ACS Nano4(6), 3087–3094 (2010).
    [CrossRef] [PubMed]
  3. A. E. Grow, L. L. Wood, J. L. Claycomb, and P. A. Thompson, “New biochip technology for label-free detection of pathogens and their toxins,” J. Microbiol. Methods53(2), 221–233 (2003).
    [CrossRef] [PubMed]
  4. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
    [CrossRef]
  5. J. A. Creighton, “Surface Raman electromagnetic enhancement factors for molecules at the surface of small isolated metal spheres: The determination of adsorbate orientation from SERS relative intensities,” Surf. Sci.124(1), 209–219 (1983).
    [CrossRef]
  6. W. E. Doering and S. Nie, “Single-Molecule and Single-Nanoparticle SERS: Examining the Roles of Surface Active Sites and Chemical Enhancement,” J. Phys. Chem. B106(2), 311–317 (2002).
    [CrossRef]
  7. E. C. Le Ru, P. G. Etchegoin, and M. Meyer, “Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection,” J. Chem. Phys.125(20), 204701 (2006).
    [CrossRef] [PubMed]
  8. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Dramatic localized electromagnetic enhancement in plasmon resonant nanowires,” Chem. Phys. Lett.341(1), 1–6 (2001).
    [CrossRef]
  9. E. C. Le Ru, M. Meyer, E. Blackie, and P. G. Etchegoin, “Advanced aspects of electromagnetic SERS enhancement factors at a hot spot,” J. Raman Spectrosc.39(9), 1127–1134 (2008).
    [CrossRef]
  10. A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic Nanogalaxies: Multiscale Aperiodic Arrays for Surface-Enhanced Raman Sensing,” Nano Lett.9(11), 3922–3929 (2009).
    [CrossRef] [PubMed]
  11. C. Chen, J. A. Hutchison, F. Clemente, R. Kox, H. Uji-I, J. Hofkens, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Direct Evidence of High Spatial Localization of Hot Spots in Surface-Enhanced Raman Scattering,” Angew. Chem. Int. Ed. Engl.48(52), 9932–9935 (2009).
    [CrossRef] [PubMed]
  12. R. Stosch, F. Yaghobian, T. Weimann, R. J. C. Brown, M. J. T. Milton, and B. Güttler, “Lithographical gap-size engineered nanoarrays for surface-enhanced Raman probing of biomarkers,” Nanotechnology22(10), 105303 (2011).
    [CrossRef] [PubMed]
  13. H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-Enhancing Substrates Based on Silver Nanoparticle Arrays with Tunable Sub-10nm Gaps,” Adv. Mater.18(4), 491–495 (2006).
    [CrossRef]
  14. K. D. Alexander, M. J. Hampton, S. Zhang, A. Dhawan, H. Xu, and R. Lopez, “A high‐throughput method for controlled hot‐spot fabrication in SERS‐active gold nanoparticle dimer arrays,” J. Raman Spectrosc.40(12), 2171–2175 (2009).
    [CrossRef]
  15. S. M. Mahurin, J. John, M. J. Sepaniak, and S. Dai, “A Reusable Surface-Enhanced Raman Scattering (SERS) Substrate Prepared by Atomic Layer Deposition of Alumina on a Multi-Layer Gold and Silver Film,” Appl. Spectrosc.65(4), 417–422 (2011).
    [CrossRef] [PubMed]
  16. Y. Chen, L. Karvonen, A. Säynätjoki, C. Ye, A. Tervonen, and S. Honkanen, “Ag nanoparticles embedded in glass by two-step ion exchange and their SERS application,” Opt. Mater. Express1(2), 164–172 (2011).
    [CrossRef]
  17. M. G. Nielsen, D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Continuous layer gap plasmon resonators,” Opt. Express19(20), 19310–19322 (2011).
    [CrossRef] [PubMed]
  18. J. Petschulat, D. Cialla, N. Janunts, C. Rockstuhl, U. Hübner, R. Möller, H. Schneidewind, R. Mattheis, J. Popp, A. Tünnermann, F. Lederer, and T. Pertsch, “Doubly resonant optical nanoantenna arrays for polarization resolved measurements of surface-enhanced Raman scattering,” Opt. Express18(5), 4184–4197 (2010).
    [CrossRef] [PubMed]
  19. N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Opt. Express14(2), 847–857 (2006).
    [CrossRef] [PubMed]
  20. K. Wostyn, Y. Zhao, B. Yee, K. Clays, A. Persoons, G. de Schaetzen, and L. Hellemans, “Optical properties and orientation of arrays of polystyrene spheres deposited using convective self-assembly,” J. Chem. Phys.118(23), 10752 (2003).
    [CrossRef]
  21. M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, and S. Coyle, “Preparation of Arrays of Isolated Spherical Cavities by Self-Assembly of Polystyrene Spheres on Self-Assembled Pre-patterned Macroporous Films,” Adv. Mater.16(1), 90–93 (2004).
    [CrossRef]
  22. M. L. Breen, A. D. Dinsmore, R. H. Pink, S. B. Qadri, and B. R. Ratna, “Sonochemically Produced ZnS-Coated Polystyrene Core−Shell Particles for Use in Photonic Crystals,” Langmuir17(3), 903–907 (2001).
    [CrossRef]
  23. E. Palik and G. Ghosh, Handbook of optical constants of solids. Academic, New York, 1985.
  24. T. Yamasaki and T. Tsutsui, “Spontaneous emission from fluorescent molecules embedded in photonic crystals consisting of polystyrene microspheres,” Appl. Phys. Lett.72(16), 1957 (1998).
    [CrossRef]
  25. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
    [CrossRef] [PubMed]
  26. M. G. Banaee and K. B. Crozier, “Gold nanorings as substrates for surface-enhanced Raman scattering,” Opt. Lett.35(5), 760–762 (2010).
    [CrossRef] [PubMed]
  27. S. Li, M. L. Pedano, S. H. Chang, C. A. Mirkin, and G. C. Schatz, “Gap Structure Effects on Surface-Enhanced Raman Scattering Intensities for Gold Gapped Rods,” Nano Lett.10(5), 1722–1727 (2010).
    [CrossRef] [PubMed]
  28. D. Huang, Y. Qi, X. Bai, L. Shi, H. Jia, D. Zhang, and L. Zheng, “One-Pot Synthesis of Dendritic Gold Nanostructures in Aqueous Solutions of Quaternary Ammonium Cationic Surfactants: Effects of the Head Group and Hydrocarbon Chain Length,” ACS Appl. Mater. Interfaces4(9), 4665–4671 (2012).
    [CrossRef] [PubMed]

2012

D. Huang, Y. Qi, X. Bai, L. Shi, H. Jia, D. Zhang, and L. Zheng, “One-Pot Synthesis of Dendritic Gold Nanostructures in Aqueous Solutions of Quaternary Ammonium Cationic Surfactants: Effects of the Head Group and Hydrocarbon Chain Length,” ACS Appl. Mater. Interfaces4(9), 4665–4671 (2012).
[CrossRef] [PubMed]

2011

2010

J. Petschulat, D. Cialla, N. Janunts, C. Rockstuhl, U. Hübner, R. Möller, H. Schneidewind, R. Mattheis, J. Popp, A. Tünnermann, F. Lederer, and T. Pertsch, “Doubly resonant optical nanoantenna arrays for polarization resolved measurements of surface-enhanced Raman scattering,” Opt. Express18(5), 4184–4197 (2010).
[CrossRef] [PubMed]

T. Chen, H. Wang, G. Chen, Y. Wang, Y. Feng, W. S. Teo, T. Wu, and H. Chen, “Hotspot-Induced Transformation of Surface-Enhanced Raman Scattering Fingerprints,” ACS Nano4(6), 3087–3094 (2010).
[CrossRef] [PubMed]

M. G. Banaee and K. B. Crozier, “Gold nanorings as substrates for surface-enhanced Raman scattering,” Opt. Lett.35(5), 760–762 (2010).
[CrossRef] [PubMed]

S. Li, M. L. Pedano, S. H. Chang, C. A. Mirkin, and G. C. Schatz, “Gap Structure Effects on Surface-Enhanced Raman Scattering Intensities for Gold Gapped Rods,” Nano Lett.10(5), 1722–1727 (2010).
[CrossRef] [PubMed]

2009

K. D. Alexander, M. J. Hampton, S. Zhang, A. Dhawan, H. Xu, and R. Lopez, “A high‐throughput method for controlled hot‐spot fabrication in SERS‐active gold nanoparticle dimer arrays,” J. Raman Spectrosc.40(12), 2171–2175 (2009).
[CrossRef]

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic Nanogalaxies: Multiscale Aperiodic Arrays for Surface-Enhanced Raman Sensing,” Nano Lett.9(11), 3922–3929 (2009).
[CrossRef] [PubMed]

C. Chen, J. A. Hutchison, F. Clemente, R. Kox, H. Uji-I, J. Hofkens, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Direct Evidence of High Spatial Localization of Hot Spots in Surface-Enhanced Raman Scattering,” Angew. Chem. Int. Ed. Engl.48(52), 9932–9935 (2009).
[CrossRef] [PubMed]

2008

E. C. Le Ru, M. Meyer, E. Blackie, and P. G. Etchegoin, “Advanced aspects of electromagnetic SERS enhancement factors at a hot spot,” J. Raman Spectrosc.39(9), 1127–1134 (2008).
[CrossRef]

2007

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

2006

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-Enhancing Substrates Based on Silver Nanoparticle Arrays with Tunable Sub-10nm Gaps,” Adv. Mater.18(4), 491–495 (2006).
[CrossRef]

N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Opt. Express14(2), 847–857 (2006).
[CrossRef] [PubMed]

E. C. Le Ru, P. G. Etchegoin, and M. Meyer, “Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection,” J. Chem. Phys.125(20), 204701 (2006).
[CrossRef] [PubMed]

2005

W. R. Premasiri, D. T. Moir, M. S. Klempner, N. Krieger, G. Jones, and L. D. Ziegler, “Characterization of the Surface Enhanced Raman Scattering (SERS) of Bacteria,” J. Phys. Chem. B109(1), 312–320 (2005).
[CrossRef] [PubMed]

2004

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, and S. Coyle, “Preparation of Arrays of Isolated Spherical Cavities by Self-Assembly of Polystyrene Spheres on Self-Assembled Pre-patterned Macroporous Films,” Adv. Mater.16(1), 90–93 (2004).
[CrossRef]

2003

A. E. Grow, L. L. Wood, J. L. Claycomb, and P. A. Thompson, “New biochip technology for label-free detection of pathogens and their toxins,” J. Microbiol. Methods53(2), 221–233 (2003).
[CrossRef] [PubMed]

K. Wostyn, Y. Zhao, B. Yee, K. Clays, A. Persoons, G. de Schaetzen, and L. Hellemans, “Optical properties and orientation of arrays of polystyrene spheres deposited using convective self-assembly,” J. Chem. Phys.118(23), 10752 (2003).
[CrossRef]

2002

W. E. Doering and S. Nie, “Single-Molecule and Single-Nanoparticle SERS: Examining the Roles of Surface Active Sites and Chemical Enhancement,” J. Phys. Chem. B106(2), 311–317 (2002).
[CrossRef]

2001

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Dramatic localized electromagnetic enhancement in plasmon resonant nanowires,” Chem. Phys. Lett.341(1), 1–6 (2001).
[CrossRef]

M. L. Breen, A. D. Dinsmore, R. H. Pink, S. B. Qadri, and B. R. Ratna, “Sonochemically Produced ZnS-Coated Polystyrene Core−Shell Particles for Use in Photonic Crystals,” Langmuir17(3), 903–907 (2001).
[CrossRef]

1998

T. Yamasaki and T. Tsutsui, “Spontaneous emission from fluorescent molecules embedded in photonic crystals consisting of polystyrene microspheres,” Appl. Phys. Lett.72(16), 1957 (1998).
[CrossRef]

1997

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

1983

J. A. Creighton, “Surface Raman electromagnetic enhancement factors for molecules at the surface of small isolated metal spheres: The determination of adsorbate orientation from SERS relative intensities,” Surf. Sci.124(1), 209–219 (1983).
[CrossRef]

Abdelsalam, M. E.

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, and S. Coyle, “Preparation of Arrays of Isolated Spherical Cavities by Self-Assembly of Polystyrene Spheres on Self-Assembled Pre-patterned Macroporous Films,” Adv. Mater.16(1), 90–93 (2004).
[CrossRef]

Albrektsen, O.

Alexander, K. D.

K. D. Alexander, M. J. Hampton, S. Zhang, A. Dhawan, H. Xu, and R. Lopez, “A high‐throughput method for controlled hot‐spot fabrication in SERS‐active gold nanoparticle dimer arrays,” J. Raman Spectrosc.40(12), 2171–2175 (2009).
[CrossRef]

Bai, X.

D. Huang, Y. Qi, X. Bai, L. Shi, H. Jia, D. Zhang, and L. Zheng, “One-Pot Synthesis of Dendritic Gold Nanostructures in Aqueous Solutions of Quaternary Ammonium Cationic Surfactants: Effects of the Head Group and Hydrocarbon Chain Length,” ACS Appl. Mater. Interfaces4(9), 4665–4671 (2012).
[CrossRef] [PubMed]

Banaee, M. G.

Bartlett, P. N.

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, and S. Coyle, “Preparation of Arrays of Isolated Spherical Cavities by Self-Assembly of Polystyrene Spheres on Self-Assembled Pre-patterned Macroporous Films,” Adv. Mater.16(1), 90–93 (2004).
[CrossRef]

Baumberg, J. J.

N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Opt. Express14(2), 847–857 (2006).
[CrossRef] [PubMed]

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, and S. Coyle, “Preparation of Arrays of Isolated Spherical Cavities by Self-Assembly of Polystyrene Spheres on Self-Assembled Pre-patterned Macroporous Films,” Adv. Mater.16(1), 90–93 (2004).
[CrossRef]

Blackie, E.

E. C. Le Ru, M. Meyer, E. Blackie, and P. G. Etchegoin, “Advanced aspects of electromagnetic SERS enhancement factors at a hot spot,” J. Raman Spectrosc.39(9), 1127–1134 (2008).
[CrossRef]

Borghs, G.

C. Chen, J. A. Hutchison, F. Clemente, R. Kox, H. Uji-I, J. Hofkens, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Direct Evidence of High Spatial Localization of Hot Spots in Surface-Enhanced Raman Scattering,” Angew. Chem. Int. Ed. Engl.48(52), 9932–9935 (2009).
[CrossRef] [PubMed]

Boriskina, S. V.

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic Nanogalaxies: Multiscale Aperiodic Arrays for Surface-Enhanced Raman Sensing,” Nano Lett.9(11), 3922–3929 (2009).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

Breen, M. L.

M. L. Breen, A. D. Dinsmore, R. H. Pink, S. B. Qadri, and B. R. Ratna, “Sonochemically Produced ZnS-Coated Polystyrene Core−Shell Particles for Use in Photonic Crystals,” Langmuir17(3), 903–907 (2001).
[CrossRef]

Brown, R. J. C.

R. Stosch, F. Yaghobian, T. Weimann, R. J. C. Brown, M. J. T. Milton, and B. Güttler, “Lithographical gap-size engineered nanoarrays for surface-enhanced Raman probing of biomarkers,” Nanotechnology22(10), 105303 (2011).
[CrossRef] [PubMed]

Chan, T. H.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-Enhancing Substrates Based on Silver Nanoparticle Arrays with Tunable Sub-10nm Gaps,” Adv. Mater.18(4), 491–495 (2006).
[CrossRef]

Chang, S. H.

S. Li, M. L. Pedano, S. H. Chang, C. A. Mirkin, and G. C. Schatz, “Gap Structure Effects on Surface-Enhanced Raman Scattering Intensities for Gold Gapped Rods,” Nano Lett.10(5), 1722–1727 (2010).
[CrossRef] [PubMed]

Charlton, M. D. B.

Chen, C.

C. Chen, J. A. Hutchison, F. Clemente, R. Kox, H. Uji-I, J. Hofkens, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Direct Evidence of High Spatial Localization of Hot Spots in Surface-Enhanced Raman Scattering,” Angew. Chem. Int. Ed. Engl.48(52), 9932–9935 (2009).
[CrossRef] [PubMed]

Chen, G.

T. Chen, H. Wang, G. Chen, Y. Wang, Y. Feng, W. S. Teo, T. Wu, and H. Chen, “Hotspot-Induced Transformation of Surface-Enhanced Raman Scattering Fingerprints,” ACS Nano4(6), 3087–3094 (2010).
[CrossRef] [PubMed]

Chen, H.

T. Chen, H. Wang, G. Chen, Y. Wang, Y. Feng, W. S. Teo, T. Wu, and H. Chen, “Hotspot-Induced Transformation of Surface-Enhanced Raman Scattering Fingerprints,” ACS Nano4(6), 3087–3094 (2010).
[CrossRef] [PubMed]

Chen, T.

T. Chen, H. Wang, G. Chen, Y. Wang, Y. Feng, W. S. Teo, T. Wu, and H. Chen, “Hotspot-Induced Transformation of Surface-Enhanced Raman Scattering Fingerprints,” ACS Nano4(6), 3087–3094 (2010).
[CrossRef] [PubMed]

Chen, Y.

Cialla, D.

Claycomb, J. L.

A. E. Grow, L. L. Wood, J. L. Claycomb, and P. A. Thompson, “New biochip technology for label-free detection of pathogens and their toxins,” J. Microbiol. Methods53(2), 221–233 (2003).
[CrossRef] [PubMed]

Clays, K.

K. Wostyn, Y. Zhao, B. Yee, K. Clays, A. Persoons, G. de Schaetzen, and L. Hellemans, “Optical properties and orientation of arrays of polystyrene spheres deposited using convective self-assembly,” J. Chem. Phys.118(23), 10752 (2003).
[CrossRef]

Clemente, F.

C. Chen, J. A. Hutchison, F. Clemente, R. Kox, H. Uji-I, J. Hofkens, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Direct Evidence of High Spatial Localization of Hot Spots in Surface-Enhanced Raman Scattering,” Angew. Chem. Int. Ed. Engl.48(52), 9932–9935 (2009).
[CrossRef] [PubMed]

Coyle, S.

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, and S. Coyle, “Preparation of Arrays of Isolated Spherical Cavities by Self-Assembly of Polystyrene Spheres on Self-Assembled Pre-patterned Macroporous Films,” Adv. Mater.16(1), 90–93 (2004).
[CrossRef]

Creighton, J. A.

J. A. Creighton, “Surface Raman electromagnetic enhancement factors for molecules at the surface of small isolated metal spheres: The determination of adsorbate orientation from SERS relative intensities,” Surf. Sci.124(1), 209–219 (1983).
[CrossRef]

Crozier, K. B.

Dai, S.

Dal Negro, L.

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic Nanogalaxies: Multiscale Aperiodic Arrays for Surface-Enhanced Raman Sensing,” Nano Lett.9(11), 3922–3929 (2009).
[CrossRef] [PubMed]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

de Schaetzen, G.

K. Wostyn, Y. Zhao, B. Yee, K. Clays, A. Persoons, G. de Schaetzen, and L. Hellemans, “Optical properties and orientation of arrays of polystyrene spheres deposited using convective self-assembly,” J. Chem. Phys.118(23), 10752 (2003).
[CrossRef]

Dhawan, A.

K. D. Alexander, M. J. Hampton, S. Zhang, A. Dhawan, H. Xu, and R. Lopez, “A high‐throughput method for controlled hot‐spot fabrication in SERS‐active gold nanoparticle dimer arrays,” J. Raman Spectrosc.40(12), 2171–2175 (2009).
[CrossRef]

Dinsmore, A. D.

M. L. Breen, A. D. Dinsmore, R. H. Pink, S. B. Qadri, and B. R. Ratna, “Sonochemically Produced ZnS-Coated Polystyrene Core−Shell Particles for Use in Photonic Crystals,” Langmuir17(3), 903–907 (2001).
[CrossRef]

Doering, W. E.

W. E. Doering and S. Nie, “Single-Molecule and Single-Nanoparticle SERS: Examining the Roles of Surface Active Sites and Chemical Enhancement,” J. Phys. Chem. B106(2), 311–317 (2002).
[CrossRef]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Etchegoin, P. G.

E. C. Le Ru, M. Meyer, E. Blackie, and P. G. Etchegoin, “Advanced aspects of electromagnetic SERS enhancement factors at a hot spot,” J. Raman Spectrosc.39(9), 1127–1134 (2008).
[CrossRef]

E. C. Le Ru, P. G. Etchegoin, and M. Meyer, “Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection,” J. Chem. Phys.125(20), 204701 (2006).
[CrossRef] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Feng, Y.

T. Chen, H. Wang, G. Chen, Y. Wang, Y. Feng, W. S. Teo, T. Wu, and H. Chen, “Hotspot-Induced Transformation of Surface-Enhanced Raman Scattering Fingerprints,” ACS Nano4(6), 3087–3094 (2010).
[CrossRef] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Gopinath, A.

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic Nanogalaxies: Multiscale Aperiodic Arrays for Surface-Enhanced Raman Sensing,” Nano Lett.9(11), 3922–3929 (2009).
[CrossRef] [PubMed]

Gramotnev, D. K.

Grow, A. E.

A. E. Grow, L. L. Wood, J. L. Claycomb, and P. A. Thompson, “New biochip technology for label-free detection of pathogens and their toxins,” J. Microbiol. Methods53(2), 221–233 (2003).
[CrossRef] [PubMed]

Güttler, B.

R. Stosch, F. Yaghobian, T. Weimann, R. J. C. Brown, M. J. T. Milton, and B. Güttler, “Lithographical gap-size engineered nanoarrays for surface-enhanced Raman probing of biomarkers,” Nanotechnology22(10), 105303 (2011).
[CrossRef] [PubMed]

Hampton, M. J.

K. D. Alexander, M. J. Hampton, S. Zhang, A. Dhawan, H. Xu, and R. Lopez, “A high‐throughput method for controlled hot‐spot fabrication in SERS‐active gold nanoparticle dimer arrays,” J. Raman Spectrosc.40(12), 2171–2175 (2009).
[CrossRef]

Hellemans, L.

K. Wostyn, Y. Zhao, B. Yee, K. Clays, A. Persoons, G. de Schaetzen, and L. Hellemans, “Optical properties and orientation of arrays of polystyrene spheres deposited using convective self-assembly,” J. Chem. Phys.118(23), 10752 (2003).
[CrossRef]

Hofkens, J.

C. Chen, J. A. Hutchison, F. Clemente, R. Kox, H. Uji-I, J. Hofkens, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Direct Evidence of High Spatial Localization of Hot Spots in Surface-Enhanced Raman Scattering,” Angew. Chem. Int. Ed. Engl.48(52), 9932–9935 (2009).
[CrossRef] [PubMed]

Honkanen, S.

Hsu, C. F.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-Enhancing Substrates Based on Silver Nanoparticle Arrays with Tunable Sub-10nm Gaps,” Adv. Mater.18(4), 491–495 (2006).
[CrossRef]

Huang, D.

D. Huang, Y. Qi, X. Bai, L. Shi, H. Jia, D. Zhang, and L. Zheng, “One-Pot Synthesis of Dendritic Gold Nanostructures in Aqueous Solutions of Quaternary Ammonium Cationic Surfactants: Effects of the Head Group and Hydrocarbon Chain Length,” ACS Appl. Mater. Interfaces4(9), 4665–4671 (2012).
[CrossRef] [PubMed]

Hübner, U.

Hutchison, J. A.

C. Chen, J. A. Hutchison, F. Clemente, R. Kox, H. Uji-I, J. Hofkens, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Direct Evidence of High Spatial Localization of Hot Spots in Surface-Enhanced Raman Scattering,” Angew. Chem. Int. Ed. Engl.48(52), 9932–9935 (2009).
[CrossRef] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Janunts, N.

Jia, H.

D. Huang, Y. Qi, X. Bai, L. Shi, H. Jia, D. Zhang, and L. Zheng, “One-Pot Synthesis of Dendritic Gold Nanostructures in Aqueous Solutions of Quaternary Ammonium Cationic Surfactants: Effects of the Head Group and Hydrocarbon Chain Length,” ACS Appl. Mater. Interfaces4(9), 4665–4671 (2012).
[CrossRef] [PubMed]

John, J.

Jones, G.

W. R. Premasiri, D. T. Moir, M. S. Klempner, N. Krieger, G. Jones, and L. D. Ziegler, “Characterization of the Surface Enhanced Raman Scattering (SERS) of Bacteria,” J. Phys. Chem. B109(1), 312–320 (2005).
[CrossRef] [PubMed]

Karvonen, L.

Klempner, M. S.

W. R. Premasiri, D. T. Moir, M. S. Klempner, N. Krieger, G. Jones, and L. D. Ziegler, “Characterization of the Surface Enhanced Raman Scattering (SERS) of Bacteria,” J. Phys. Chem. B109(1), 312–320 (2005).
[CrossRef] [PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Kottmann, J. P.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Dramatic localized electromagnetic enhancement in plasmon resonant nanowires,” Chem. Phys. Lett.341(1), 1–6 (2001).
[CrossRef]

Kox, R.

C. Chen, J. A. Hutchison, F. Clemente, R. Kox, H. Uji-I, J. Hofkens, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Direct Evidence of High Spatial Localization of Hot Spots in Surface-Enhanced Raman Scattering,” Angew. Chem. Int. Ed. Engl.48(52), 9932–9935 (2009).
[CrossRef] [PubMed]

Krieger, N.

W. R. Premasiri, D. T. Moir, M. S. Klempner, N. Krieger, G. Jones, and L. D. Ziegler, “Characterization of the Surface Enhanced Raman Scattering (SERS) of Bacteria,” J. Phys. Chem. B109(1), 312–320 (2005).
[CrossRef] [PubMed]

Lagae, L.

C. Chen, J. A. Hutchison, F. Clemente, R. Kox, H. Uji-I, J. Hofkens, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Direct Evidence of High Spatial Localization of Hot Spots in Surface-Enhanced Raman Scattering,” Angew. Chem. Int. Ed. Engl.48(52), 9932–9935 (2009).
[CrossRef] [PubMed]

Le Ru, E. C.

E. C. Le Ru, M. Meyer, E. Blackie, and P. G. Etchegoin, “Advanced aspects of electromagnetic SERS enhancement factors at a hot spot,” J. Raman Spectrosc.39(9), 1127–1134 (2008).
[CrossRef]

E. C. Le Ru, P. G. Etchegoin, and M. Meyer, “Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection,” J. Chem. Phys.125(20), 204701 (2006).
[CrossRef] [PubMed]

Lederer, F.

Li, S.

S. Li, M. L. Pedano, S. H. Chang, C. A. Mirkin, and G. C. Schatz, “Gap Structure Effects on Surface-Enhanced Raman Scattering Intensities for Gold Gapped Rods,” Nano Lett.10(5), 1722–1727 (2010).
[CrossRef] [PubMed]

Liu, C. Y.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-Enhancing Substrates Based on Silver Nanoparticle Arrays with Tunable Sub-10nm Gaps,” Adv. Mater.18(4), 491–495 (2006).
[CrossRef]

Liu, N. W.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-Enhancing Substrates Based on Silver Nanoparticle Arrays with Tunable Sub-10nm Gaps,” Adv. Mater.18(4), 491–495 (2006).
[CrossRef]

Lopez, R.

K. D. Alexander, M. J. Hampton, S. Zhang, A. Dhawan, H. Xu, and R. Lopez, “A high‐throughput method for controlled hot‐spot fabrication in SERS‐active gold nanoparticle dimer arrays,” J. Raman Spectrosc.40(12), 2171–2175 (2009).
[CrossRef]

Maes, G.

C. Chen, J. A. Hutchison, F. Clemente, R. Kox, H. Uji-I, J. Hofkens, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Direct Evidence of High Spatial Localization of Hot Spots in Surface-Enhanced Raman Scattering,” Angew. Chem. Int. Ed. Engl.48(52), 9932–9935 (2009).
[CrossRef] [PubMed]

Mahnkopf, S.

Mahurin, S. M.

Martin, O. J. F.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Dramatic localized electromagnetic enhancement in plasmon resonant nanowires,” Chem. Phys. Lett.341(1), 1–6 (2001).
[CrossRef]

Mattheis, R.

Meyer, M.

E. C. Le Ru, M. Meyer, E. Blackie, and P. G. Etchegoin, “Advanced aspects of electromagnetic SERS enhancement factors at a hot spot,” J. Raman Spectrosc.39(9), 1127–1134 (2008).
[CrossRef]

E. C. Le Ru, P. G. Etchegoin, and M. Meyer, “Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection,” J. Chem. Phys.125(20), 204701 (2006).
[CrossRef] [PubMed]

Milton, M. J. T.

R. Stosch, F. Yaghobian, T. Weimann, R. J. C. Brown, M. J. T. Milton, and B. Güttler, “Lithographical gap-size engineered nanoarrays for surface-enhanced Raman probing of biomarkers,” Nanotechnology22(10), 105303 (2011).
[CrossRef] [PubMed]

Mirkin, C. A.

S. Li, M. L. Pedano, S. H. Chang, C. A. Mirkin, and G. C. Schatz, “Gap Structure Effects on Surface-Enhanced Raman Scattering Intensities for Gold Gapped Rods,” Nano Lett.10(5), 1722–1727 (2010).
[CrossRef] [PubMed]

Moir, D. T.

W. R. Premasiri, D. T. Moir, M. S. Klempner, N. Krieger, G. Jones, and L. D. Ziegler, “Characterization of the Surface Enhanced Raman Scattering (SERS) of Bacteria,” J. Phys. Chem. B109(1), 312–320 (2005).
[CrossRef] [PubMed]

Möller, R.

Netti, C. M.

Nie, S.

W. E. Doering and S. Nie, “Single-Molecule and Single-Nanoparticle SERS: Examining the Roles of Surface Active Sites and Chemical Enhancement,” J. Phys. Chem. B106(2), 311–317 (2002).
[CrossRef]

Nielsen, M. G.

Pedano, M. L.

S. Li, M. L. Pedano, S. H. Chang, C. A. Mirkin, and G. C. Schatz, “Gap Structure Effects on Surface-Enhanced Raman Scattering Intensities for Gold Gapped Rods,” Nano Lett.10(5), 1722–1727 (2010).
[CrossRef] [PubMed]

Peng, C. Y.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-Enhancing Substrates Based on Silver Nanoparticle Arrays with Tunable Sub-10nm Gaps,” Adv. Mater.18(4), 491–495 (2006).
[CrossRef]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Perney, N. M. B.

Persoons, A.

K. Wostyn, Y. Zhao, B. Yee, K. Clays, A. Persoons, G. de Schaetzen, and L. Hellemans, “Optical properties and orientation of arrays of polystyrene spheres deposited using convective self-assembly,” J. Chem. Phys.118(23), 10752 (2003).
[CrossRef]

Pertsch, T.

Petschulat, J.

Pink, R. H.

M. L. Breen, A. D. Dinsmore, R. H. Pink, S. B. Qadri, and B. R. Ratna, “Sonochemically Produced ZnS-Coated Polystyrene Core−Shell Particles for Use in Photonic Crystals,” Langmuir17(3), 903–907 (2001).
[CrossRef]

Popp, J.

Pors, A.

Premasiri, W. R.

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic Nanogalaxies: Multiscale Aperiodic Arrays for Surface-Enhanced Raman Sensing,” Nano Lett.9(11), 3922–3929 (2009).
[CrossRef] [PubMed]

W. R. Premasiri, D. T. Moir, M. S. Klempner, N. Krieger, G. Jones, and L. D. Ziegler, “Characterization of the Surface Enhanced Raman Scattering (SERS) of Bacteria,” J. Phys. Chem. B109(1), 312–320 (2005).
[CrossRef] [PubMed]

Qadri, S. B.

M. L. Breen, A. D. Dinsmore, R. H. Pink, S. B. Qadri, and B. R. Ratna, “Sonochemically Produced ZnS-Coated Polystyrene Core−Shell Particles for Use in Photonic Crystals,” Langmuir17(3), 903–907 (2001).
[CrossRef]

Qi, Y.

D. Huang, Y. Qi, X. Bai, L. Shi, H. Jia, D. Zhang, and L. Zheng, “One-Pot Synthesis of Dendritic Gold Nanostructures in Aqueous Solutions of Quaternary Ammonium Cationic Surfactants: Effects of the Head Group and Hydrocarbon Chain Length,” ACS Appl. Mater. Interfaces4(9), 4665–4671 (2012).
[CrossRef] [PubMed]

Ratna, B. R.

M. L. Breen, A. D. Dinsmore, R. H. Pink, S. B. Qadri, and B. R. Ratna, “Sonochemically Produced ZnS-Coated Polystyrene Core−Shell Particles for Use in Photonic Crystals,” Langmuir17(3), 903–907 (2001).
[CrossRef]

Reinhard, B. M.

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic Nanogalaxies: Multiscale Aperiodic Arrays for Surface-Enhanced Raman Sensing,” Nano Lett.9(11), 3922–3929 (2009).
[CrossRef] [PubMed]

Rockstuhl, C.

Säynätjoki, A.

Schatz, G. C.

S. Li, M. L. Pedano, S. H. Chang, C. A. Mirkin, and G. C. Schatz, “Gap Structure Effects on Surface-Enhanced Raman Scattering Intensities for Gold Gapped Rods,” Nano Lett.10(5), 1722–1727 (2010).
[CrossRef] [PubMed]

Schneidewind, H.

Schultz, S.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Dramatic localized electromagnetic enhancement in plasmon resonant nanowires,” Chem. Phys. Lett.341(1), 1–6 (2001).
[CrossRef]

Sepaniak, M. J.

Shi, L.

D. Huang, Y. Qi, X. Bai, L. Shi, H. Jia, D. Zhang, and L. Zheng, “One-Pot Synthesis of Dendritic Gold Nanostructures in Aqueous Solutions of Quaternary Ammonium Cationic Surfactants: Effects of the Head Group and Hydrocarbon Chain Length,” ACS Appl. Mater. Interfaces4(9), 4665–4671 (2012).
[CrossRef] [PubMed]

Smith, D. R.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Dramatic localized electromagnetic enhancement in plasmon resonant nanowires,” Chem. Phys. Lett.341(1), 1–6 (2001).
[CrossRef]

Stosch, R.

R. Stosch, F. Yaghobian, T. Weimann, R. J. C. Brown, M. J. T. Milton, and B. Güttler, “Lithographical gap-size engineered nanoarrays for surface-enhanced Raman probing of biomarkers,” Nanotechnology22(10), 105303 (2011).
[CrossRef] [PubMed]

Teo, W. S.

T. Chen, H. Wang, G. Chen, Y. Wang, Y. Feng, W. S. Teo, T. Wu, and H. Chen, “Hotspot-Induced Transformation of Surface-Enhanced Raman Scattering Fingerprints,” ACS Nano4(6), 3087–3094 (2010).
[CrossRef] [PubMed]

Tervonen, A.

Thompson, P. A.

A. E. Grow, L. L. Wood, J. L. Claycomb, and P. A. Thompson, “New biochip technology for label-free detection of pathogens and their toxins,” J. Microbiol. Methods53(2), 221–233 (2003).
[CrossRef] [PubMed]

Tsutsui, T.

T. Yamasaki and T. Tsutsui, “Spontaneous emission from fluorescent molecules embedded in photonic crystals consisting of polystyrene microspheres,” Appl. Phys. Lett.72(16), 1957 (1998).
[CrossRef]

Tünnermann, A.

Uji-I, H.

C. Chen, J. A. Hutchison, F. Clemente, R. Kox, H. Uji-I, J. Hofkens, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Direct Evidence of High Spatial Localization of Hot Spots in Surface-Enhanced Raman Scattering,” Angew. Chem. Int. Ed. Engl.48(52), 9932–9935 (2009).
[CrossRef] [PubMed]

Van Dorpe, P.

C. Chen, J. A. Hutchison, F. Clemente, R. Kox, H. Uji-I, J. Hofkens, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Direct Evidence of High Spatial Localization of Hot Spots in Surface-Enhanced Raman Scattering,” Angew. Chem. Int. Ed. Engl.48(52), 9932–9935 (2009).
[CrossRef] [PubMed]

Wang, H.

T. Chen, H. Wang, G. Chen, Y. Wang, Y. Feng, W. S. Teo, T. Wu, and H. Chen, “Hotspot-Induced Transformation of Surface-Enhanced Raman Scattering Fingerprints,” ACS Nano4(6), 3087–3094 (2010).
[CrossRef] [PubMed]

Wang, H. H.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-Enhancing Substrates Based on Silver Nanoparticle Arrays with Tunable Sub-10nm Gaps,” Adv. Mater.18(4), 491–495 (2006).
[CrossRef]

Wang, J. K.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-Enhancing Substrates Based on Silver Nanoparticle Arrays with Tunable Sub-10nm Gaps,” Adv. Mater.18(4), 491–495 (2006).
[CrossRef]

Wang, Y.

T. Chen, H. Wang, G. Chen, Y. Wang, Y. Feng, W. S. Teo, T. Wu, and H. Chen, “Hotspot-Induced Transformation of Surface-Enhanced Raman Scattering Fingerprints,” ACS Nano4(6), 3087–3094 (2010).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Wang, Y. L.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-Enhancing Substrates Based on Silver Nanoparticle Arrays with Tunable Sub-10nm Gaps,” Adv. Mater.18(4), 491–495 (2006).
[CrossRef]

Weimann, T.

R. Stosch, F. Yaghobian, T. Weimann, R. J. C. Brown, M. J. T. Milton, and B. Güttler, “Lithographical gap-size engineered nanoarrays for surface-enhanced Raman probing of biomarkers,” Nanotechnology22(10), 105303 (2011).
[CrossRef] [PubMed]

Wood, L. L.

A. E. Grow, L. L. Wood, J. L. Claycomb, and P. A. Thompson, “New biochip technology for label-free detection of pathogens and their toxins,” J. Microbiol. Methods53(2), 221–233 (2003).
[CrossRef] [PubMed]

Wostyn, K.

K. Wostyn, Y. Zhao, B. Yee, K. Clays, A. Persoons, G. de Schaetzen, and L. Hellemans, “Optical properties and orientation of arrays of polystyrene spheres deposited using convective self-assembly,” J. Chem. Phys.118(23), 10752 (2003).
[CrossRef]

Wu, S. B.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-Enhancing Substrates Based on Silver Nanoparticle Arrays with Tunable Sub-10nm Gaps,” Adv. Mater.18(4), 491–495 (2006).
[CrossRef]

Wu, T.

T. Chen, H. Wang, G. Chen, Y. Wang, Y. Feng, W. S. Teo, T. Wu, and H. Chen, “Hotspot-Induced Transformation of Surface-Enhanced Raman Scattering Fingerprints,” ACS Nano4(6), 3087–3094 (2010).
[CrossRef] [PubMed]

Xu, H.

K. D. Alexander, M. J. Hampton, S. Zhang, A. Dhawan, H. Xu, and R. Lopez, “A high‐throughput method for controlled hot‐spot fabrication in SERS‐active gold nanoparticle dimer arrays,” J. Raman Spectrosc.40(12), 2171–2175 (2009).
[CrossRef]

Yaghobian, F.

R. Stosch, F. Yaghobian, T. Weimann, R. J. C. Brown, M. J. T. Milton, and B. Güttler, “Lithographical gap-size engineered nanoarrays for surface-enhanced Raman probing of biomarkers,” Nanotechnology22(10), 105303 (2011).
[CrossRef] [PubMed]

Yamasaki, T.

T. Yamasaki and T. Tsutsui, “Spontaneous emission from fluorescent molecules embedded in photonic crystals consisting of polystyrene microspheres,” Appl. Phys. Lett.72(16), 1957 (1998).
[CrossRef]

Ye, C.

Yee, B.

K. Wostyn, Y. Zhao, B. Yee, K. Clays, A. Persoons, G. de Schaetzen, and L. Hellemans, “Optical properties and orientation of arrays of polystyrene spheres deposited using convective self-assembly,” J. Chem. Phys.118(23), 10752 (2003).
[CrossRef]

Zhang, D.

D. Huang, Y. Qi, X. Bai, L. Shi, H. Jia, D. Zhang, and L. Zheng, “One-Pot Synthesis of Dendritic Gold Nanostructures in Aqueous Solutions of Quaternary Ammonium Cationic Surfactants: Effects of the Head Group and Hydrocarbon Chain Length,” ACS Appl. Mater. Interfaces4(9), 4665–4671 (2012).
[CrossRef] [PubMed]

Zhang, S.

K. D. Alexander, M. J. Hampton, S. Zhang, A. Dhawan, H. Xu, and R. Lopez, “A high‐throughput method for controlled hot‐spot fabrication in SERS‐active gold nanoparticle dimer arrays,” J. Raman Spectrosc.40(12), 2171–2175 (2009).
[CrossRef]

Zhao, Y.

K. Wostyn, Y. Zhao, B. Yee, K. Clays, A. Persoons, G. de Schaetzen, and L. Hellemans, “Optical properties and orientation of arrays of polystyrene spheres deposited using convective self-assembly,” J. Chem. Phys.118(23), 10752 (2003).
[CrossRef]

Zheng, L.

D. Huang, Y. Qi, X. Bai, L. Shi, H. Jia, D. Zhang, and L. Zheng, “One-Pot Synthesis of Dendritic Gold Nanostructures in Aqueous Solutions of Quaternary Ammonium Cationic Surfactants: Effects of the Head Group and Hydrocarbon Chain Length,” ACS Appl. Mater. Interfaces4(9), 4665–4671 (2012).
[CrossRef] [PubMed]

Ziegler, L.

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic Nanogalaxies: Multiscale Aperiodic Arrays for Surface-Enhanced Raman Sensing,” Nano Lett.9(11), 3922–3929 (2009).
[CrossRef] [PubMed]

Ziegler, L. D.

W. R. Premasiri, D. T. Moir, M. S. Klempner, N. Krieger, G. Jones, and L. D. Ziegler, “Characterization of the Surface Enhanced Raman Scattering (SERS) of Bacteria,” J. Phys. Chem. B109(1), 312–320 (2005).
[CrossRef] [PubMed]

Zoorob, M. E.

ACS Appl. Mater. Interfaces

D. Huang, Y. Qi, X. Bai, L. Shi, H. Jia, D. Zhang, and L. Zheng, “One-Pot Synthesis of Dendritic Gold Nanostructures in Aqueous Solutions of Quaternary Ammonium Cationic Surfactants: Effects of the Head Group and Hydrocarbon Chain Length,” ACS Appl. Mater. Interfaces4(9), 4665–4671 (2012).
[CrossRef] [PubMed]

ACS Nano

T. Chen, H. Wang, G. Chen, Y. Wang, Y. Feng, W. S. Teo, T. Wu, and H. Chen, “Hotspot-Induced Transformation of Surface-Enhanced Raman Scattering Fingerprints,” ACS Nano4(6), 3087–3094 (2010).
[CrossRef] [PubMed]

Adv. Mater.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-Enhancing Substrates Based on Silver Nanoparticle Arrays with Tunable Sub-10nm Gaps,” Adv. Mater.18(4), 491–495 (2006).
[CrossRef]

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, and S. Coyle, “Preparation of Arrays of Isolated Spherical Cavities by Self-Assembly of Polystyrene Spheres on Self-Assembled Pre-patterned Macroporous Films,” Adv. Mater.16(1), 90–93 (2004).
[CrossRef]

Angew. Chem. Int. Ed. Engl.

C. Chen, J. A. Hutchison, F. Clemente, R. Kox, H. Uji-I, J. Hofkens, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Direct Evidence of High Spatial Localization of Hot Spots in Surface-Enhanced Raman Scattering,” Angew. Chem. Int. Ed. Engl.48(52), 9932–9935 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett.

T. Yamasaki and T. Tsutsui, “Spontaneous emission from fluorescent molecules embedded in photonic crystals consisting of polystyrene microspheres,” Appl. Phys. Lett.72(16), 1957 (1998).
[CrossRef]

Appl. Spectrosc.

Chem. Phys. Lett.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Dramatic localized electromagnetic enhancement in plasmon resonant nanowires,” Chem. Phys. Lett.341(1), 1–6 (2001).
[CrossRef]

J. Chem. Phys.

E. C. Le Ru, P. G. Etchegoin, and M. Meyer, “Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection,” J. Chem. Phys.125(20), 204701 (2006).
[CrossRef] [PubMed]

K. Wostyn, Y. Zhao, B. Yee, K. Clays, A. Persoons, G. de Schaetzen, and L. Hellemans, “Optical properties and orientation of arrays of polystyrene spheres deposited using convective self-assembly,” J. Chem. Phys.118(23), 10752 (2003).
[CrossRef]

J. Microbiol. Methods

A. E. Grow, L. L. Wood, J. L. Claycomb, and P. A. Thompson, “New biochip technology for label-free detection of pathogens and their toxins,” J. Microbiol. Methods53(2), 221–233 (2003).
[CrossRef] [PubMed]

J. Phys. Chem. B

W. R. Premasiri, D. T. Moir, M. S. Klempner, N. Krieger, G. Jones, and L. D. Ziegler, “Characterization of the Surface Enhanced Raman Scattering (SERS) of Bacteria,” J. Phys. Chem. B109(1), 312–320 (2005).
[CrossRef] [PubMed]

W. E. Doering and S. Nie, “Single-Molecule and Single-Nanoparticle SERS: Examining the Roles of Surface Active Sites and Chemical Enhancement,” J. Phys. Chem. B106(2), 311–317 (2002).
[CrossRef]

J. Raman Spectrosc.

E. C. Le Ru, M. Meyer, E. Blackie, and P. G. Etchegoin, “Advanced aspects of electromagnetic SERS enhancement factors at a hot spot,” J. Raman Spectrosc.39(9), 1127–1134 (2008).
[CrossRef]

K. D. Alexander, M. J. Hampton, S. Zhang, A. Dhawan, H. Xu, and R. Lopez, “A high‐throughput method for controlled hot‐spot fabrication in SERS‐active gold nanoparticle dimer arrays,” J. Raman Spectrosc.40(12), 2171–2175 (2009).
[CrossRef]

Langmuir

M. L. Breen, A. D. Dinsmore, R. H. Pink, S. B. Qadri, and B. R. Ratna, “Sonochemically Produced ZnS-Coated Polystyrene Core−Shell Particles for Use in Photonic Crystals,” Langmuir17(3), 903–907 (2001).
[CrossRef]

Nano Lett.

S. Li, M. L. Pedano, S. H. Chang, C. A. Mirkin, and G. C. Schatz, “Gap Structure Effects on Surface-Enhanced Raman Scattering Intensities for Gold Gapped Rods,” Nano Lett.10(5), 1722–1727 (2010).
[CrossRef] [PubMed]

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic Nanogalaxies: Multiscale Aperiodic Arrays for Surface-Enhanced Raman Sensing,” Nano Lett.9(11), 3922–3929 (2009).
[CrossRef] [PubMed]

Nanotechnology

R. Stosch, F. Yaghobian, T. Weimann, R. J. C. Brown, M. J. T. Milton, and B. Güttler, “Lithographical gap-size engineered nanoarrays for surface-enhanced Raman probing of biomarkers,” Nanotechnology22(10), 105303 (2011).
[CrossRef] [PubMed]

Nature

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Opt. Mater. Express

Phys. Rev. Lett.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Surf. Sci.

J. A. Creighton, “Surface Raman electromagnetic enhancement factors for molecules at the surface of small isolated metal spheres: The determination of adsorbate orientation from SERS relative intensities,” Surf. Sci.124(1), 209–219 (1983).
[CrossRef]

Other

E. Palik and G. Ghosh, Handbook of optical constants of solids. Academic, New York, 1985.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) The schematic of the MNGA structure; (b) the scattering cross-section curves for different gap widths; (c) the relationship of the resonance wavelength and the structure parameters; (d) (e) the maximum localized electric field for different gap widths and shell thickness; (f) the electric field intensity and magnetic field Hz distributions at the resonance wavelength in the horizontal section.

Fig. 2
Fig. 2

The schematic of the fabrication process of the SERS substrate: (a) self-assembled PS sphere array; (b) the control sample without the coupling gap; (c) the oxygen etched PS array; (d) the MNGR SERS substrate.

Fig. 3
Fig. 3

The SEM pictures of the fabrication result: (a) (c) the control samples of CS1and CS2 respectively; (b) (d) are the samples of MNGA1 and MNGA2 respectively.

Fig. 4
Fig. 4

The Raman spectrum of the R6G with different substrates for laser wavelength of 785nm, the concentration of 1 × 10−1M is for the quartz substrate and 1 × 10−5M for other SERS substrates.

Tables (1)

Tables Icon

Table 1 The experimental EF of the SERS substrates

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

EF= I SERS N ads / I bulk N bulk

Metrics