Abstract

Well-defined Au-SiO2-CdTe composite nanoparticles were synthesized via a multistep chemical approach in water solution to gain insight into the interaction between metal and semiconductor nanostructures. Photoluminescence measurement reveals that the fluorescence of CdTe quantum dots (QDs) in this composite with optimized SiO2 thickness (4 nm) has over ten times enhancement compared with that of bare CdTe QDs. The considerable fluorescence enhancement of CdTe QDs is attributed to the surface plasmon resonance, which is further confirmed by the lifetime measurement. The enhanced fluorescence can be used to improve the performance of CdTe QDs as fluorescence probe and may find potential applications in biolabeling.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. N. Zhang, Z. Ma, H. K. Yu, X. Guo, Y. G. Ma, and L. M. Tong, “Plasmonic resonance of whispering gallery modes in an Au cylinder,” Opt. Express19(5), 3902–3907 (2011).
    [CrossRef] [PubMed]
  2. Y. Liu, R. Cheng, L. Liao, H. L. Zhou, J. W. Bai, G. Liu, L. X. Liu, Y. Huang, and X. F. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat Commun2, 579–585 (2011).
    [CrossRef] [PubMed]
  3. H. G. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: Classical down to the Nanometer Scale,” Nano Lett.12(3), 1683–1689 (2012).
    [CrossRef] [PubMed]
  4. H. Wei, F. Hao, Y. Z. Huang, W. Z. Wang, P. Nordlander, and H. X. Xu, “Polarization Dependence of Surface-Enhanced Raman Scattering in Gold Nanoparticle-Nanowire Systems,” Nano Lett.8(8), 2497–2502 (2008).
    [CrossRef] [PubMed]
  5. M. Haridas, L. N. Tripathi, and J. K. Basu, “Photoluminescence enhancement and quenching in metal-semiconductor quantum dot hybrid arrays,” Appl. Phys. Lett.98(6), 063305 (2011).
    [CrossRef]
  6. P. F. Guo, J. Y. Xu, X. J. Zhuang, W. Hu, X. L. Zhu, H. Zhou, L. J. Tang, and A. L. Pan, “Surface plasmon resonance enhanced bandedge emission of CdS-SiO2 core-shell nanowires with gold nanoparticles attachment,” J. Mater. Chem. C1(3), 566–571 (2012).
    [CrossRef]
  7. Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett.7(3), 690–696 (2007).
    [CrossRef] [PubMed]
  8. X. Li, J. Qian, L. Jiang, and S. He, “Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection,” Appl. Phys. Lett.94(6), 063111 (2009).
    [CrossRef]
  9. A. Wolcott, D. Gerion, M. Visconte, J. Sun, A. Schwartzberg, S. W. Chen, and J. Z. Zhang, “Silica-coated CdTe quantum dots functionalized with thiols for bioconjugation to IgG proteins,” J. Phys. Chem. B110(11), 5779–5789 (2006).
    [CrossRef] [PubMed]
  10. S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey, and C. de Mello Donegá, “Highly Luminescent Water-Soluble CdTe Quantum Dots,” Nano Lett.3(4), 503–507 (2003).
    [CrossRef]
  11. T. Jin, F. Fujii, E. Yamada, Y. Nodasaka, and M. Kinjo, “Control of the Optical Properties of Quantum Dots by Surface Coating with Calix[n]arene Carboxylic Acids,” J. Am. Chem. Soc.128(29), 9288–9289 (2006).
    [CrossRef] [PubMed]
  12. A. Mandal and N. Tamai, “Influence of Acid on Luminescence Properties of Thioglycolic Acid-Capped CdTe Quantum Dots,” J. Phys. Chem. C112(22), 8244–8250 (2008).
    [CrossRef]
  13. V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, “Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots,” Appl. Phys. Lett.93(12), 123102 (2008).
    [CrossRef]
  14. B. V. Enustun and J. Turkevich, “Coagulation of Colloidal Gold,” J. Am. Chem. Soc.85(21), 3317–3328 (1963).
    [CrossRef]
  15. W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci.26(1), 62–69 (1968).
    [CrossRef]
  16. H. F. Bao, E. K. Wang, and S. J. Dong, “One-Pot Synthesis of CdTe Nanocrystals and Shape Control of Luminescent CdTe-Cystine Nanocomposites,” Small2(4), 476–480 (2006).
    [CrossRef] [PubMed]
  17. H. Naiki, A. Masuhara, S. Masuo, T. Onodera, H. Kasai, and H. Oikawa, “Highly Controlled Plasmonic Emission Enhancement from Metal-Semiconductor Quantum Dot Complex Nanostructures,” J. Phys. Chem. C117(6), 2455–2459 (2013).
    [CrossRef]
  18. X. D. Cao, C. M. Li, H. F. Bao, Q. L. Bao, and H. Dong, “Fabrication of strongly fluorescent quantum dot-polymer composite in aqueous solution,” Chem. Mater.19(15), 3773–3779 (2007).
    [CrossRef]
  19. J. Rodríguez-Fernández, I. Pastoriza-Santos, J. Pérez-Juste, F. J. García de Abajo, and L. M. Liz-Marzán, “The Effect of Silica Coating on the Optical Response of Sub-micrometer Gold Spheres,” J. Phys. Chem. C111(36), 13361–13366 (2007).
    [CrossRef]
  20. Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc.129(48), 14939–14945 (2007).
    [CrossRef] [PubMed]
  21. S. H. Choi, B. Kwak, B. Han, and Y. L. Kim, “Competition between excitation and emission enhancements of quantum dots on disordered plasmonic nanostructures,” Opt. Express20(15), 16785–16793 (2012).
    [CrossRef]
  22. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett.87(7), 071102–071104 (2005).
    [CrossRef]

2013 (1)

H. Naiki, A. Masuhara, S. Masuo, T. Onodera, H. Kasai, and H. Oikawa, “Highly Controlled Plasmonic Emission Enhancement from Metal-Semiconductor Quantum Dot Complex Nanostructures,” J. Phys. Chem. C117(6), 2455–2459 (2013).
[CrossRef]

2012 (3)

H. G. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: Classical down to the Nanometer Scale,” Nano Lett.12(3), 1683–1689 (2012).
[CrossRef] [PubMed]

P. F. Guo, J. Y. Xu, X. J. Zhuang, W. Hu, X. L. Zhu, H. Zhou, L. J. Tang, and A. L. Pan, “Surface plasmon resonance enhanced bandedge emission of CdS-SiO2 core-shell nanowires with gold nanoparticles attachment,” J. Mater. Chem. C1(3), 566–571 (2012).
[CrossRef]

S. H. Choi, B. Kwak, B. Han, and Y. L. Kim, “Competition between excitation and emission enhancements of quantum dots on disordered plasmonic nanostructures,” Opt. Express20(15), 16785–16793 (2012).
[CrossRef]

2011 (3)

X. N. Zhang, Z. Ma, H. K. Yu, X. Guo, Y. G. Ma, and L. M. Tong, “Plasmonic resonance of whispering gallery modes in an Au cylinder,” Opt. Express19(5), 3902–3907 (2011).
[CrossRef] [PubMed]

Y. Liu, R. Cheng, L. Liao, H. L. Zhou, J. W. Bai, G. Liu, L. X. Liu, Y. Huang, and X. F. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat Commun2, 579–585 (2011).
[CrossRef] [PubMed]

M. Haridas, L. N. Tripathi, and J. K. Basu, “Photoluminescence enhancement and quenching in metal-semiconductor quantum dot hybrid arrays,” Appl. Phys. Lett.98(6), 063305 (2011).
[CrossRef]

2009 (1)

X. Li, J. Qian, L. Jiang, and S. He, “Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection,” Appl. Phys. Lett.94(6), 063111 (2009).
[CrossRef]

2008 (3)

H. Wei, F. Hao, Y. Z. Huang, W. Z. Wang, P. Nordlander, and H. X. Xu, “Polarization Dependence of Surface-Enhanced Raman Scattering in Gold Nanoparticle-Nanowire Systems,” Nano Lett.8(8), 2497–2502 (2008).
[CrossRef] [PubMed]

A. Mandal and N. Tamai, “Influence of Acid on Luminescence Properties of Thioglycolic Acid-Capped CdTe Quantum Dots,” J. Phys. Chem. C112(22), 8244–8250 (2008).
[CrossRef]

V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, “Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots,” Appl. Phys. Lett.93(12), 123102 (2008).
[CrossRef]

2007 (4)

X. D. Cao, C. M. Li, H. F. Bao, Q. L. Bao, and H. Dong, “Fabrication of strongly fluorescent quantum dot-polymer composite in aqueous solution,” Chem. Mater.19(15), 3773–3779 (2007).
[CrossRef]

J. Rodríguez-Fernández, I. Pastoriza-Santos, J. Pérez-Juste, F. J. García de Abajo, and L. M. Liz-Marzán, “The Effect of Silica Coating on the Optical Response of Sub-micrometer Gold Spheres,” J. Phys. Chem. C111(36), 13361–13366 (2007).
[CrossRef]

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc.129(48), 14939–14945 (2007).
[CrossRef] [PubMed]

Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett.7(3), 690–696 (2007).
[CrossRef] [PubMed]

2006 (3)

A. Wolcott, D. Gerion, M. Visconte, J. Sun, A. Schwartzberg, S. W. Chen, and J. Z. Zhang, “Silica-coated CdTe quantum dots functionalized with thiols for bioconjugation to IgG proteins,” J. Phys. Chem. B110(11), 5779–5789 (2006).
[CrossRef] [PubMed]

T. Jin, F. Fujii, E. Yamada, Y. Nodasaka, and M. Kinjo, “Control of the Optical Properties of Quantum Dots by Surface Coating with Calix[n]arene Carboxylic Acids,” J. Am. Chem. Soc.128(29), 9288–9289 (2006).
[CrossRef] [PubMed]

H. F. Bao, E. K. Wang, and S. J. Dong, “One-Pot Synthesis of CdTe Nanocrystals and Shape Control of Luminescent CdTe-Cystine Nanocomposites,” Small2(4), 476–480 (2006).
[CrossRef] [PubMed]

2005 (1)

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett.87(7), 071102–071104 (2005).
[CrossRef]

2003 (1)

S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey, and C. de Mello Donegá, “Highly Luminescent Water-Soluble CdTe Quantum Dots,” Nano Lett.3(4), 503–507 (2003).
[CrossRef]

1968 (1)

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci.26(1), 62–69 (1968).
[CrossRef]

1963 (1)

B. V. Enustun and J. Turkevich, “Coagulation of Colloidal Gold,” J. Am. Chem. Soc.85(21), 3317–3328 (1963).
[CrossRef]

Artemyev, M.

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc.129(48), 14939–14945 (2007).
[CrossRef] [PubMed]

Bai, J. W.

Y. Liu, R. Cheng, L. Liao, H. L. Zhou, J. W. Bai, G. Liu, L. X. Liu, Y. Huang, and X. F. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat Commun2, 579–585 (2011).
[CrossRef] [PubMed]

Bao, H. F.

X. D. Cao, C. M. Li, H. F. Bao, Q. L. Bao, and H. Dong, “Fabrication of strongly fluorescent quantum dot-polymer composite in aqueous solution,” Chem. Mater.19(15), 3773–3779 (2007).
[CrossRef]

H. F. Bao, E. K. Wang, and S. J. Dong, “One-Pot Synthesis of CdTe Nanocrystals and Shape Control of Luminescent CdTe-Cystine Nanocomposites,” Small2(4), 476–480 (2006).
[CrossRef] [PubMed]

Bao, Q. L.

X. D. Cao, C. M. Li, H. F. Bao, Q. L. Bao, and H. Dong, “Fabrication of strongly fluorescent quantum dot-polymer composite in aqueous solution,” Chem. Mater.19(15), 3773–3779 (2007).
[CrossRef]

Basu, J. K.

M. Haridas, L. N. Tripathi, and J. K. Basu, “Photoluminescence enhancement and quenching in metal-semiconductor quantum dot hybrid arrays,” Appl. Phys. Lett.98(6), 063305 (2011).
[CrossRef]

Bohn, E.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci.26(1), 62–69 (1968).
[CrossRef]

Bosman, M.

H. G. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: Classical down to the Nanometer Scale,” Nano Lett.12(3), 1683–1689 (2012).
[CrossRef] [PubMed]

Bradley, A. L.

V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, “Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots,” Appl. Phys. Lett.93(12), 123102 (2008).
[CrossRef]

Byrne, S. J.

V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, “Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots,” Appl. Phys. Lett.93(12), 123102 (2008).
[CrossRef]

Cao, X. D.

X. D. Cao, C. M. Li, H. F. Bao, Q. L. Bao, and H. Dong, “Fabrication of strongly fluorescent quantum dot-polymer composite in aqueous solution,” Chem. Mater.19(15), 3773–3779 (2007).
[CrossRef]

Chen, S. W.

A. Wolcott, D. Gerion, M. Visconte, J. Sun, A. Schwartzberg, S. W. Chen, and J. Z. Zhang, “Silica-coated CdTe quantum dots functionalized with thiols for bioconjugation to IgG proteins,” J. Phys. Chem. B110(11), 5779–5789 (2006).
[CrossRef] [PubMed]

Chen, Y.

Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett.7(3), 690–696 (2007).
[CrossRef] [PubMed]

Cheng, R.

Y. Liu, R. Cheng, L. Liao, H. L. Zhou, J. W. Bai, G. Liu, L. X. Liu, Y. Huang, and X. F. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat Commun2, 579–585 (2011).
[CrossRef] [PubMed]

Choi, S. H.

de Mello Donegá, C.

S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey, and C. de Mello Donegá, “Highly Luminescent Water-Soluble CdTe Quantum Dots,” Nano Lett.3(4), 503–507 (2003).
[CrossRef]

Dong, H.

X. D. Cao, C. M. Li, H. F. Bao, Q. L. Bao, and H. Dong, “Fabrication of strongly fluorescent quantum dot-polymer composite in aqueous solution,” Chem. Mater.19(15), 3773–3779 (2007).
[CrossRef]

Dong, S. J.

H. F. Bao, E. K. Wang, and S. J. Dong, “One-Pot Synthesis of CdTe Nanocrystals and Shape Control of Luminescent CdTe-Cystine Nanocomposites,” Small2(4), 476–480 (2006).
[CrossRef] [PubMed]

Duan, H. G.

H. G. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: Classical down to the Nanometer Scale,” Nano Lett.12(3), 1683–1689 (2012).
[CrossRef] [PubMed]

Duan, X. F.

Y. Liu, R. Cheng, L. Liao, H. L. Zhou, J. W. Bai, G. Liu, L. X. Liu, Y. Huang, and X. F. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat Commun2, 579–585 (2011).
[CrossRef] [PubMed]

Enustun, B. V.

B. V. Enustun and J. Turkevich, “Coagulation of Colloidal Gold,” J. Am. Chem. Soc.85(21), 3317–3328 (1963).
[CrossRef]

Fedutik, Y.

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc.129(48), 14939–14945 (2007).
[CrossRef] [PubMed]

Fernández-Domínguez, A. I.

H. G. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: Classical down to the Nanometer Scale,” Nano Lett.12(3), 1683–1689 (2012).
[CrossRef] [PubMed]

Fink, A.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci.26(1), 62–69 (1968).
[CrossRef]

Fujii, F.

T. Jin, F. Fujii, E. Yamada, Y. Nodasaka, and M. Kinjo, “Control of the Optical Properties of Quantum Dots by Surface Coating with Calix[n]arene Carboxylic Acids,” J. Am. Chem. Soc.128(29), 9288–9289 (2006).
[CrossRef] [PubMed]

García de Abajo, F. J.

J. Rodríguez-Fernández, I. Pastoriza-Santos, J. Pérez-Juste, F. J. García de Abajo, and L. M. Liz-Marzán, “The Effect of Silica Coating on the Optical Response of Sub-micrometer Gold Spheres,” J. Phys. Chem. C111(36), 13361–13366 (2007).
[CrossRef]

Gerion, D.

A. Wolcott, D. Gerion, M. Visconte, J. Sun, A. Schwartzberg, S. W. Chen, and J. Z. Zhang, “Silica-coated CdTe quantum dots functionalized with thiols for bioconjugation to IgG proteins,” J. Phys. Chem. B110(11), 5779–5789 (2006).
[CrossRef] [PubMed]

Ginger, D. S.

Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett.7(3), 690–696 (2007).
[CrossRef] [PubMed]

Gun’ko, Y. K.

V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, “Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots,” Appl. Phys. Lett.93(12), 123102 (2008).
[CrossRef]

Guo, P. F.

P. F. Guo, J. Y. Xu, X. J. Zhuang, W. Hu, X. L. Zhu, H. Zhou, L. J. Tang, and A. L. Pan, “Surface plasmon resonance enhanced bandedge emission of CdS-SiO2 core-shell nanowires with gold nanoparticles attachment,” J. Mater. Chem. C1(3), 566–571 (2012).
[CrossRef]

Guo, X.

Han, B.

Hao, F.

H. Wei, F. Hao, Y. Z. Huang, W. Z. Wang, P. Nordlander, and H. X. Xu, “Polarization Dependence of Surface-Enhanced Raman Scattering in Gold Nanoparticle-Nanowire Systems,” Nano Lett.8(8), 2497–2502 (2008).
[CrossRef] [PubMed]

Haridas, M.

M. Haridas, L. N. Tripathi, and J. K. Basu, “Photoluminescence enhancement and quenching in metal-semiconductor quantum dot hybrid arrays,” Appl. Phys. Lett.98(6), 063305 (2011).
[CrossRef]

He, S.

X. Li, J. Qian, L. Jiang, and S. He, “Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection,” Appl. Phys. Lett.94(6), 063111 (2009).
[CrossRef]

Hickey, S. G.

S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey, and C. de Mello Donegá, “Highly Luminescent Water-Soluble CdTe Quantum Dots,” Nano Lett.3(4), 503–507 (2003).
[CrossRef]

Hu, W.

P. F. Guo, J. Y. Xu, X. J. Zhuang, W. Hu, X. L. Zhu, H. Zhou, L. J. Tang, and A. L. Pan, “Surface plasmon resonance enhanced bandedge emission of CdS-SiO2 core-shell nanowires with gold nanoparticles attachment,” J. Mater. Chem. C1(3), 566–571 (2012).
[CrossRef]

Huang, Y.

Y. Liu, R. Cheng, L. Liao, H. L. Zhou, J. W. Bai, G. Liu, L. X. Liu, Y. Huang, and X. F. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat Commun2, 579–585 (2011).
[CrossRef] [PubMed]

Huang, Y. Z.

H. Wei, F. Hao, Y. Z. Huang, W. Z. Wang, P. Nordlander, and H. X. Xu, “Polarization Dependence of Surface-Enhanced Raman Scattering in Gold Nanoparticle-Nanowire Systems,” Nano Lett.8(8), 2497–2502 (2008).
[CrossRef] [PubMed]

Jiang, L.

X. Li, J. Qian, L. Jiang, and S. He, “Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection,” Appl. Phys. Lett.94(6), 063111 (2009).
[CrossRef]

Jin, T.

T. Jin, F. Fujii, E. Yamada, Y. Nodasaka, and M. Kinjo, “Control of the Optical Properties of Quantum Dots by Surface Coating with Calix[n]arene Carboxylic Acids,” J. Am. Chem. Soc.128(29), 9288–9289 (2006).
[CrossRef] [PubMed]

Kasai, H.

H. Naiki, A. Masuhara, S. Masuo, T. Onodera, H. Kasai, and H. Oikawa, “Highly Controlled Plasmonic Emission Enhancement from Metal-Semiconductor Quantum Dot Complex Nanostructures,” J. Phys. Chem. C117(6), 2455–2459 (2013).
[CrossRef]

Kawakami, Y.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett.87(7), 071102–071104 (2005).
[CrossRef]

Kim, Y. L.

Kinjo, M.

T. Jin, F. Fujii, E. Yamada, Y. Nodasaka, and M. Kinjo, “Control of the Optical Properties of Quantum Dots by Surface Coating with Calix[n]arene Carboxylic Acids,” J. Am. Chem. Soc.128(29), 9288–9289 (2006).
[CrossRef] [PubMed]

Komarala, V. K.

V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, “Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots,” Appl. Phys. Lett.93(12), 123102 (2008).
[CrossRef]

Kwak, B.

Li, C. M.

X. D. Cao, C. M. Li, H. F. Bao, Q. L. Bao, and H. Dong, “Fabrication of strongly fluorescent quantum dot-polymer composite in aqueous solution,” Chem. Mater.19(15), 3773–3779 (2007).
[CrossRef]

Li, X.

X. Li, J. Qian, L. Jiang, and S. He, “Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection,” Appl. Phys. Lett.94(6), 063111 (2009).
[CrossRef]

Liao, L.

Y. Liu, R. Cheng, L. Liao, H. L. Zhou, J. W. Bai, G. Liu, L. X. Liu, Y. Huang, and X. F. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat Commun2, 579–585 (2011).
[CrossRef] [PubMed]

Liu, G.

Y. Liu, R. Cheng, L. Liao, H. L. Zhou, J. W. Bai, G. Liu, L. X. Liu, Y. Huang, and X. F. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat Commun2, 579–585 (2011).
[CrossRef] [PubMed]

Liu, L. X.

Y. Liu, R. Cheng, L. Liao, H. L. Zhou, J. W. Bai, G. Liu, L. X. Liu, Y. Huang, and X. F. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat Commun2, 579–585 (2011).
[CrossRef] [PubMed]

Liu, Y.

Y. Liu, R. Cheng, L. Liao, H. L. Zhou, J. W. Bai, G. Liu, L. X. Liu, Y. Huang, and X. F. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat Commun2, 579–585 (2011).
[CrossRef] [PubMed]

Liz-Marzán, L. M.

J. Rodríguez-Fernández, I. Pastoriza-Santos, J. Pérez-Juste, F. J. García de Abajo, and L. M. Liz-Marzán, “The Effect of Silica Coating on the Optical Response of Sub-micrometer Gold Spheres,” J. Phys. Chem. C111(36), 13361–13366 (2007).
[CrossRef]

Ma, Y. G.

Ma, Z.

Maier, S. A.

H. G. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: Classical down to the Nanometer Scale,” Nano Lett.12(3), 1683–1689 (2012).
[CrossRef] [PubMed]

Mandal, A.

A. Mandal and N. Tamai, “Influence of Acid on Luminescence Properties of Thioglycolic Acid-Capped CdTe Quantum Dots,” J. Phys. Chem. C112(22), 8244–8250 (2008).
[CrossRef]

Masuhara, A.

H. Naiki, A. Masuhara, S. Masuo, T. Onodera, H. Kasai, and H. Oikawa, “Highly Controlled Plasmonic Emission Enhancement from Metal-Semiconductor Quantum Dot Complex Nanostructures,” J. Phys. Chem. C117(6), 2455–2459 (2013).
[CrossRef]

Masuo, S.

H. Naiki, A. Masuhara, S. Masuo, T. Onodera, H. Kasai, and H. Oikawa, “Highly Controlled Plasmonic Emission Enhancement from Metal-Semiconductor Quantum Dot Complex Nanostructures,” J. Phys. Chem. C117(6), 2455–2459 (2013).
[CrossRef]

Mukai, T.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett.87(7), 071102–071104 (2005).
[CrossRef]

Munechika, K.

Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett.7(3), 690–696 (2007).
[CrossRef] [PubMed]

Naiki, H.

H. Naiki, A. Masuhara, S. Masuo, T. Onodera, H. Kasai, and H. Oikawa, “Highly Controlled Plasmonic Emission Enhancement from Metal-Semiconductor Quantum Dot Complex Nanostructures,” J. Phys. Chem. C117(6), 2455–2459 (2013).
[CrossRef]

Narukawa, Y.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett.87(7), 071102–071104 (2005).
[CrossRef]

Niki, I.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett.87(7), 071102–071104 (2005).
[CrossRef]

Nodasaka, Y.

T. Jin, F. Fujii, E. Yamada, Y. Nodasaka, and M. Kinjo, “Control of the Optical Properties of Quantum Dots by Surface Coating with Calix[n]arene Carboxylic Acids,” J. Am. Chem. Soc.128(29), 9288–9289 (2006).
[CrossRef] [PubMed]

Nordlander, P.

H. Wei, F. Hao, Y. Z. Huang, W. Z. Wang, P. Nordlander, and H. X. Xu, “Polarization Dependence of Surface-Enhanced Raman Scattering in Gold Nanoparticle-Nanowire Systems,” Nano Lett.8(8), 2497–2502 (2008).
[CrossRef] [PubMed]

Oikawa, H.

H. Naiki, A. Masuhara, S. Masuo, T. Onodera, H. Kasai, and H. Oikawa, “Highly Controlled Plasmonic Emission Enhancement from Metal-Semiconductor Quantum Dot Complex Nanostructures,” J. Phys. Chem. C117(6), 2455–2459 (2013).
[CrossRef]

Okamoto, K.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett.87(7), 071102–071104 (2005).
[CrossRef]

Onodera, T.

H. Naiki, A. Masuhara, S. Masuo, T. Onodera, H. Kasai, and H. Oikawa, “Highly Controlled Plasmonic Emission Enhancement from Metal-Semiconductor Quantum Dot Complex Nanostructures,” J. Phys. Chem. C117(6), 2455–2459 (2013).
[CrossRef]

Pan, A. L.

P. F. Guo, J. Y. Xu, X. J. Zhuang, W. Hu, X. L. Zhu, H. Zhou, L. J. Tang, and A. L. Pan, “Surface plasmon resonance enhanced bandedge emission of CdS-SiO2 core-shell nanowires with gold nanoparticles attachment,” J. Mater. Chem. C1(3), 566–571 (2012).
[CrossRef]

Pastoriza-Santos, I.

J. Rodríguez-Fernández, I. Pastoriza-Santos, J. Pérez-Juste, F. J. García de Abajo, and L. M. Liz-Marzán, “The Effect of Silica Coating on the Optical Response of Sub-micrometer Gold Spheres,” J. Phys. Chem. C111(36), 13361–13366 (2007).
[CrossRef]

Pérez-Juste, J.

J. Rodríguez-Fernández, I. Pastoriza-Santos, J. Pérez-Juste, F. J. García de Abajo, and L. M. Liz-Marzán, “The Effect of Silica Coating on the Optical Response of Sub-micrometer Gold Spheres,” J. Phys. Chem. C111(36), 13361–13366 (2007).
[CrossRef]

Qian, J.

X. Li, J. Qian, L. Jiang, and S. He, “Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection,” Appl. Phys. Lett.94(6), 063111 (2009).
[CrossRef]

Rakovich, Y. P.

V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, “Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots,” Appl. Phys. Lett.93(12), 123102 (2008).
[CrossRef]

Rodríguez-Fernández, J.

J. Rodríguez-Fernández, I. Pastoriza-Santos, J. Pérez-Juste, F. J. García de Abajo, and L. M. Liz-Marzán, “The Effect of Silica Coating on the Optical Response of Sub-micrometer Gold Spheres,” J. Phys. Chem. C111(36), 13361–13366 (2007).
[CrossRef]

Rogach, A. L.

V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, “Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots,” Appl. Phys. Lett.93(12), 123102 (2008).
[CrossRef]

Scherer, A.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett.87(7), 071102–071104 (2005).
[CrossRef]

Schwartzberg, A.

A. Wolcott, D. Gerion, M. Visconte, J. Sun, A. Schwartzberg, S. W. Chen, and J. Z. Zhang, “Silica-coated CdTe quantum dots functionalized with thiols for bioconjugation to IgG proteins,” J. Phys. Chem. B110(11), 5779–5789 (2006).
[CrossRef] [PubMed]

Stöber, W.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci.26(1), 62–69 (1968).
[CrossRef]

Sun, J.

A. Wolcott, D. Gerion, M. Visconte, J. Sun, A. Schwartzberg, S. W. Chen, and J. Z. Zhang, “Silica-coated CdTe quantum dots functionalized with thiols for bioconjugation to IgG proteins,” J. Phys. Chem. B110(11), 5779–5789 (2006).
[CrossRef] [PubMed]

Swart, I.

S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey, and C. de Mello Donegá, “Highly Luminescent Water-Soluble CdTe Quantum Dots,” Nano Lett.3(4), 503–507 (2003).
[CrossRef]

Tamai, N.

A. Mandal and N. Tamai, “Influence of Acid on Luminescence Properties of Thioglycolic Acid-Capped CdTe Quantum Dots,” J. Phys. Chem. C112(22), 8244–8250 (2008).
[CrossRef]

Tang, L. J.

P. F. Guo, J. Y. Xu, X. J. Zhuang, W. Hu, X. L. Zhu, H. Zhou, L. J. Tang, and A. L. Pan, “Surface plasmon resonance enhanced bandedge emission of CdS-SiO2 core-shell nanowires with gold nanoparticles attachment,” J. Mater. Chem. C1(3), 566–571 (2012).
[CrossRef]

Temnov, V.

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc.129(48), 14939–14945 (2007).
[CrossRef] [PubMed]

Tong, L. M.

Tripathi, L. N.

M. Haridas, L. N. Tripathi, and J. K. Basu, “Photoluminescence enhancement and quenching in metal-semiconductor quantum dot hybrid arrays,” Appl. Phys. Lett.98(6), 063305 (2011).
[CrossRef]

Turkevich, J.

B. V. Enustun and J. Turkevich, “Coagulation of Colloidal Gold,” J. Am. Chem. Soc.85(21), 3317–3328 (1963).
[CrossRef]

Ustinovich, E.

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc.129(48), 14939–14945 (2007).
[CrossRef] [PubMed]

van Driel, F.

S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey, and C. de Mello Donegá, “Highly Luminescent Water-Soluble CdTe Quantum Dots,” Nano Lett.3(4), 503–507 (2003).
[CrossRef]

Visconte, M.

A. Wolcott, D. Gerion, M. Visconte, J. Sun, A. Schwartzberg, S. W. Chen, and J. Z. Zhang, “Silica-coated CdTe quantum dots functionalized with thiols for bioconjugation to IgG proteins,” J. Phys. Chem. B110(11), 5779–5789 (2006).
[CrossRef] [PubMed]

Wang, E. K.

H. F. Bao, E. K. Wang, and S. J. Dong, “One-Pot Synthesis of CdTe Nanocrystals and Shape Control of Luminescent CdTe-Cystine Nanocomposites,” Small2(4), 476–480 (2006).
[CrossRef] [PubMed]

Wang, W. Z.

H. Wei, F. Hao, Y. Z. Huang, W. Z. Wang, P. Nordlander, and H. X. Xu, “Polarization Dependence of Surface-Enhanced Raman Scattering in Gold Nanoparticle-Nanowire Systems,” Nano Lett.8(8), 2497–2502 (2008).
[CrossRef] [PubMed]

Wei, H.

H. Wei, F. Hao, Y. Z. Huang, W. Z. Wang, P. Nordlander, and H. X. Xu, “Polarization Dependence of Surface-Enhanced Raman Scattering in Gold Nanoparticle-Nanowire Systems,” Nano Lett.8(8), 2497–2502 (2008).
[CrossRef] [PubMed]

Woggon, U.

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc.129(48), 14939–14945 (2007).
[CrossRef] [PubMed]

Wolcott, A.

A. Wolcott, D. Gerion, M. Visconte, J. Sun, A. Schwartzberg, S. W. Chen, and J. Z. Zhang, “Silica-coated CdTe quantum dots functionalized with thiols for bioconjugation to IgG proteins,” J. Phys. Chem. B110(11), 5779–5789 (2006).
[CrossRef] [PubMed]

Wuister, S. F.

S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey, and C. de Mello Donegá, “Highly Luminescent Water-Soluble CdTe Quantum Dots,” Nano Lett.3(4), 503–507 (2003).
[CrossRef]

Xu, H. X.

H. Wei, F. Hao, Y. Z. Huang, W. Z. Wang, P. Nordlander, and H. X. Xu, “Polarization Dependence of Surface-Enhanced Raman Scattering in Gold Nanoparticle-Nanowire Systems,” Nano Lett.8(8), 2497–2502 (2008).
[CrossRef] [PubMed]

Xu, J. Y.

P. F. Guo, J. Y. Xu, X. J. Zhuang, W. Hu, X. L. Zhu, H. Zhou, L. J. Tang, and A. L. Pan, “Surface plasmon resonance enhanced bandedge emission of CdS-SiO2 core-shell nanowires with gold nanoparticles attachment,” J. Mater. Chem. C1(3), 566–571 (2012).
[CrossRef]

Yamada, E.

T. Jin, F. Fujii, E. Yamada, Y. Nodasaka, and M. Kinjo, “Control of the Optical Properties of Quantum Dots by Surface Coating with Calix[n]arene Carboxylic Acids,” J. Am. Chem. Soc.128(29), 9288–9289 (2006).
[CrossRef] [PubMed]

Yang, J. K. W.

H. G. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: Classical down to the Nanometer Scale,” Nano Lett.12(3), 1683–1689 (2012).
[CrossRef] [PubMed]

Yu, H. K.

Zhang, J. Z.

A. Wolcott, D. Gerion, M. Visconte, J. Sun, A. Schwartzberg, S. W. Chen, and J. Z. Zhang, “Silica-coated CdTe quantum dots functionalized with thiols for bioconjugation to IgG proteins,” J. Phys. Chem. B110(11), 5779–5789 (2006).
[CrossRef] [PubMed]

Zhang, X. N.

Zhou, H.

P. F. Guo, J. Y. Xu, X. J. Zhuang, W. Hu, X. L. Zhu, H. Zhou, L. J. Tang, and A. L. Pan, “Surface plasmon resonance enhanced bandedge emission of CdS-SiO2 core-shell nanowires with gold nanoparticles attachment,” J. Mater. Chem. C1(3), 566–571 (2012).
[CrossRef]

Zhou, H. L.

Y. Liu, R. Cheng, L. Liao, H. L. Zhou, J. W. Bai, G. Liu, L. X. Liu, Y. Huang, and X. F. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat Commun2, 579–585 (2011).
[CrossRef] [PubMed]

Zhu, X. L.

P. F. Guo, J. Y. Xu, X. J. Zhuang, W. Hu, X. L. Zhu, H. Zhou, L. J. Tang, and A. L. Pan, “Surface plasmon resonance enhanced bandedge emission of CdS-SiO2 core-shell nanowires with gold nanoparticles attachment,” J. Mater. Chem. C1(3), 566–571 (2012).
[CrossRef]

Zhuang, X. J.

P. F. Guo, J. Y. Xu, X. J. Zhuang, W. Hu, X. L. Zhu, H. Zhou, L. J. Tang, and A. L. Pan, “Surface plasmon resonance enhanced bandedge emission of CdS-SiO2 core-shell nanowires with gold nanoparticles attachment,” J. Mater. Chem. C1(3), 566–571 (2012).
[CrossRef]

Appl. Phys. Lett. (4)

M. Haridas, L. N. Tripathi, and J. K. Basu, “Photoluminescence enhancement and quenching in metal-semiconductor quantum dot hybrid arrays,” Appl. Phys. Lett.98(6), 063305 (2011).
[CrossRef]

X. Li, J. Qian, L. Jiang, and S. He, “Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection,” Appl. Phys. Lett.94(6), 063111 (2009).
[CrossRef]

V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, “Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots,” Appl. Phys. Lett.93(12), 123102 (2008).
[CrossRef]

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett.87(7), 071102–071104 (2005).
[CrossRef]

Chem. Mater. (1)

X. D. Cao, C. M. Li, H. F. Bao, Q. L. Bao, and H. Dong, “Fabrication of strongly fluorescent quantum dot-polymer composite in aqueous solution,” Chem. Mater.19(15), 3773–3779 (2007).
[CrossRef]

J. Am. Chem. Soc. (3)

B. V. Enustun and J. Turkevich, “Coagulation of Colloidal Gold,” J. Am. Chem. Soc.85(21), 3317–3328 (1963).
[CrossRef]

T. Jin, F. Fujii, E. Yamada, Y. Nodasaka, and M. Kinjo, “Control of the Optical Properties of Quantum Dots by Surface Coating with Calix[n]arene Carboxylic Acids,” J. Am. Chem. Soc.128(29), 9288–9289 (2006).
[CrossRef] [PubMed]

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc.129(48), 14939–14945 (2007).
[CrossRef] [PubMed]

J. Colloid Interface Sci. (1)

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci.26(1), 62–69 (1968).
[CrossRef]

J. Mater. Chem. C (1)

P. F. Guo, J. Y. Xu, X. J. Zhuang, W. Hu, X. L. Zhu, H. Zhou, L. J. Tang, and A. L. Pan, “Surface plasmon resonance enhanced bandedge emission of CdS-SiO2 core-shell nanowires with gold nanoparticles attachment,” J. Mater. Chem. C1(3), 566–571 (2012).
[CrossRef]

J. Phys. Chem. B (1)

A. Wolcott, D. Gerion, M. Visconte, J. Sun, A. Schwartzberg, S. W. Chen, and J. Z. Zhang, “Silica-coated CdTe quantum dots functionalized with thiols for bioconjugation to IgG proteins,” J. Phys. Chem. B110(11), 5779–5789 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C (3)

A. Mandal and N. Tamai, “Influence of Acid on Luminescence Properties of Thioglycolic Acid-Capped CdTe Quantum Dots,” J. Phys. Chem. C112(22), 8244–8250 (2008).
[CrossRef]

J. Rodríguez-Fernández, I. Pastoriza-Santos, J. Pérez-Juste, F. J. García de Abajo, and L. M. Liz-Marzán, “The Effect of Silica Coating on the Optical Response of Sub-micrometer Gold Spheres,” J. Phys. Chem. C111(36), 13361–13366 (2007).
[CrossRef]

H. Naiki, A. Masuhara, S. Masuo, T. Onodera, H. Kasai, and H. Oikawa, “Highly Controlled Plasmonic Emission Enhancement from Metal-Semiconductor Quantum Dot Complex Nanostructures,” J. Phys. Chem. C117(6), 2455–2459 (2013).
[CrossRef]

Nano Lett. (4)

S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey, and C. de Mello Donegá, “Highly Luminescent Water-Soluble CdTe Quantum Dots,” Nano Lett.3(4), 503–507 (2003).
[CrossRef]

Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett.7(3), 690–696 (2007).
[CrossRef] [PubMed]

H. G. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: Classical down to the Nanometer Scale,” Nano Lett.12(3), 1683–1689 (2012).
[CrossRef] [PubMed]

H. Wei, F. Hao, Y. Z. Huang, W. Z. Wang, P. Nordlander, and H. X. Xu, “Polarization Dependence of Surface-Enhanced Raman Scattering in Gold Nanoparticle-Nanowire Systems,” Nano Lett.8(8), 2497–2502 (2008).
[CrossRef] [PubMed]

Nat Commun (1)

Y. Liu, R. Cheng, L. Liao, H. L. Zhou, J. W. Bai, G. Liu, L. X. Liu, Y. Huang, and X. F. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat Commun2, 579–585 (2011).
[CrossRef] [PubMed]

Opt. Express (2)

Small (1)

H. F. Bao, E. K. Wang, and S. J. Dong, “One-Pot Synthesis of CdTe Nanocrystals and Shape Control of Luminescent CdTe-Cystine Nanocomposites,” Small2(4), 476–480 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematics of the synthesis process of Au-SiO2-CdTe composite NPs.

Fig. 2
Fig. 2

(a) SEM image of the as-prepared Au NPs. (b) TEM image and (c) high-resolution TEM image of the as-prepared Au-SiO2 particles. (d) The magnified image of the area marked with pink rectangle in (c). (e) The high-resolution TEM image of the as-prepared ASC composite NPs (CdTe QDs: sky blue circles, SiO2: the red lines or the black arrows). (f) The enlargement HRTEM image of the CdTe QDs. The inset in (c) and (f) (bottom left) are the EDS patterns of the Au-SiO2 particles and ASC composite NPs, respectively. The inset in the top right of (d) and (f) are the FFT images of Au-SiO2 particles and CdTe, respectively.

Fig. 3
Fig. 3

(a) The UV-vis absorption spectra of the as-prepared Au NPs with different size distributions (solid lines) and the PL spectrum of bare CdTe QDs (dash line). (b) The UV-vis absorption spectra of Au NPs (29 ± 5 nm, black), CdTe QDs (green), Au-SiO2 particles (red) and ASC composite NPs (SiO2 thickness: 4 nm, blue).

Fig. 4
Fig. 4

(a) The PL spectra of bare CdTe QDs and ASC composite NPs with various thickness of SiO2 layer. The inset is the real-color photographs of the monodisperse water solution of ASC composite NPs with various thickness of SiO2 layer in cuvette. (b) SiO2 layer thickness dependent F value, indicated by the black squares. The red line is used to guide eyes to show the data trend. (c) Representative room temperature TR-PL decay curves of bare CdTe QDs (black rectangles) and ASC composite NPs (29 nm-Au NPs, 4 nm-SiO2 layer, red circles), along with the exponentially fitted decay curves.

Metrics