Abstract

Two–photon direct laser writing (DLW) lithography is limited in the achievable structure size as well as in structure resolution. Adding stimulated emission depletion (STED) to DLW allowed overcoming both restrictions. We now push both to new limits. Using visible light for two-photon DLW (780 nm) and STED (532 nm), we obtain lateral structure sizes of 55 nm, a Sparrow limit of around 100 nm and we present two clearly separated lines spaced only 120 nm apart. The photo-resist used in these experiments is a mixture of tri- and tetra-acrylates and 7-Diethylamino-3-thenoylcoumarin as a photo-starter which can be readily quenched via STED.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  2. J. H. Strickler and W. W. Webb, “Three-dimensional optical data storage in refractive media by two-photon point excitation,” Opt. Lett.16(22), 1780–1782 (1991).
    [CrossRef] [PubMed]
  3. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.22(2), 132–134 (1997).
    [CrossRef] [PubMed]
  4. F. Burmeister, S. Steenhusen, R. Houbertz, U. D. Zeitner, S. Nolte, and A. Tünnermann, “Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization,” J. Laser Appl.24(4), 042014 (2012).
    [CrossRef]
  5. J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007).
    [CrossRef]
  6. V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100nm structures with 3D two-photon polymerisation technique and optical methods for characterization,” J. Laser Appl.24(4), 042004 (2012).
    [CrossRef]
  7. W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express15(6), 3426–3436 (2007).
    [CrossRef] [PubMed]
  8. X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Improving spatial resolution and reducing aspect ratio in multiphoton polymerization nanofabrication,” Appl. Phys. Lett.92(9), 091113 (2008).
    [CrossRef]
  9. J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy,” Opt. Mater. Express1(4), 614–624 (2011).
    [CrossRef]
  10. E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Archiv für Mikroskopische Anatomie9(1), 413–418 (1873).
    [CrossRef]
  11. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19(11), 780–782 (1994).
    [CrossRef] [PubMed]
  12. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
    [CrossRef]
  13. K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature440(7086), 935–939 (2006).
    [CrossRef] [PubMed]
  14. K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nat. Methods3(9), 721–723 (2006).
    [CrossRef] [PubMed]
  15. C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature457(7233), 1159–1162 (2009).
    [CrossRef] [PubMed]
  16. P. A. Pellett, X. L. Sun, T. J. Gould, J. E. Rothman, M. Q. Xu, I. R. Corrêa, and J. Bewersdorf, “Two-color STED microscopy in living cells,” Biomed. Opt. Express2(8), 2364–2371 (2011).
    [CrossRef] [PubMed]
  17. K. Friedemann, A. Turshatov, K. Landfester, and D. Crespy, “Characterization via two-color STED microscopy of nanostructured materials synthesized by colloid electrospinning,” Langmuir27(11), 7132–7139 (2011).
    [CrossRef] [PubMed]
  18. T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett.24(14), 954–956 (1999).
    [CrossRef] [PubMed]
  19. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210 (2000).
    [CrossRef] [PubMed]
  20. T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science324(5929), 913–917 (2009).
    [CrossRef] [PubMed]
  21. L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
    [CrossRef] [PubMed]
  22. J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater.22(32), 3578–3582 (2010).
    [CrossRef] [PubMed]
  23. J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photon. Rev.7(1), 22–44 (2013).
    [CrossRef]
  24. Y. S. Cao, Z. S. Gan, B. H. Jia, R. A. Evans, and M. Gu, “High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization,” Opt. Express19(20), 19486–19494 (2011).
    [CrossRef] [PubMed]
  25. D. Kunik, S. J. Ludueña, S. Costantino, and O. E. Martínez, “Fluorescent two-photon nanolithography,” J. Microsc.229(3), 540–544 (2008).
    [CrossRef] [PubMed]
  26. L. Rayleigh, “On the theory of optical images, with special reference to the microscope,” Philosoph. Mag. J. Science42(255), 167–195 (1896).
    [CrossRef]
  27. C. M. Sparrow, “On spectroscopic resolving power,” Astrophys. J.44, 76–86 (1916).
    [CrossRef]
  28. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
    [CrossRef] [PubMed]
  29. S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
    [CrossRef]
  30. D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Z. Dong, and X. M. Duan, “Reduction in feature size of two-photon polymerisation using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
    [CrossRef]
  31. S. H. Park, T. W. Lim, D. Y. Yang, N. C. Cho, and K. S. Lee, “Fabrication of a bunch of sub-30nm nanofibers inside microchannels using photopolymerization via a long exposure technique,” Appl. Phys. Lett.89(17), 173133 (2006).
    [CrossRef]
  32. T. J. A. Wolf, J. Fischer, M. Wegener, and A. N. Unterreiner, “Pump-probe spectroscopy on photoinitiators for stimulated-emission-depletion optical lithography,” Opt. Lett.36(16), 3188–3190 (2011).
    [CrossRef] [PubMed]
  33. J. Fischer and M. Wegener, “Ultrafast polymerization inhibition by stimulated emission depletion for three-dimensional nanolithography,” Adv. Mater.24(10), OP65–OP69 (2012).
    [CrossRef] [PubMed]
  34. B. Harke, P. Bianchini, F. Brandi, and A. Diaspro, “Photopolymerization inhibition dynamics for sub-diffraction direct laser writing lithography,” ChemPhysChem13(6), 1429–1434 (2012).
    [CrossRef] [PubMed]
  35. I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano6(3), 2302–2311 (2012).
    [CrossRef] [PubMed]
  36. D. Van Steenwinckel, R. Gronheid, F. Van Roey, P. Willems, and J. H. Lammers, “Novel method for characterizing resist performance,” J. Micro-Nanolith. Mem.7, 023002 (2008).
  37. H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett.74(6), 786–788 (1999).
    [CrossRef]
  38. J. Fischer, T. Ergin, and M. Wegener, “Three-dimensional polarization-independent visible-frequency carpet invisibility cloak,” Opt. Lett.36(11), 2059–2061 (2011).
    [CrossRef] [PubMed]
  39. J. A. Chai, L. S. Wong, L. Giam, and C. A. Mirkin, “Single-molecule protein arrays enabled by scanning probe block copolymer lithography,” Proc. Natl. Acad. Sci. U.S.A.108(49), 19521–19525 (2011).
    [CrossRef] [PubMed]
  40. R. Schlapak, J. Danzberger, T. Haselgrübler, P. Hinterdorfer, F. Schäffler, and S. Howorka, “Painting with biomolecules at the nanoscale: biofunctionalization with tunable surface densities,” Nano Lett.12(4), 1983–1989 (2012).
    [CrossRef] [PubMed]
  41. R. A. Vega, D. Maspoch, K. Salaita, and C. A. Mirkin, “Nanoarrays of single virus particles,” Angew. Chem. Int. Ed. Engl.44(37), 6013–6015 (2005).
    [CrossRef] [PubMed]
  42. C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science276(5317), 1425–1428 (1997).
    [CrossRef] [PubMed]
  43. F. Klein, B. Richter, T. Striebel, C. M. Franz, G. Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater.23(11), 1341–1345 (2011).
    [CrossRef] [PubMed]

2013

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photon. Rev.7(1), 22–44 (2013).
[CrossRef]

2012

J. Fischer and M. Wegener, “Ultrafast polymerization inhibition by stimulated emission depletion for three-dimensional nanolithography,” Adv. Mater.24(10), OP65–OP69 (2012).
[CrossRef] [PubMed]

B. Harke, P. Bianchini, F. Brandi, and A. Diaspro, “Photopolymerization inhibition dynamics for sub-diffraction direct laser writing lithography,” ChemPhysChem13(6), 1429–1434 (2012).
[CrossRef] [PubMed]

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano6(3), 2302–2311 (2012).
[CrossRef] [PubMed]

F. Burmeister, S. Steenhusen, R. Houbertz, U. D. Zeitner, S. Nolte, and A. Tünnermann, “Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization,” J. Laser Appl.24(4), 042014 (2012).
[CrossRef]

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100nm structures with 3D two-photon polymerisation technique and optical methods for characterization,” J. Laser Appl.24(4), 042004 (2012).
[CrossRef]

R. Schlapak, J. Danzberger, T. Haselgrübler, P. Hinterdorfer, F. Schäffler, and S. Howorka, “Painting with biomolecules at the nanoscale: biofunctionalization with tunable surface densities,” Nano Lett.12(4), 1983–1989 (2012).
[CrossRef] [PubMed]

2011

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater.23(11), 1341–1345 (2011).
[CrossRef] [PubMed]

T. J. A. Wolf, J. Fischer, M. Wegener, and A. N. Unterreiner, “Pump-probe spectroscopy on photoinitiators for stimulated-emission-depletion optical lithography,” Opt. Lett.36(16), 3188–3190 (2011).
[CrossRef] [PubMed]

J. Fischer, T. Ergin, and M. Wegener, “Three-dimensional polarization-independent visible-frequency carpet invisibility cloak,” Opt. Lett.36(11), 2059–2061 (2011).
[CrossRef] [PubMed]

J. A. Chai, L. S. Wong, L. Giam, and C. A. Mirkin, “Single-molecule protein arrays enabled by scanning probe block copolymer lithography,” Proc. Natl. Acad. Sci. U.S.A.108(49), 19521–19525 (2011).
[CrossRef] [PubMed]

J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy,” Opt. Mater. Express1(4), 614–624 (2011).
[CrossRef]

P. A. Pellett, X. L. Sun, T. J. Gould, J. E. Rothman, M. Q. Xu, I. R. Corrêa, and J. Bewersdorf, “Two-color STED microscopy in living cells,” Biomed. Opt. Express2(8), 2364–2371 (2011).
[CrossRef] [PubMed]

K. Friedemann, A. Turshatov, K. Landfester, and D. Crespy, “Characterization via two-color STED microscopy of nanostructured materials synthesized by colloid electrospinning,” Langmuir27(11), 7132–7139 (2011).
[CrossRef] [PubMed]

Y. S. Cao, Z. S. Gan, B. H. Jia, R. A. Evans, and M. Gu, “High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization,” Opt. Express19(20), 19486–19494 (2011).
[CrossRef] [PubMed]

2010

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater.22(32), 3578–3582 (2010).
[CrossRef] [PubMed]

2009

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science324(5929), 913–917 (2009).
[CrossRef] [PubMed]

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
[CrossRef] [PubMed]

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature457(7233), 1159–1162 (2009).
[CrossRef] [PubMed]

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

2008

X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Improving spatial resolution and reducing aspect ratio in multiphoton polymerization nanofabrication,” Appl. Phys. Lett.92(9), 091113 (2008).
[CrossRef]

D. Kunik, S. J. Ludueña, S. Costantino, and O. E. Martínez, “Fluorescent two-photon nanolithography,” J. Microsc.229(3), 540–544 (2008).
[CrossRef] [PubMed]

D. Van Steenwinckel, R. Gronheid, F. Van Roey, P. Willems, and J. H. Lammers, “Novel method for characterizing resist performance,” J. Micro-Nanolith. Mem.7, 023002 (2008).

2007

D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Z. Dong, and X. M. Duan, “Reduction in feature size of two-photon polymerisation using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express15(6), 3426–3436 (2007).
[CrossRef] [PubMed]

J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007).
[CrossRef]

2006

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature440(7086), 935–939 (2006).
[CrossRef] [PubMed]

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nat. Methods3(9), 721–723 (2006).
[CrossRef] [PubMed]

S. H. Park, T. W. Lim, D. Y. Yang, N. C. Cho, and K. S. Lee, “Fabrication of a bunch of sub-30nm nanofibers inside microchannels using photopolymerization via a long exposure technique,” Appl. Phys. Lett.89(17), 173133 (2006).
[CrossRef]

2005

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
[CrossRef]

R. A. Vega, D. Maspoch, K. Salaita, and C. A. Mirkin, “Nanoarrays of single virus particles,” Angew. Chem. Int. Ed. Engl.44(37), 6013–6015 (2005).
[CrossRef] [PubMed]

2001

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

2000

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

1999

H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett.74(6), 786–788 (1999).
[CrossRef]

T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett.24(14), 954–956 (1999).
[CrossRef] [PubMed]

1997

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.22(2), 132–134 (1997).
[CrossRef] [PubMed]

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science276(5317), 1425–1428 (1997).
[CrossRef] [PubMed]

1994

1991

1990

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

1916

C. M. Sparrow, “On spectroscopic resolving power,” Astrophys. J.44, 76–86 (1916).
[CrossRef]

1896

L. Rayleigh, “On the theory of optical images, with special reference to the microscope,” Philosoph. Mag. J. Science42(255), 167–195 (1896).
[CrossRef]

1873

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Archiv für Mikroskopische Anatomie9(1), 413–418 (1873).
[CrossRef]

Abbe, E.

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Archiv für Mikroskopische Anatomie9(1), 413–418 (1873).
[CrossRef]

Barlow, S.

Bastmeyer, M.

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater.23(11), 1341–1345 (2011).
[CrossRef] [PubMed]

Belov, V. N.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature457(7233), 1159–1162 (2009).
[CrossRef] [PubMed]

Bewersdorf, J.

Bianchini, P.

B. Harke, P. Bianchini, F. Brandi, and A. Diaspro, “Photopolymerization inhibition dynamics for sub-diffraction direct laser writing lithography,” ChemPhysChem13(6), 1429–1434 (2012).
[CrossRef] [PubMed]

Bityurin, N.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano6(3), 2302–2311 (2012).
[CrossRef] [PubMed]

Bowman, C. N.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science324(5929), 913–917 (2009).
[CrossRef] [PubMed]

Brandi, F.

B. Harke, P. Bianchini, F. Brandi, and A. Diaspro, “Photopolymerization inhibition dynamics for sub-diffraction direct laser writing lithography,” ChemPhysChem13(6), 1429–1434 (2012).
[CrossRef] [PubMed]

Burmeister, F.

F. Burmeister, S. Steenhusen, R. Houbertz, U. D. Zeitner, S. Nolte, and A. Tünnermann, “Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization,” J. Laser Appl.24(4), 042014 (2012).
[CrossRef]

Cao, Y. S.

Chai, J. A.

J. A. Chai, L. S. Wong, L. Giam, and C. A. Mirkin, “Single-molecule protein arrays enabled by scanning probe block copolymer lithography,” Proc. Natl. Acad. Sci. U.S.A.108(49), 19521–19525 (2011).
[CrossRef] [PubMed]

Chen, C. S.

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science276(5317), 1425–1428 (1997).
[CrossRef] [PubMed]

Chen, V. W.

Chen, W. Q.

J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007).
[CrossRef]

Chichkov, B.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100nm structures with 3D two-photon polymerisation technique and optical methods for characterization,” J. Laser Appl.24(4), 042004 (2012).
[CrossRef]

Cho, N. C.

S. H. Park, T. W. Lim, D. Y. Yang, N. C. Cho, and K. S. Lee, “Fabrication of a bunch of sub-30nm nanofibers inside microchannels using photopolymerization via a long exposure technique,” Appl. Phys. Lett.89(17), 173133 (2006).
[CrossRef]

Corrêa, I. R.

Costantino, S.

D. Kunik, S. J. Ludueña, S. Costantino, and O. E. Martínez, “Fluorescent two-photon nanolithography,” J. Microsc.229(3), 540–544 (2008).
[CrossRef] [PubMed]

Crespy, D.

K. Friedemann, A. Turshatov, K. Landfester, and D. Crespy, “Characterization via two-color STED microscopy of nanostructured materials synthesized by colloid electrospinning,” Langmuir27(11), 7132–7139 (2011).
[CrossRef] [PubMed]

Danzberger, J.

R. Schlapak, J. Danzberger, T. Haselgrübler, P. Hinterdorfer, F. Schäffler, and S. Howorka, “Painting with biomolecules at the nanoscale: biofunctionalization with tunable surface densities,” Nano Lett.12(4), 1983–1989 (2012).
[CrossRef] [PubMed]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Diaspro, A.

B. Harke, P. Bianchini, F. Brandi, and A. Diaspro, “Photopolymerization inhibition dynamics for sub-diffraction direct laser writing lithography,” ChemPhysChem13(6), 1429–1434 (2012).
[CrossRef] [PubMed]

Dong, W. T.

Dong, X. Z.

X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Improving spatial resolution and reducing aspect ratio in multiphoton polymerization nanofabrication,” Appl. Phys. Lett.92(9), 091113 (2008).
[CrossRef]

J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007).
[CrossRef]

D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Z. Dong, and X. M. Duan, “Reduction in feature size of two-photon polymerisation using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

Duan, X. M.

X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Improving spatial resolution and reducing aspect ratio in multiphoton polymerization nanofabrication,” Appl. Phys. Lett.92(9), 091113 (2008).
[CrossRef]

J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007).
[CrossRef]

D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Z. Dong, and X. M. Duan, “Reduction in feature size of two-photon polymerisation using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

Dyba, M.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

Eggeling, C.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature457(7233), 1159–1162 (2009).
[CrossRef] [PubMed]

Egner, A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

Emons, M.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100nm structures with 3D two-photon polymerisation technique and optical methods for characterization,” J. Laser Appl.24(4), 042004 (2012).
[CrossRef]

Ergin, T.

Evans, R. A.

Farsari, M.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano6(3), 2302–2311 (2012).
[CrossRef] [PubMed]

Fischer, J.

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photon. Rev.7(1), 22–44 (2013).
[CrossRef]

J. Fischer and M. Wegener, “Ultrafast polymerization inhibition by stimulated emission depletion for three-dimensional nanolithography,” Adv. Mater.24(10), OP65–OP69 (2012).
[CrossRef] [PubMed]

T. J. A. Wolf, J. Fischer, M. Wegener, and A. N. Unterreiner, “Pump-probe spectroscopy on photoinitiators for stimulated-emission-depletion optical lithography,” Opt. Lett.36(16), 3188–3190 (2011).
[CrossRef] [PubMed]

J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy,” Opt. Mater. Express1(4), 614–624 (2011).
[CrossRef]

J. Fischer, T. Ergin, and M. Wegener, “Three-dimensional polarization-independent visible-frequency carpet invisibility cloak,” Opt. Lett.36(11), 2059–2061 (2011).
[CrossRef] [PubMed]

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater.22(32), 3578–3582 (2010).
[CrossRef] [PubMed]

Fotakis, C.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano6(3), 2302–2311 (2012).
[CrossRef] [PubMed]

Fourkas, J. T.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Franz, C. M.

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater.23(11), 1341–1345 (2011).
[CrossRef] [PubMed]

Frenner, K.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100nm structures with 3D two-photon polymerisation technique and optical methods for characterization,” J. Laser Appl.24(4), 042004 (2012).
[CrossRef]

Freymann, G.

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater.23(11), 1341–1345 (2011).
[CrossRef] [PubMed]

Friedemann, K.

K. Friedemann, A. Turshatov, K. Landfester, and D. Crespy, “Characterization via two-color STED microscopy of nanostructured materials synthesized by colloid electrospinning,” Langmuir27(11), 7132–7139 (2011).
[CrossRef] [PubMed]

Gan, Z. S.

Gattass, R. R.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Gershgoren, E.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Giam, L.

J. A. Chai, L. S. Wong, L. Giam, and C. A. Mirkin, “Single-molecule protein arrays enabled by scanning probe block copolymer lithography,” Proc. Natl. Acad. Sci. U.S.A.108(49), 19521–19525 (2011).
[CrossRef] [PubMed]

Gong, Q. H.

D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Z. Dong, and X. M. Duan, “Reduction in feature size of two-photon polymerisation using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

Gould, T. J.

Gray, D.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano6(3), 2302–2311 (2012).
[CrossRef] [PubMed]

Gronheid, R.

D. Van Steenwinckel, R. Gronheid, F. Van Roey, P. Willems, and J. H. Lammers, “Novel method for characterizing resist performance,” J. Micro-Nanolith. Mem.7, 023002 (2008).

Gu, M.

Hales, J. M.

Han, K. Y.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

Harke, B.

B. Harke, P. Bianchini, F. Brandi, and A. Diaspro, “Photopolymerization inhibition dynamics for sub-diffraction direct laser writing lithography,” ChemPhysChem13(6), 1429–1434 (2012).
[CrossRef] [PubMed]

Haselgrübler, T.

R. Schlapak, J. Danzberger, T. Haselgrübler, P. Hinterdorfer, F. Schäffler, and S. Howorka, “Painting with biomolecules at the nanoscale: biofunctionalization with tunable surface densities,” Nano Lett.12(4), 1983–1989 (2012).
[CrossRef] [PubMed]

Haske, W.

Hein, B.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature457(7233), 1159–1162 (2009).
[CrossRef] [PubMed]

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nat. Methods3(9), 721–723 (2006).
[CrossRef] [PubMed]

Hell, S. W.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature457(7233), 1159–1162 (2009).
[CrossRef] [PubMed]

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature440(7086), 935–939 (2006).
[CrossRef] [PubMed]

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nat. Methods3(9), 721–723 (2006).
[CrossRef] [PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett.24(14), 954–956 (1999).
[CrossRef] [PubMed]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19(11), 780–782 (1994).
[CrossRef] [PubMed]

Hinterdorfer, P.

R. Schlapak, J. Danzberger, T. Haselgrübler, P. Hinterdorfer, F. Schäffler, and S. Howorka, “Painting with biomolecules at the nanoscale: biofunctionalization with tunable surface densities,” Nano Lett.12(4), 1983–1989 (2012).
[CrossRef] [PubMed]

Houbertz, R.

F. Burmeister, S. Steenhusen, R. Houbertz, U. D. Zeitner, S. Nolte, and A. Tünnermann, “Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization,” J. Laser Appl.24(4), 042014 (2012).
[CrossRef]

Howorka, S.

R. Schlapak, J. Danzberger, T. Haselgrübler, P. Hinterdorfer, F. Schäffler, and S. Howorka, “Painting with biomolecules at the nanoscale: biofunctionalization with tunable surface densities,” Nano Lett.12(4), 1983–1989 (2012).
[CrossRef] [PubMed]

Huang, S.

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science276(5317), 1425–1428 (1997).
[CrossRef] [PubMed]

Hwang, H.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Ingber, D. E.

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science276(5317), 1425–1428 (1997).
[CrossRef] [PubMed]

Irvine, S. E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

Jahn, R.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature440(7086), 935–939 (2006).
[CrossRef] [PubMed]

Jakobs, S.

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nat. Methods3(9), 721–723 (2006).
[CrossRef] [PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

Jia, B. H.

Juodkazis, S.

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
[CrossRef]

Kabouraki, E.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano6(3), 2302–2311 (2012).
[CrossRef] [PubMed]

Kawata, S.

J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.22(2), 132–134 (1997).
[CrossRef] [PubMed]

Kellner, R. R.

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nat. Methods3(9), 721–723 (2006).
[CrossRef] [PubMed]

Klar, T. A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett.24(14), 954–956 (1999).
[CrossRef] [PubMed]

Klein, F.

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater.23(11), 1341–1345 (2011).
[CrossRef] [PubMed]

Kowalski, B. A.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science324(5929), 913–917 (2009).
[CrossRef] [PubMed]

Kunik, D.

D. Kunik, S. J. Ludueña, S. Costantino, and O. E. Martínez, “Fluorescent two-photon nanolithography,” J. Microsc.229(3), 540–544 (2008).
[CrossRef] [PubMed]

Lammers, J. H.

D. Van Steenwinckel, R. Gronheid, F. Van Roey, P. Willems, and J. H. Lammers, “Novel method for characterizing resist performance,” J. Micro-Nanolith. Mem.7, 023002 (2008).

Landfester, K.

K. Friedemann, A. Turshatov, K. Landfester, and D. Crespy, “Characterization via two-color STED microscopy of nanostructured materials synthesized by colloid electrospinning,” Langmuir27(11), 7132–7139 (2011).
[CrossRef] [PubMed]

Lee, K. S.

S. H. Park, T. W. Lim, D. Y. Yang, N. C. Cho, and K. S. Lee, “Fabrication of a bunch of sub-30nm nanofibers inside microchannels using photopolymerization via a long exposure technique,” Appl. Phys. Lett.89(17), 173133 (2006).
[CrossRef]

Li, L.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Li, Y.

D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Z. Dong, and X. M. Duan, “Reduction in feature size of two-photon polymerisation using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

Lim, T. W.

S. H. Park, T. W. Lim, D. Y. Yang, N. C. Cho, and K. S. Lee, “Fabrication of a bunch of sub-30nm nanofibers inside microchannels using photopolymerization via a long exposure technique,” Appl. Phys. Lett.89(17), 173133 (2006).
[CrossRef]

Ludueña, S. J.

D. Kunik, S. J. Ludueña, S. Costantino, and O. E. Martínez, “Fluorescent two-photon nanolithography,” J. Microsc.229(3), 540–544 (2008).
[CrossRef] [PubMed]

Marder, S. R.

Martínez, O. E.

D. Kunik, S. J. Ludueña, S. Costantino, and O. E. Martínez, “Fluorescent two-photon nanolithography,” J. Microsc.229(3), 540–544 (2008).
[CrossRef] [PubMed]

Maruo, S.

Maspoch, D.

R. A. Vega, D. Maspoch, K. Salaita, and C. A. Mirkin, “Nanoarrays of single virus particles,” Angew. Chem. Int. Ed. Engl.44(37), 6013–6015 (2005).
[CrossRef] [PubMed]

Matsuo, S.

H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett.74(6), 786–788 (1999).
[CrossRef]

McLeod, R. R.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science324(5929), 913–917 (2009).
[CrossRef] [PubMed]

Medda, R.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature457(7233), 1159–1162 (2009).
[CrossRef] [PubMed]

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nat. Methods3(9), 721–723 (2006).
[CrossRef] [PubMed]

Mirkin, C. A.

J. A. Chai, L. S. Wong, L. Giam, and C. A. Mirkin, “Single-molecule protein arrays enabled by scanning probe block copolymer lithography,” Proc. Natl. Acad. Sci. U.S.A.108(49), 19521–19525 (2011).
[CrossRef] [PubMed]

R. A. Vega, D. Maspoch, K. Salaita, and C. A. Mirkin, “Nanoarrays of single virus particles,” Angew. Chem. Int. Ed. Engl.44(37), 6013–6015 (2005).
[CrossRef] [PubMed]

Misawa, H.

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
[CrossRef]

H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett.74(6), 786–788 (1999).
[CrossRef]

Miwa, M.

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
[CrossRef]

Mizeikis, V.

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
[CrossRef]

Morgner, U.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100nm structures with 3D two-photon polymerisation technique and optical methods for characterization,” J. Laser Appl.24(4), 042004 (2012).
[CrossRef]

Mrksich, M.

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science276(5317), 1425–1428 (1997).
[CrossRef] [PubMed]

Nakamura, O.

Nolte, S.

F. Burmeister, S. Steenhusen, R. Houbertz, U. D. Zeitner, S. Nolte, and A. Tünnermann, “Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization,” J. Laser Appl.24(4), 042014 (2012).
[CrossRef]

Obata, K.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100nm structures with 3D two-photon polymerisation technique and optical methods for characterization,” J. Laser Appl.24(4), 042004 (2012).
[CrossRef]

Osten, W.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100nm structures with 3D two-photon polymerisation technique and optical methods for characterization,” J. Laser Appl.24(4), 042004 (2012).
[CrossRef]

Ovsianikov, A.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100nm structures with 3D two-photon polymerisation technique and optical methods for characterization,” J. Laser Appl.24(4), 042004 (2012).
[CrossRef]

Park, S. H.

S. H. Park, T. W. Lim, D. Y. Yang, N. C. Cho, and K. S. Lee, “Fabrication of a bunch of sub-30nm nanofibers inside microchannels using photopolymerization via a long exposure technique,” Appl. Phys. Lett.89(17), 173133 (2006).
[CrossRef]

Paz, V. F.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100nm structures with 3D two-photon polymerisation technique and optical methods for characterization,” J. Laser Appl.24(4), 042004 (2012).
[CrossRef]

Pellett, P. A.

Perry, J. W.

Peterhänsel, S.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100nm structures with 3D two-photon polymerisation technique and optical methods for characterization,” J. Laser Appl.24(4), 042004 (2012).
[CrossRef]

Pikulin, A.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano6(3), 2302–2311 (2012).
[CrossRef] [PubMed]

Polyakova, S.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature457(7233), 1159–1162 (2009).
[CrossRef] [PubMed]

Purlys, V.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano6(3), 2302–2311 (2012).
[CrossRef] [PubMed]

Qi, F. J.

D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Z. Dong, and X. M. Duan, “Reduction in feature size of two-photon polymerisation using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

Rayleigh, L.

L. Rayleigh, “On the theory of optical images, with special reference to the microscope,” Philosoph. Mag. J. Science42(255), 167–195 (1896).
[CrossRef]

Reinhardt, C.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100nm structures with 3D two-photon polymerisation technique and optical methods for characterization,” J. Laser Appl.24(4), 042004 (2012).
[CrossRef]

Richter, B.

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater.23(11), 1341–1345 (2011).
[CrossRef] [PubMed]

Ringemann, C.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature457(7233), 1159–1162 (2009).
[CrossRef] [PubMed]

Rittweger, E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

Rizzoli, S. O.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature440(7086), 935–939 (2006).
[CrossRef] [PubMed]

Rothman, J. E.

Sakellari, I.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano6(3), 2302–2311 (2012).
[CrossRef] [PubMed]

Salaita, K.

R. A. Vega, D. Maspoch, K. Salaita, and C. A. Mirkin, “Nanoarrays of single virus particles,” Angew. Chem. Int. Ed. Engl.44(37), 6013–6015 (2005).
[CrossRef] [PubMed]

Sandhoff, K.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature457(7233), 1159–1162 (2009).
[CrossRef] [PubMed]

Schäffler, F.

R. Schlapak, J. Danzberger, T. Haselgrübler, P. Hinterdorfer, F. Schäffler, and S. Howorka, “Painting with biomolecules at the nanoscale: biofunctionalization with tunable surface densities,” Nano Lett.12(4), 1983–1989 (2012).
[CrossRef] [PubMed]

Schlapak, R.

R. Schlapak, J. Danzberger, T. Haselgrübler, P. Hinterdorfer, F. Schäffler, and S. Howorka, “Painting with biomolecules at the nanoscale: biofunctionalization with tunable surface densities,” Nano Lett.12(4), 1983–1989 (2012).
[CrossRef] [PubMed]

Schönle, A.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature457(7233), 1159–1162 (2009).
[CrossRef] [PubMed]

Schwarzmann, G.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature457(7233), 1159–1162 (2009).
[CrossRef] [PubMed]

Scott, T. F.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science324(5929), 913–917 (2009).
[CrossRef] [PubMed]

Seet, K. K.

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
[CrossRef]

Sparrow, C. M.

C. M. Sparrow, “On spectroscopic resolving power,” Astrophys. J.44, 76–86 (1916).
[CrossRef]

Steenhusen, S.

F. Burmeister, S. Steenhusen, R. Houbertz, U. D. Zeitner, S. Nolte, and A. Tünnermann, “Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization,” J. Laser Appl.24(4), 042014 (2012).
[CrossRef]

Strickler, J. H.

Striebel, T.

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater.23(11), 1341–1345 (2011).
[CrossRef] [PubMed]

Sullivan, A. C.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science324(5929), 913–917 (2009).
[CrossRef] [PubMed]

Sun, H. B.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett.74(6), 786–788 (1999).
[CrossRef]

Sun, X. L.

Takada, K.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Takeyasu, N.

J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007).
[CrossRef]

Tan, D. F.

D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Z. Dong, and X. M. Duan, “Reduction in feature size of two-photon polymerisation using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

Tanaka, T.

J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Tünnermann, A.

F. Burmeister, S. Steenhusen, R. Houbertz, U. D. Zeitner, S. Nolte, and A. Tünnermann, “Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization,” J. Laser Appl.24(4), 042014 (2012).
[CrossRef]

Turshatov, A.

K. Friedemann, A. Turshatov, K. Landfester, and D. Crespy, “Characterization via two-color STED microscopy of nanostructured materials synthesized by colloid electrospinning,” Langmuir27(11), 7132–7139 (2011).
[CrossRef] [PubMed]

Unterreiner, A. N.

Vamvakaki, M.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano6(3), 2302–2311 (2012).
[CrossRef] [PubMed]

Van Roey, F.

D. Van Steenwinckel, R. Gronheid, F. Van Roey, P. Willems, and J. H. Lammers, “Novel method for characterizing resist performance,” J. Micro-Nanolith. Mem.7, 023002 (2008).

Van Steenwinckel, D.

D. Van Steenwinckel, R. Gronheid, F. Van Roey, P. Willems, and J. H. Lammers, “Novel method for characterizing resist performance,” J. Micro-Nanolith. Mem.7, 023002 (2008).

Vega, R. A.

R. A. Vega, D. Maspoch, K. Salaita, and C. A. Mirkin, “Nanoarrays of single virus particles,” Angew. Chem. Int. Ed. Engl.44(37), 6013–6015 (2005).
[CrossRef] [PubMed]

von Freymann, G.

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater.22(32), 3578–3582 (2010).
[CrossRef] [PubMed]

von Middendorff, C.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature457(7233), 1159–1162 (2009).
[CrossRef] [PubMed]

Webb, W. W.

Wegener, M.

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photon. Rev.7(1), 22–44 (2013).
[CrossRef]

J. Fischer and M. Wegener, “Ultrafast polymerization inhibition by stimulated emission depletion for three-dimensional nanolithography,” Adv. Mater.24(10), OP65–OP69 (2012).
[CrossRef] [PubMed]

T. J. A. Wolf, J. Fischer, M. Wegener, and A. N. Unterreiner, “Pump-probe spectroscopy on photoinitiators for stimulated-emission-depletion optical lithography,” Opt. Lett.36(16), 3188–3190 (2011).
[CrossRef] [PubMed]

J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy,” Opt. Mater. Express1(4), 614–624 (2011).
[CrossRef]

J. Fischer, T. Ergin, and M. Wegener, “Three-dimensional polarization-independent visible-frequency carpet invisibility cloak,” Opt. Lett.36(11), 2059–2061 (2011).
[CrossRef] [PubMed]

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater.23(11), 1341–1345 (2011).
[CrossRef] [PubMed]

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater.22(32), 3578–3582 (2010).
[CrossRef] [PubMed]

Westphal, V.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature440(7086), 935–939 (2006).
[CrossRef] [PubMed]

Whitesides, G. M.

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science276(5317), 1425–1428 (1997).
[CrossRef] [PubMed]

Wichmann, J.

Willems, P.

D. Van Steenwinckel, R. Gronheid, F. Van Roey, P. Willems, and J. H. Lammers, “Novel method for characterizing resist performance,” J. Micro-Nanolith. Mem.7, 023002 (2008).

Willig, K. I.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature440(7086), 935–939 (2006).
[CrossRef] [PubMed]

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nat. Methods3(9), 721–723 (2006).
[CrossRef] [PubMed]

Wolf, T. J. A.

Wong, L. S.

J. A. Chai, L. S. Wong, L. Giam, and C. A. Mirkin, “Single-molecule protein arrays enabled by scanning probe block copolymer lithography,” Proc. Natl. Acad. Sci. U.S.A.108(49), 19521–19525 (2011).
[CrossRef] [PubMed]

Xing, J. F.

J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007).
[CrossRef]

Xu, M. Q.

Yang, D. Y.

S. H. Park, T. W. Lim, D. Y. Yang, N. C. Cho, and K. S. Lee, “Fabrication of a bunch of sub-30nm nanofibers inside microchannels using photopolymerization via a long exposure technique,” Appl. Phys. Lett.89(17), 173133 (2006).
[CrossRef]

Yang, H.

D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Z. Dong, and X. M. Duan, “Reduction in feature size of two-photon polymerisation using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

Zeitner, U. D.

F. Burmeister, S. Steenhusen, R. Houbertz, U. D. Zeitner, S. Nolte, and A. Tünnermann, “Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization,” J. Laser Appl.24(4), 042014 (2012).
[CrossRef]

Zhao, Z. S.

X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Improving spatial resolution and reducing aspect ratio in multiphoton polymerization nanofabrication,” Appl. Phys. Lett.92(9), 091113 (2008).
[CrossRef]

ACS Nano

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-assisted high-resolution direct femtosecond laser writing,” ACS Nano6(3), 2302–2311 (2012).
[CrossRef] [PubMed]

Adv. Mater.

J. Fischer and M. Wegener, “Ultrafast polymerization inhibition by stimulated emission depletion for three-dimensional nanolithography,” Adv. Mater.24(10), OP65–OP69 (2012).
[CrossRef] [PubMed]

J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater.22(32), 3578–3582 (2010).
[CrossRef] [PubMed]

F. Klein, B. Richter, T. Striebel, C. M. Franz, G. Freymann, M. Wegener, and M. Bastmeyer, “Two-component polymer scaffolds for controlled three-dimensional cell culture,” Adv. Mater.23(11), 1341–1345 (2011).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl.

R. A. Vega, D. Maspoch, K. Salaita, and C. A. Mirkin, “Nanoarrays of single virus particles,” Angew. Chem. Int. Ed. Engl.44(37), 6013–6015 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett.

D. F. Tan, Y. Li, F. J. Qi, H. Yang, Q. H. Gong, X. Z. Dong, and X. M. Duan, “Reduction in feature size of two-photon polymerisation using SCR500,” Appl. Phys. Lett.90(7), 071106 (2007).
[CrossRef]

S. H. Park, T. W. Lim, D. Y. Yang, N. C. Cho, and K. S. Lee, “Fabrication of a bunch of sub-30nm nanofibers inside microchannels using photopolymerization via a long exposure technique,” Appl. Phys. Lett.89(17), 173133 (2006).
[CrossRef]

H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett.74(6), 786–788 (1999).
[CrossRef]

J. F. Xing, X. Z. Dong, W. Q. Chen, X. M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, “Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency,” Appl. Phys. Lett.90(13), 131106 (2007).
[CrossRef]

X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Improving spatial resolution and reducing aspect ratio in multiphoton polymerization nanofabrication,” Appl. Phys. Lett.92(9), 091113 (2008).
[CrossRef]

Archiv für Mikroskopische Anatomie

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Archiv für Mikroskopische Anatomie9(1), 413–418 (1873).
[CrossRef]

Astrophys. J.

C. M. Sparrow, “On spectroscopic resolving power,” Astrophys. J.44, 76–86 (1916).
[CrossRef]

Biomed. Opt. Express

ChemPhysChem

B. Harke, P. Bianchini, F. Brandi, and A. Diaspro, “Photopolymerization inhibition dynamics for sub-diffraction direct laser writing lithography,” ChemPhysChem13(6), 1429–1434 (2012).
[CrossRef] [PubMed]

J. Laser Appl.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100nm structures with 3D two-photon polymerisation technique and optical methods for characterization,” J. Laser Appl.24(4), 042004 (2012).
[CrossRef]

F. Burmeister, S. Steenhusen, R. Houbertz, U. D. Zeitner, S. Nolte, and A. Tünnermann, “Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization,” J. Laser Appl.24(4), 042014 (2012).
[CrossRef]

J. Micro-Nanolith. Mem.

D. Van Steenwinckel, R. Gronheid, F. Van Roey, P. Willems, and J. H. Lammers, “Novel method for characterizing resist performance,” J. Micro-Nanolith. Mem.7, 023002 (2008).

J. Microsc.

D. Kunik, S. J. Ludueña, S. Costantino, and O. E. Martínez, “Fluorescent two-photon nanolithography,” J. Microsc.229(3), 540–544 (2008).
[CrossRef] [PubMed]

Langmuir

K. Friedemann, A. Turshatov, K. Landfester, and D. Crespy, “Characterization via two-color STED microscopy of nanostructured materials synthesized by colloid electrospinning,” Langmuir27(11), 7132–7139 (2011).
[CrossRef] [PubMed]

Laser Photon. Rev.

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photon. Rev.7(1), 22–44 (2013).
[CrossRef]

Nano Lett.

R. Schlapak, J. Danzberger, T. Haselgrübler, P. Hinterdorfer, F. Schäffler, and S. Howorka, “Painting with biomolecules at the nanoscale: biofunctionalization with tunable surface densities,” Nano Lett.12(4), 1983–1989 (2012).
[CrossRef] [PubMed]

Nanotechnology

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
[CrossRef]

Nat. Methods

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nat. Methods3(9), 721–723 (2006).
[CrossRef] [PubMed]

Nat. Photonics

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

Nature

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature440(7086), 935–939 (2006).
[CrossRef] [PubMed]

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature457(7233), 1159–1162 (2009).
[CrossRef] [PubMed]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Opt. Mater. Express

Philosoph. Mag. J. Science

L. Rayleigh, “On the theory of optical images, with special reference to the microscope,” Philosoph. Mag. J. Science42(255), 167–195 (1896).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

J. A. Chai, L. S. Wong, L. Giam, and C. A. Mirkin, “Single-molecule protein arrays enabled by scanning probe block copolymer lithography,” Proc. Natl. Acad. Sci. U.S.A.108(49), 19521–19525 (2011).
[CrossRef] [PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

Science

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science324(5929), 913–917 (2009).
[CrossRef] [PubMed]

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science324(5929), 910–913 (2009).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science276(5317), 1425–1428 (1997).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic representation of lateral localization and resolution in microscopy (a-c), direct laser writing DLW (d-f) and STED-DLW (g-i). (a) Localization of a single object with accuracy proportional to the square root of the number of detected photons N; (b) Sparrow limit, (c) Rayleigh limit of resolution. (d) DLW with polymerization threshold (red line) pushed to the peak of the illumination PSF. Only precursors in an area where the PSF is above the polarization threshold are solidified sufficiently to withstand development (green area). (e) By definition of the Sparrow limit, the polymerization threshold is either fully above the peak of the summed PSF, or fully below. The latter leads to merged and unresolved features. (f) Rayleigh limit in DLW: the pol. threshold can be adjusted easily between the maxima and the local minimum. Due to the threshold of the polymerization, two clearly separated features are written. (g-i) same as (d-f) but visualized for a narrowed effective STED PSF. Narrower feature sizes and better resolution can be achieved with STED-DLW as compared to ordinary DLW.

Fig. 2
Fig. 2

(a) Setup for STED-lithography. Two photon excitation at 780 nm and depletion at 532 nm. PH: pinholes for mode purification, PP: 2π spiral phase plate to create donut beam, objective lens: 100x NA = 1.46, APD: avalanche photodiode. (b) Spectra of photoinitiator DETC in PETA. (c) Measured excitation PSF and (d) depletion PSF, lateral (x,y)-cross sections in focal plane (measured via back-reflection from a gold nanoparticle, diameter 50 nm). (e,f) SEM images of solitary polymerized lines written with (e) ordinary two photon DLW and (f) STED-DLW.

Fig. 3
Fig. 3

AFM height profile of a line polymerized by STED-DLW showing a width of 57 nm at the base of the line and a FWHM of 34 nm.

Fig. 4
Fig. 4

(a) SEM image of the twin-line patterns. Horizontal: STED-DLW polymerized line pairs, written with different line-to-line distances δ in each field of 10 twin lines as indicated. Vertical lines polymerized via DLW without STED support mechanical stability. (b) Enlarged AFM image of twin lines with 180 nm spacing.

Fig. 5
Fig. 5

(a) AFM profiles of twin lines at nominal distances δ = 100, 120, 140, 160, 180, and 200 nm. 20 adjacent line scans were averaged for each profile. (b) AFM images for distances of 100, 120, 160, and 200 nm. Adjacent lines with δ ≥ 120 nm line distance are clearly resolved in (a) and (b).

Fig. 6
Fig. 6

Combined plot of all achieved line-to-line distances obtained from AFM images. The “nominal distance” is the distance preset by the piezo scanning stage. The “achieved distance” is the distance determined via AFM measurements of the polymerized lines. No distances could be achieved for 100 nm as the lines are merged. For nominal line spacings at and above 140 nm, the deviation from the nominal distance is + 5 nm and −10 nm (1 sigma). For a nominal spacing of 120 nm, achieved distances substantially shorter than 120 nm (even down to 93 nm) are obtained in some cases.

Metrics