Abstract

Electrically pumped random lasing (RL) has been realized in FTO/porous insulator/n-ZnO/p+-Si devices. It is demonstrated that RL originates from the confining and recurrent scattering of light in the random cavities within the insulating layer, which are formed due to the glow discharge. The glow discharge also induces the observed negative differential resistance (NDR) effect following the normal I-V characteristics. The results present a new strategy to realize electrically pumped RL in ZnO-based metal-insulator-semiconductor device by simply modifying the morphology of the insulating layer.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science281(5379), 956–961 (1998).
    [CrossRef] [PubMed]
  2. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
    [CrossRef] [PubMed]
  3. K. Okazaki, T. Shimogaki, K. Fusazaki, M. Higashihata, D. Nakamura, N. Koshizaki, and T. Okada, “Ultraviolet whispering-gallery-mode lasing in ZnO micro/nano sphere crystal,” Appl. Phys. Lett.101(21), 211105 (2012).
    [CrossRef]
  4. H. Zhu, C. X. Shan, J. Y. Zhang, Z. Z. Zhang, B. H. Li, D. X. Zhao, B. Yao, D. Z. Shen, X. W. Fan, Z. K. Tang, X. Hou, and K. L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater.22(16), 1877–1881 (2010).
    [CrossRef] [PubMed]
  5. H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998).
    [CrossRef]
  6. S. F. Yu, C. Yuen, S. P. Lau, and H. W. Lee, “Zinc oxide thin-film random lasers on silicon substrate,” Appl. Phys. Lett.84(17), 3244–3246 (2004).
    [CrossRef]
  7. S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett.84(17), 3241–3243 (2004).
    [CrossRef]
  8. E. S. P. Leong and S. F. Yu, “UV random lasing action in p-SiC(4H)/i-ZnO–SiO2 nanocomposite/n-ZnO:Al heterojunction diodes,” Adv. Mater.18(13), 1685–1688 (2006).
    [CrossRef]
  9. X. Ma, P. Chen, D. Li, Y. Zhang, and D. Yang, “Electrically pumped ZnO film ultraviolet random lasers on silicon substrate,” Appl. Phys. Lett.91(25), 251109 (2007).
    [CrossRef]
  10. Y. Tian, X. Ma, L. Jin, and D. Yang, “Electrically pumped ultraviolet random lasing from ZnO films: Compensation between optical gain and light scattering,” Appl. Phys. Lett.97(25), 251115 (2010).
    [CrossRef]
  11. P. Chen, X. Ma, D. Li, Y. Zhang, and D. Yang, “Electrically pumped ultraviolet random lasing from ZnO-based metal-insulator-semiconductor devices: Dependence on carrier transport,” Opt. Express17(6), 4712–4717 (2009).
    [CrossRef] [PubMed]
  12. A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small2(8-9), 944–961 (2006).
    [CrossRef] [PubMed]
  13. H. Wang, N. Koshizaki, L. Li, L. Jia, K. Kawaguchi, X. Li, A. Pyatenko, Z. Swiatkowska-Warkocka, Y. Bando, and D. Golberg, “Size-tailored ZnO submicrometer spheres: Bottom-up construction, size-related optical extinction, and selective aniline trapping,” Adv. Mater.23(16), 1865–1870 (2011).
    [CrossRef] [PubMed]
  14. Y. J. Fang, Y. W. Wang, Y. T. Wan, Z. L. Wang, and J. A. Sha, “Detailed study on photoluminescence property and growth mechanism of ZnO nanowire arrays grown by thermal evaporation,” J. Phys. Chem. C114(29), 12469–12476 (2010).
    [CrossRef]
  15. S. W. Lee, H. D. Cho, G. Panin, and T. W. Kang, “Vertical ZnO nanorod/Si contact light-emitting diode,” Appl. Phys. Lett.98(9), 093110 (2011).
    [CrossRef]
  16. O. Lupan, T. Pauporté, and B. Viana, “Low-temperature growth of ZnO nanowire arrays on p-Silicon (111) for visible-light-emitting diode fabrication,” J. Phys. Chem. C114(35), 14781–14785 (2010).
    [CrossRef]
  17. S. Y. Moon, W. Choe, and B. K. Kang, “A uniform glow discharge plasma source at atmospheric pressure,” Appl. Phys. Lett.84(2), 188–190 (2004).
    [CrossRef]
  18. P. Chen, X. Ma, and D. Yang, “Fairly pure ultraviolet electroluminescence from ZnO-based light-emitting devices,” Appl. Phys. Lett.89(11), 111112 (2006).
    [CrossRef]

2012 (1)

K. Okazaki, T. Shimogaki, K. Fusazaki, M. Higashihata, D. Nakamura, N. Koshizaki, and T. Okada, “Ultraviolet whispering-gallery-mode lasing in ZnO micro/nano sphere crystal,” Appl. Phys. Lett.101(21), 211105 (2012).
[CrossRef]

2011 (2)

H. Wang, N. Koshizaki, L. Li, L. Jia, K. Kawaguchi, X. Li, A. Pyatenko, Z. Swiatkowska-Warkocka, Y. Bando, and D. Golberg, “Size-tailored ZnO submicrometer spheres: Bottom-up construction, size-related optical extinction, and selective aniline trapping,” Adv. Mater.23(16), 1865–1870 (2011).
[CrossRef] [PubMed]

S. W. Lee, H. D. Cho, G. Panin, and T. W. Kang, “Vertical ZnO nanorod/Si contact light-emitting diode,” Appl. Phys. Lett.98(9), 093110 (2011).
[CrossRef]

2010 (4)

O. Lupan, T. Pauporté, and B. Viana, “Low-temperature growth of ZnO nanowire arrays on p-Silicon (111) for visible-light-emitting diode fabrication,” J. Phys. Chem. C114(35), 14781–14785 (2010).
[CrossRef]

Y. J. Fang, Y. W. Wang, Y. T. Wan, Z. L. Wang, and J. A. Sha, “Detailed study on photoluminescence property and growth mechanism of ZnO nanowire arrays grown by thermal evaporation,” J. Phys. Chem. C114(29), 12469–12476 (2010).
[CrossRef]

Y. Tian, X. Ma, L. Jin, and D. Yang, “Electrically pumped ultraviolet random lasing from ZnO films: Compensation between optical gain and light scattering,” Appl. Phys. Lett.97(25), 251115 (2010).
[CrossRef]

H. Zhu, C. X. Shan, J. Y. Zhang, Z. Z. Zhang, B. H. Li, D. X. Zhao, B. Yao, D. Z. Shen, X. W. Fan, Z. K. Tang, X. Hou, and K. L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater.22(16), 1877–1881 (2010).
[CrossRef] [PubMed]

2009 (1)

2007 (1)

X. Ma, P. Chen, D. Li, Y. Zhang, and D. Yang, “Electrically pumped ZnO film ultraviolet random lasers on silicon substrate,” Appl. Phys. Lett.91(25), 251109 (2007).
[CrossRef]

2006 (3)

E. S. P. Leong and S. F. Yu, “UV random lasing action in p-SiC(4H)/i-ZnO–SiO2 nanocomposite/n-ZnO:Al heterojunction diodes,” Adv. Mater.18(13), 1685–1688 (2006).
[CrossRef]

A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small2(8-9), 944–961 (2006).
[CrossRef] [PubMed]

P. Chen, X. Ma, and D. Yang, “Fairly pure ultraviolet electroluminescence from ZnO-based light-emitting devices,” Appl. Phys. Lett.89(11), 111112 (2006).
[CrossRef]

2004 (3)

S. Y. Moon, W. Choe, and B. K. Kang, “A uniform glow discharge plasma source at atmospheric pressure,” Appl. Phys. Lett.84(2), 188–190 (2004).
[CrossRef]

S. F. Yu, C. Yuen, S. P. Lau, and H. W. Lee, “Zinc oxide thin-film random lasers on silicon substrate,” Appl. Phys. Lett.84(17), 3244–3246 (2004).
[CrossRef]

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett.84(17), 3241–3243 (2004).
[CrossRef]

2001 (1)

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

1998 (2)

S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science281(5379), 956–961 (1998).
[CrossRef] [PubMed]

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998).
[CrossRef]

Bando, Y.

H. Wang, N. Koshizaki, L. Li, L. Jia, K. Kawaguchi, X. Li, A. Pyatenko, Z. Swiatkowska-Warkocka, Y. Bando, and D. Golberg, “Size-tailored ZnO submicrometer spheres: Bottom-up construction, size-related optical extinction, and selective aniline trapping,” Adv. Mater.23(16), 1865–1870 (2011).
[CrossRef] [PubMed]

Cao, H.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998).
[CrossRef]

Chang, R. P. H.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998).
[CrossRef]

Chen, P.

P. Chen, X. Ma, D. Li, Y. Zhang, and D. Yang, “Electrically pumped ultraviolet random lasing from ZnO-based metal-insulator-semiconductor devices: Dependence on carrier transport,” Opt. Express17(6), 4712–4717 (2009).
[CrossRef] [PubMed]

X. Ma, P. Chen, D. Li, Y. Zhang, and D. Yang, “Electrically pumped ZnO film ultraviolet random lasers on silicon substrate,” Appl. Phys. Lett.91(25), 251109 (2007).
[CrossRef]

P. Chen, X. Ma, and D. Yang, “Fairly pure ultraviolet electroluminescence from ZnO-based light-emitting devices,” Appl. Phys. Lett.89(11), 111112 (2006).
[CrossRef]

Cho, H. D.

S. W. Lee, H. D. Cho, G. Panin, and T. W. Kang, “Vertical ZnO nanorod/Si contact light-emitting diode,” Appl. Phys. Lett.98(9), 093110 (2011).
[CrossRef]

Choe, W.

S. Y. Moon, W. Choe, and B. K. Kang, “A uniform glow discharge plasma source at atmospheric pressure,” Appl. Phys. Lett.84(2), 188–190 (2004).
[CrossRef]

Choy, K. L.

H. Zhu, C. X. Shan, J. Y. Zhang, Z. Z. Zhang, B. H. Li, D. X. Zhao, B. Yao, D. Z. Shen, X. W. Fan, Z. K. Tang, X. Hou, and K. L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater.22(16), 1877–1881 (2010).
[CrossRef] [PubMed]

Dai, J. Y.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998).
[CrossRef]

Djurisic, A. B.

A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small2(8-9), 944–961 (2006).
[CrossRef] [PubMed]

Fan, X. W.

H. Zhu, C. X. Shan, J. Y. Zhang, Z. Z. Zhang, B. H. Li, D. X. Zhao, B. Yao, D. Z. Shen, X. W. Fan, Z. K. Tang, X. Hou, and K. L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater.22(16), 1877–1881 (2010).
[CrossRef] [PubMed]

Fang, Y. J.

Y. J. Fang, Y. W. Wang, Y. T. Wan, Z. L. Wang, and J. A. Sha, “Detailed study on photoluminescence property and growth mechanism of ZnO nanowire arrays grown by thermal evaporation,” J. Phys. Chem. C114(29), 12469–12476 (2010).
[CrossRef]

Feick, H.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Fusazaki, K.

K. Okazaki, T. Shimogaki, K. Fusazaki, M. Higashihata, D. Nakamura, N. Koshizaki, and T. Okada, “Ultraviolet whispering-gallery-mode lasing in ZnO micro/nano sphere crystal,” Appl. Phys. Lett.101(21), 211105 (2012).
[CrossRef]

Golberg, D.

H. Wang, N. Koshizaki, L. Li, L. Jia, K. Kawaguchi, X. Li, A. Pyatenko, Z. Swiatkowska-Warkocka, Y. Bando, and D. Golberg, “Size-tailored ZnO submicrometer spheres: Bottom-up construction, size-related optical extinction, and selective aniline trapping,” Adv. Mater.23(16), 1865–1870 (2011).
[CrossRef] [PubMed]

Higashihata, M.

K. Okazaki, T. Shimogaki, K. Fusazaki, M. Higashihata, D. Nakamura, N. Koshizaki, and T. Okada, “Ultraviolet whispering-gallery-mode lasing in ZnO micro/nano sphere crystal,” Appl. Phys. Lett.101(21), 211105 (2012).
[CrossRef]

Ho, S. T.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998).
[CrossRef]

Hou, X.

H. Zhu, C. X. Shan, J. Y. Zhang, Z. Z. Zhang, B. H. Li, D. X. Zhao, B. Yao, D. Z. Shen, X. W. Fan, Z. K. Tang, X. Hou, and K. L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater.22(16), 1877–1881 (2010).
[CrossRef] [PubMed]

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Jia, L.

H. Wang, N. Koshizaki, L. Li, L. Jia, K. Kawaguchi, X. Li, A. Pyatenko, Z. Swiatkowska-Warkocka, Y. Bando, and D. Golberg, “Size-tailored ZnO submicrometer spheres: Bottom-up construction, size-related optical extinction, and selective aniline trapping,” Adv. Mater.23(16), 1865–1870 (2011).
[CrossRef] [PubMed]

Jin, L.

Y. Tian, X. Ma, L. Jin, and D. Yang, “Electrically pumped ultraviolet random lasing from ZnO films: Compensation between optical gain and light scattering,” Appl. Phys. Lett.97(25), 251115 (2010).
[CrossRef]

Kang, B. K.

S. Y. Moon, W. Choe, and B. K. Kang, “A uniform glow discharge plasma source at atmospheric pressure,” Appl. Phys. Lett.84(2), 188–190 (2004).
[CrossRef]

Kang, T. W.

S. W. Lee, H. D. Cho, G. Panin, and T. W. Kang, “Vertical ZnO nanorod/Si contact light-emitting diode,” Appl. Phys. Lett.98(9), 093110 (2011).
[CrossRef]

Kawaguchi, K.

H. Wang, N. Koshizaki, L. Li, L. Jia, K. Kawaguchi, X. Li, A. Pyatenko, Z. Swiatkowska-Warkocka, Y. Bando, and D. Golberg, “Size-tailored ZnO submicrometer spheres: Bottom-up construction, size-related optical extinction, and selective aniline trapping,” Adv. Mater.23(16), 1865–1870 (2011).
[CrossRef] [PubMed]

Kind, H.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Koshizaki, N.

K. Okazaki, T. Shimogaki, K. Fusazaki, M. Higashihata, D. Nakamura, N. Koshizaki, and T. Okada, “Ultraviolet whispering-gallery-mode lasing in ZnO micro/nano sphere crystal,” Appl. Phys. Lett.101(21), 211105 (2012).
[CrossRef]

H. Wang, N. Koshizaki, L. Li, L. Jia, K. Kawaguchi, X. Li, A. Pyatenko, Z. Swiatkowska-Warkocka, Y. Bando, and D. Golberg, “Size-tailored ZnO submicrometer spheres: Bottom-up construction, size-related optical extinction, and selective aniline trapping,” Adv. Mater.23(16), 1865–1870 (2011).
[CrossRef] [PubMed]

Lau, S. P.

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett.84(17), 3241–3243 (2004).
[CrossRef]

S. F. Yu, C. Yuen, S. P. Lau, and H. W. Lee, “Zinc oxide thin-film random lasers on silicon substrate,” Appl. Phys. Lett.84(17), 3244–3246 (2004).
[CrossRef]

Lee, H. W.

S. F. Yu, C. Yuen, S. P. Lau, and H. W. Lee, “Zinc oxide thin-film random lasers on silicon substrate,” Appl. Phys. Lett.84(17), 3244–3246 (2004).
[CrossRef]

Lee, S. W.

S. W. Lee, H. D. Cho, G. Panin, and T. W. Kang, “Vertical ZnO nanorod/Si contact light-emitting diode,” Appl. Phys. Lett.98(9), 093110 (2011).
[CrossRef]

Leong, E. S. P.

E. S. P. Leong and S. F. Yu, “UV random lasing action in p-SiC(4H)/i-ZnO–SiO2 nanocomposite/n-ZnO:Al heterojunction diodes,” Adv. Mater.18(13), 1685–1688 (2006).
[CrossRef]

Leung, Y. H.

A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small2(8-9), 944–961 (2006).
[CrossRef] [PubMed]

Li, B. H.

H. Zhu, C. X. Shan, J. Y. Zhang, Z. Z. Zhang, B. H. Li, D. X. Zhao, B. Yao, D. Z. Shen, X. W. Fan, Z. K. Tang, X. Hou, and K. L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater.22(16), 1877–1881 (2010).
[CrossRef] [PubMed]

Li, D.

P. Chen, X. Ma, D. Li, Y. Zhang, and D. Yang, “Electrically pumped ultraviolet random lasing from ZnO-based metal-insulator-semiconductor devices: Dependence on carrier transport,” Opt. Express17(6), 4712–4717 (2009).
[CrossRef] [PubMed]

X. Ma, P. Chen, D. Li, Y. Zhang, and D. Yang, “Electrically pumped ZnO film ultraviolet random lasers on silicon substrate,” Appl. Phys. Lett.91(25), 251109 (2007).
[CrossRef]

Li, L.

H. Wang, N. Koshizaki, L. Li, L. Jia, K. Kawaguchi, X. Li, A. Pyatenko, Z. Swiatkowska-Warkocka, Y. Bando, and D. Golberg, “Size-tailored ZnO submicrometer spheres: Bottom-up construction, size-related optical extinction, and selective aniline trapping,” Adv. Mater.23(16), 1865–1870 (2011).
[CrossRef] [PubMed]

Li, X.

H. Wang, N. Koshizaki, L. Li, L. Jia, K. Kawaguchi, X. Li, A. Pyatenko, Z. Swiatkowska-Warkocka, Y. Bando, and D. Golberg, “Size-tailored ZnO submicrometer spheres: Bottom-up construction, size-related optical extinction, and selective aniline trapping,” Adv. Mater.23(16), 1865–1870 (2011).
[CrossRef] [PubMed]

Lupan, O.

O. Lupan, T. Pauporté, and B. Viana, “Low-temperature growth of ZnO nanowire arrays on p-Silicon (111) for visible-light-emitting diode fabrication,” J. Phys. Chem. C114(35), 14781–14785 (2010).
[CrossRef]

Ma, X.

Y. Tian, X. Ma, L. Jin, and D. Yang, “Electrically pumped ultraviolet random lasing from ZnO films: Compensation between optical gain and light scattering,” Appl. Phys. Lett.97(25), 251115 (2010).
[CrossRef]

P. Chen, X. Ma, D. Li, Y. Zhang, and D. Yang, “Electrically pumped ultraviolet random lasing from ZnO-based metal-insulator-semiconductor devices: Dependence on carrier transport,” Opt. Express17(6), 4712–4717 (2009).
[CrossRef] [PubMed]

X. Ma, P. Chen, D. Li, Y. Zhang, and D. Yang, “Electrically pumped ZnO film ultraviolet random lasers on silicon substrate,” Appl. Phys. Lett.91(25), 251109 (2007).
[CrossRef]

P. Chen, X. Ma, and D. Yang, “Fairly pure ultraviolet electroluminescence from ZnO-based light-emitting devices,” Appl. Phys. Lett.89(11), 111112 (2006).
[CrossRef]

Mao, S.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Moon, S. Y.

S. Y. Moon, W. Choe, and B. K. Kang, “A uniform glow discharge plasma source at atmospheric pressure,” Appl. Phys. Lett.84(2), 188–190 (2004).
[CrossRef]

Nakamura, D.

K. Okazaki, T. Shimogaki, K. Fusazaki, M. Higashihata, D. Nakamura, N. Koshizaki, and T. Okada, “Ultraviolet whispering-gallery-mode lasing in ZnO micro/nano sphere crystal,” Appl. Phys. Lett.101(21), 211105 (2012).
[CrossRef]

Nakamura, S.

S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science281(5379), 956–961 (1998).
[CrossRef] [PubMed]

Okada, T.

K. Okazaki, T. Shimogaki, K. Fusazaki, M. Higashihata, D. Nakamura, N. Koshizaki, and T. Okada, “Ultraviolet whispering-gallery-mode lasing in ZnO micro/nano sphere crystal,” Appl. Phys. Lett.101(21), 211105 (2012).
[CrossRef]

Okazaki, K.

K. Okazaki, T. Shimogaki, K. Fusazaki, M. Higashihata, D. Nakamura, N. Koshizaki, and T. Okada, “Ultraviolet whispering-gallery-mode lasing in ZnO micro/nano sphere crystal,” Appl. Phys. Lett.101(21), 211105 (2012).
[CrossRef]

Ong, H. C.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998).
[CrossRef]

Panin, G.

S. W. Lee, H. D. Cho, G. Panin, and T. W. Kang, “Vertical ZnO nanorod/Si contact light-emitting diode,” Appl. Phys. Lett.98(9), 093110 (2011).
[CrossRef]

Park, W. I.

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett.84(17), 3241–3243 (2004).
[CrossRef]

Pauporté, T.

O. Lupan, T. Pauporté, and B. Viana, “Low-temperature growth of ZnO nanowire arrays on p-Silicon (111) for visible-light-emitting diode fabrication,” J. Phys. Chem. C114(35), 14781–14785 (2010).
[CrossRef]

Pyatenko, A.

H. Wang, N. Koshizaki, L. Li, L. Jia, K. Kawaguchi, X. Li, A. Pyatenko, Z. Swiatkowska-Warkocka, Y. Bando, and D. Golberg, “Size-tailored ZnO submicrometer spheres: Bottom-up construction, size-related optical extinction, and selective aniline trapping,” Adv. Mater.23(16), 1865–1870 (2011).
[CrossRef] [PubMed]

Russo, R.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Sha, J. A.

Y. J. Fang, Y. W. Wang, Y. T. Wan, Z. L. Wang, and J. A. Sha, “Detailed study on photoluminescence property and growth mechanism of ZnO nanowire arrays grown by thermal evaporation,” J. Phys. Chem. C114(29), 12469–12476 (2010).
[CrossRef]

Shan, C. X.

H. Zhu, C. X. Shan, J. Y. Zhang, Z. Z. Zhang, B. H. Li, D. X. Zhao, B. Yao, D. Z. Shen, X. W. Fan, Z. K. Tang, X. Hou, and K. L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater.22(16), 1877–1881 (2010).
[CrossRef] [PubMed]

Shen, D. Z.

H. Zhu, C. X. Shan, J. Y. Zhang, Z. Z. Zhang, B. H. Li, D. X. Zhao, B. Yao, D. Z. Shen, X. W. Fan, Z. K. Tang, X. Hou, and K. L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater.22(16), 1877–1881 (2010).
[CrossRef] [PubMed]

Shimogaki, T.

K. Okazaki, T. Shimogaki, K. Fusazaki, M. Higashihata, D. Nakamura, N. Koshizaki, and T. Okada, “Ultraviolet whispering-gallery-mode lasing in ZnO micro/nano sphere crystal,” Appl. Phys. Lett.101(21), 211105 (2012).
[CrossRef]

Swiatkowska-Warkocka, Z.

H. Wang, N. Koshizaki, L. Li, L. Jia, K. Kawaguchi, X. Li, A. Pyatenko, Z. Swiatkowska-Warkocka, Y. Bando, and D. Golberg, “Size-tailored ZnO submicrometer spheres: Bottom-up construction, size-related optical extinction, and selective aniline trapping,” Adv. Mater.23(16), 1865–1870 (2011).
[CrossRef] [PubMed]

Tang, Z. K.

H. Zhu, C. X. Shan, J. Y. Zhang, Z. Z. Zhang, B. H. Li, D. X. Zhao, B. Yao, D. Z. Shen, X. W. Fan, Z. K. Tang, X. Hou, and K. L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater.22(16), 1877–1881 (2010).
[CrossRef] [PubMed]

Tian, Y.

Y. Tian, X. Ma, L. Jin, and D. Yang, “Electrically pumped ultraviolet random lasing from ZnO films: Compensation between optical gain and light scattering,” Appl. Phys. Lett.97(25), 251115 (2010).
[CrossRef]

Viana, B.

O. Lupan, T. Pauporté, and B. Viana, “Low-temperature growth of ZnO nanowire arrays on p-Silicon (111) for visible-light-emitting diode fabrication,” J. Phys. Chem. C114(35), 14781–14785 (2010).
[CrossRef]

Wan, Y. T.

Y. J. Fang, Y. W. Wang, Y. T. Wan, Z. L. Wang, and J. A. Sha, “Detailed study on photoluminescence property and growth mechanism of ZnO nanowire arrays grown by thermal evaporation,” J. Phys. Chem. C114(29), 12469–12476 (2010).
[CrossRef]

Wang, H.

H. Wang, N. Koshizaki, L. Li, L. Jia, K. Kawaguchi, X. Li, A. Pyatenko, Z. Swiatkowska-Warkocka, Y. Bando, and D. Golberg, “Size-tailored ZnO submicrometer spheres: Bottom-up construction, size-related optical extinction, and selective aniline trapping,” Adv. Mater.23(16), 1865–1870 (2011).
[CrossRef] [PubMed]

Wang, Y. W.

Y. J. Fang, Y. W. Wang, Y. T. Wan, Z. L. Wang, and J. A. Sha, “Detailed study on photoluminescence property and growth mechanism of ZnO nanowire arrays grown by thermal evaporation,” J. Phys. Chem. C114(29), 12469–12476 (2010).
[CrossRef]

Wang, Z. L.

Y. J. Fang, Y. W. Wang, Y. T. Wan, Z. L. Wang, and J. A. Sha, “Detailed study on photoluminescence property and growth mechanism of ZnO nanowire arrays grown by thermal evaporation,” J. Phys. Chem. C114(29), 12469–12476 (2010).
[CrossRef]

Weber, E.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Wu, J. Y.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998).
[CrossRef]

Wu, Y. Y.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Yan, H. Q.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Yang, D.

Y. Tian, X. Ma, L. Jin, and D. Yang, “Electrically pumped ultraviolet random lasing from ZnO films: Compensation between optical gain and light scattering,” Appl. Phys. Lett.97(25), 251115 (2010).
[CrossRef]

P. Chen, X. Ma, D. Li, Y. Zhang, and D. Yang, “Electrically pumped ultraviolet random lasing from ZnO-based metal-insulator-semiconductor devices: Dependence on carrier transport,” Opt. Express17(6), 4712–4717 (2009).
[CrossRef] [PubMed]

X. Ma, P. Chen, D. Li, Y. Zhang, and D. Yang, “Electrically pumped ZnO film ultraviolet random lasers on silicon substrate,” Appl. Phys. Lett.91(25), 251109 (2007).
[CrossRef]

P. Chen, X. Ma, and D. Yang, “Fairly pure ultraviolet electroluminescence from ZnO-based light-emitting devices,” Appl. Phys. Lett.89(11), 111112 (2006).
[CrossRef]

Yang, P. D.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Yao, B.

H. Zhu, C. X. Shan, J. Y. Zhang, Z. Z. Zhang, B. H. Li, D. X. Zhao, B. Yao, D. Z. Shen, X. W. Fan, Z. K. Tang, X. Hou, and K. L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater.22(16), 1877–1881 (2010).
[CrossRef] [PubMed]

Yi, G. C.

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett.84(17), 3241–3243 (2004).
[CrossRef]

Yu, S. F.

E. S. P. Leong and S. F. Yu, “UV random lasing action in p-SiC(4H)/i-ZnO–SiO2 nanocomposite/n-ZnO:Al heterojunction diodes,” Adv. Mater.18(13), 1685–1688 (2006).
[CrossRef]

S. F. Yu, C. Yuen, S. P. Lau, and H. W. Lee, “Zinc oxide thin-film random lasers on silicon substrate,” Appl. Phys. Lett.84(17), 3244–3246 (2004).
[CrossRef]

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett.84(17), 3241–3243 (2004).
[CrossRef]

Yuen, C.

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett.84(17), 3241–3243 (2004).
[CrossRef]

S. F. Yu, C. Yuen, S. P. Lau, and H. W. Lee, “Zinc oxide thin-film random lasers on silicon substrate,” Appl. Phys. Lett.84(17), 3244–3246 (2004).
[CrossRef]

Zhang, J. Y.

H. Zhu, C. X. Shan, J. Y. Zhang, Z. Z. Zhang, B. H. Li, D. X. Zhao, B. Yao, D. Z. Shen, X. W. Fan, Z. K. Tang, X. Hou, and K. L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater.22(16), 1877–1881 (2010).
[CrossRef] [PubMed]

Zhang, Y.

P. Chen, X. Ma, D. Li, Y. Zhang, and D. Yang, “Electrically pumped ultraviolet random lasing from ZnO-based metal-insulator-semiconductor devices: Dependence on carrier transport,” Opt. Express17(6), 4712–4717 (2009).
[CrossRef] [PubMed]

X. Ma, P. Chen, D. Li, Y. Zhang, and D. Yang, “Electrically pumped ZnO film ultraviolet random lasers on silicon substrate,” Appl. Phys. Lett.91(25), 251109 (2007).
[CrossRef]

Zhang, Z. Z.

H. Zhu, C. X. Shan, J. Y. Zhang, Z. Z. Zhang, B. H. Li, D. X. Zhao, B. Yao, D. Z. Shen, X. W. Fan, Z. K. Tang, X. Hou, and K. L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater.22(16), 1877–1881 (2010).
[CrossRef] [PubMed]

Zhao, D. X.

H. Zhu, C. X. Shan, J. Y. Zhang, Z. Z. Zhang, B. H. Li, D. X. Zhao, B. Yao, D. Z. Shen, X. W. Fan, Z. K. Tang, X. Hou, and K. L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater.22(16), 1877–1881 (2010).
[CrossRef] [PubMed]

Zhao, Y. G.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998).
[CrossRef]

Zhu, H.

H. Zhu, C. X. Shan, J. Y. Zhang, Z. Z. Zhang, B. H. Li, D. X. Zhao, B. Yao, D. Z. Shen, X. W. Fan, Z. K. Tang, X. Hou, and K. L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater.22(16), 1877–1881 (2010).
[CrossRef] [PubMed]

Adv. Mater. (3)

H. Zhu, C. X. Shan, J. Y. Zhang, Z. Z. Zhang, B. H. Li, D. X. Zhao, B. Yao, D. Z. Shen, X. W. Fan, Z. K. Tang, X. Hou, and K. L. Choy, “Low-threshold electrically pumped random lasers,” Adv. Mater.22(16), 1877–1881 (2010).
[CrossRef] [PubMed]

E. S. P. Leong and S. F. Yu, “UV random lasing action in p-SiC(4H)/i-ZnO–SiO2 nanocomposite/n-ZnO:Al heterojunction diodes,” Adv. Mater.18(13), 1685–1688 (2006).
[CrossRef]

H. Wang, N. Koshizaki, L. Li, L. Jia, K. Kawaguchi, X. Li, A. Pyatenko, Z. Swiatkowska-Warkocka, Y. Bando, and D. Golberg, “Size-tailored ZnO submicrometer spheres: Bottom-up construction, size-related optical extinction, and selective aniline trapping,” Adv. Mater.23(16), 1865–1870 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (9)

S. W. Lee, H. D. Cho, G. Panin, and T. W. Kang, “Vertical ZnO nanorod/Si contact light-emitting diode,” Appl. Phys. Lett.98(9), 093110 (2011).
[CrossRef]

S. Y. Moon, W. Choe, and B. K. Kang, “A uniform glow discharge plasma source at atmospheric pressure,” Appl. Phys. Lett.84(2), 188–190 (2004).
[CrossRef]

P. Chen, X. Ma, and D. Yang, “Fairly pure ultraviolet electroluminescence from ZnO-based light-emitting devices,” Appl. Phys. Lett.89(11), 111112 (2006).
[CrossRef]

X. Ma, P. Chen, D. Li, Y. Zhang, and D. Yang, “Electrically pumped ZnO film ultraviolet random lasers on silicon substrate,” Appl. Phys. Lett.91(25), 251109 (2007).
[CrossRef]

Y. Tian, X. Ma, L. Jin, and D. Yang, “Electrically pumped ultraviolet random lasing from ZnO films: Compensation between optical gain and light scattering,” Appl. Phys. Lett.97(25), 251115 (2010).
[CrossRef]

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998).
[CrossRef]

S. F. Yu, C. Yuen, S. P. Lau, and H. W. Lee, “Zinc oxide thin-film random lasers on silicon substrate,” Appl. Phys. Lett.84(17), 3244–3246 (2004).
[CrossRef]

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett.84(17), 3241–3243 (2004).
[CrossRef]

K. Okazaki, T. Shimogaki, K. Fusazaki, M. Higashihata, D. Nakamura, N. Koshizaki, and T. Okada, “Ultraviolet whispering-gallery-mode lasing in ZnO micro/nano sphere crystal,” Appl. Phys. Lett.101(21), 211105 (2012).
[CrossRef]

J. Phys. Chem. C (2)

O. Lupan, T. Pauporté, and B. Viana, “Low-temperature growth of ZnO nanowire arrays on p-Silicon (111) for visible-light-emitting diode fabrication,” J. Phys. Chem. C114(35), 14781–14785 (2010).
[CrossRef]

Y. J. Fang, Y. W. Wang, Y. T. Wan, Z. L. Wang, and J. A. Sha, “Detailed study on photoluminescence property and growth mechanism of ZnO nanowire arrays grown by thermal evaporation,” J. Phys. Chem. C114(29), 12469–12476 (2010).
[CrossRef]

Opt. Express (1)

Science (2)

S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science281(5379), 956–961 (1998).
[CrossRef] [PubMed]

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Small (1)

A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small2(8-9), 944–961 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the FTO/insulator/n-ZnO/p+-Si device. (b) Room temperature PL spectrum of the as-grown ZnO film. The inset shows the top-view SEM image of the ZnO film grown with the precursor concentration of 0.05 M. The scale bar is 1 μm.

Fig. 2
Fig. 2

Room temperature EL spectra of the FTO/insulator/n-ZnO/p+-Si devices under different forward bias voltages with PMMA as the insulating layer.

Fig. 3
Fig. 3

Typical top-view SEM images of (a) FTO glass and (b) SiOx-coated ZnO film before the glow discharge, and of the SiOx patterns attached on (c) the FTO glass and (d) the surface of the ZnO film after the glow discharge. The inset of (c) is an enlarged version of the same sample.

Fig. 4
Fig. 4

Room temperature EL spectra of the ZnO-based light-emitting devices under different forward bias voltages. The devices are prepared by placing bare ZnO film directly on (a) bare FTO glass, (b) PMMA porous pattern attached FTO glass, (c) SiOx porous pattern attached FTO glass, and (d) by placing the SiOx coated ZnO film on SiOx porous pattern attached FTO glass. The inset of (a) is the plane-view SEM image of the ZnO film grown with the precursor concentration of 0.1 M. The scale bar is 1 μm.

Fig. 5
Fig. 5

(a) Schematic energy band alignment of the FTO/insulator/n-ZnO/p+-Si device under forward bias. (b) Schematic illustrates the formation mechanism of RL.

Metrics