Abstract

We investigate holographic optical trapping combined with step-and-repeat maskless projection stereolithography for fine control of 3D position of living cells within a 3D microstructured hydrogel. C2C12 myoblast cells were chosen as a demonstration platform since their development into multinucleated myotubes requires linear arrangements of myoblasts. C2C12 cells are positioned in the monomer solution with multiple optical traps at 1064 nm and then encapsulated by photopolymerization of monomer via projection of a 512x512 spatial light modulator illuminated at 405 nm. High 405 nm sensitivity and complete insensitivity to 1064 nm was enabled by a lithium acylphosphinate (LAP) salt photoinitiator. These wavelengths, in addition to brightfield imaging with a white light LED, could be simultaneously focused by a single oil immersion objective. Large lateral dimensions of the patterned gel/cell structure are achieved by x and y step-and-repeat process. Large thickness is achieved through multi-layer stereolithography, allowing fabrication of precisely-arranged 3D live cell scaffolds with micron-scale structure and millimeter dimensions. Cells are shown to retain viability after the trapping and encapsulation procedure.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. James, R. Davis, M. Meyer, A. Turner, S. Turner, G. Withers, L. Kam, G. Banker, H. Craighead, M. Isaacson, J. Turner, and W. Shain, “Aligned microcontact printing of micrometer-scale poly-L-lysine structures for controlled growth of cultured neurons on planar microelectrode arrays,” IEEE Trans. Biomed. Eng.47(1), 17–21 (2000).
    [CrossRef] [PubMed]
  2. S. B. Jun, M. R. Hynd, N. Dowell-Mesfin, K. L. Smith, J. N. Turner, W. Shain, and S. J. Kim, “Low-density neuronal networks cultured using patterned poly-l-lysine on microelectrode arrays,” J. Neurosci. Methods160(2), 317–326 (2007).
    [CrossRef] [PubMed]
  3. D. W. Branch, B. C. Wheeler, G. J. Brewer, and D. E. Leckband, “Long-term maintenance of patterns of hippocampal pyramidal cells on substrates of polyethylene glycol and microstamped polylysine,” IEEE Trans. Biomed. Eng.47(3), 290–300 (2000).
    [CrossRef] [PubMed]
  4. V. L. Tsang and S. N. Bhatia, “Three-dimensional tissue fabrication,” Adv. Drug Deliv. Rev.56(11), 1635–1647 (2004).
    [CrossRef] [PubMed]
  5. U. Mirsaidov, J. Scrimgeour, W. Timp, K. Beck, M. Mir, P. Matsudaira, and G. Timp, “Live cell lithography: using optical tweezers to create synthetic tissue,” Lab Chip8(12), 2174–2181 (2008).
    [CrossRef] [PubMed]
  6. G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt.51(3), 409–414 (2004).
    [CrossRef]
  7. K. T. Nguyen and J. L. West, “Photopolymerizable hydrogels for tissue engineering applications,” Biomaterials23(22), 4307–4314 (2002).
    [CrossRef] [PubMed]
  8. D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, and M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express17(25), 22718–22725 (2009).
    [CrossRef] [PubMed]
  9. G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum.83(11), 113107 (2012).
    [CrossRef] [PubMed]
  10. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun.185(1-3), 77–82 (2000).
    [CrossRef]
  11. G. Sinclair, J. Leach, P. Jordan, G. Gibson, E. Yao, Z. Laczik, M. Padgett, and J. Courtial, “Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping,” Opt. Express12(8), 1665–1670 (2004).
    [CrossRef] [PubMed]
  12. S. J. Bryant, C. R. Nuttelman, and K. S. Anseth, “Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro,” J. Biomat. Sci. Polym. E.11(5), 439–457 (2000).
  13. H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J.70(3), 1529–1533 (1996).
    [CrossRef] [PubMed]
  14. C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuat. A.121, 113–120 (2005).
  15. R. Gauvin, Y. C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, H. Bae, S. Chen, and A. Khademhosseini, “Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography,” Biomaterials33(15), 3824–3834 (2012).
    [CrossRef] [PubMed]
  16. B. D. Fairbanks, M. P. Schwartz, C. N. Bowman, and K. S. Anseth, “Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility,” Biomaterials30(35), 6702–6707 (2009).
    [CrossRef] [PubMed]
  17. A. S. Sawhney, C. P. Pathak, and J. A. Hubbell, “Bioerodible hydrogels based on photopolymerized poly (ethylene glycol)-co-poly (. alpha.-hydroxy acid) diacrylate macromers,” Macromolecules26(4), 581–587 (1993).
    [CrossRef]
  18. S. J. Bryant, C. R. Nuttelman, and K. S. Anseth, “Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro,” J. Biomat. Sci. Polym. E.11, 439–457 (2000).
  19. C. G. Williams, A. N. Malik, T. K. Kim, P. N. Manson, and J. H. Elisseeff, “Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation,” Biomaterials26(11), 1211–1218 (2005).
    [CrossRef] [PubMed]
  20. N. E. Fedorovich, M. H. Oudshoorn, D. van Geemen, W. E. Hennink, J. Alblas, and W. J. A. Dhert, “The effect of photopolymerization on stem cells embedded in hydrogels,” Biomaterials30(3), 344–353 (2009).
    [CrossRef] [PubMed]
  21. A. C. Urness, M. C. Cole, K. K. Kamysiak, E. R. Moore, and R. R. McLeod “Liquid deposition photolithography for submicrometer resolution three-dimensional index structuring with large throughput,” Light Sci. Appl. 2 (2013).
  22. E. Eriksson, J. Scrimgeour, A. Graneli, K. Ramser, R. Wellander, J. Enger, D. Hanstorp, and M. Goksör, “Optical manipulation and microfluidics for studies of single cell dynamics,” J. Opt. A, Pure Appl. Opt.9(8), S113–S121 (2007).
    [CrossRef]

2013 (1)

A. C. Urness, M. C. Cole, K. K. Kamysiak, E. R. Moore, and R. R. McLeod “Liquid deposition photolithography for submicrometer resolution three-dimensional index structuring with large throughput,” Light Sci. Appl. 2 (2013).

2012 (2)

R. Gauvin, Y. C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, H. Bae, S. Chen, and A. Khademhosseini, “Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography,” Biomaterials33(15), 3824–3834 (2012).
[CrossRef] [PubMed]

G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum.83(11), 113107 (2012).
[CrossRef] [PubMed]

2009 (3)

D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, and M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express17(25), 22718–22725 (2009).
[CrossRef] [PubMed]

B. D. Fairbanks, M. P. Schwartz, C. N. Bowman, and K. S. Anseth, “Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility,” Biomaterials30(35), 6702–6707 (2009).
[CrossRef] [PubMed]

N. E. Fedorovich, M. H. Oudshoorn, D. van Geemen, W. E. Hennink, J. Alblas, and W. J. A. Dhert, “The effect of photopolymerization on stem cells embedded in hydrogels,” Biomaterials30(3), 344–353 (2009).
[CrossRef] [PubMed]

2008 (1)

U. Mirsaidov, J. Scrimgeour, W. Timp, K. Beck, M. Mir, P. Matsudaira, and G. Timp, “Live cell lithography: using optical tweezers to create synthetic tissue,” Lab Chip8(12), 2174–2181 (2008).
[CrossRef] [PubMed]

2007 (2)

S. B. Jun, M. R. Hynd, N. Dowell-Mesfin, K. L. Smith, J. N. Turner, W. Shain, and S. J. Kim, “Low-density neuronal networks cultured using patterned poly-l-lysine on microelectrode arrays,” J. Neurosci. Methods160(2), 317–326 (2007).
[CrossRef] [PubMed]

E. Eriksson, J. Scrimgeour, A. Graneli, K. Ramser, R. Wellander, J. Enger, D. Hanstorp, and M. Goksör, “Optical manipulation and microfluidics for studies of single cell dynamics,” J. Opt. A, Pure Appl. Opt.9(8), S113–S121 (2007).
[CrossRef]

2005 (2)

C. G. Williams, A. N. Malik, T. K. Kim, P. N. Manson, and J. H. Elisseeff, “Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation,” Biomaterials26(11), 1211–1218 (2005).
[CrossRef] [PubMed]

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuat. A.121, 113–120 (2005).

2004 (3)

V. L. Tsang and S. N. Bhatia, “Three-dimensional tissue fabrication,” Adv. Drug Deliv. Rev.56(11), 1635–1647 (2004).
[CrossRef] [PubMed]

G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt.51(3), 409–414 (2004).
[CrossRef]

G. Sinclair, J. Leach, P. Jordan, G. Gibson, E. Yao, Z. Laczik, M. Padgett, and J. Courtial, “Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping,” Opt. Express12(8), 1665–1670 (2004).
[CrossRef] [PubMed]

2002 (1)

K. T. Nguyen and J. L. West, “Photopolymerizable hydrogels for tissue engineering applications,” Biomaterials23(22), 4307–4314 (2002).
[CrossRef] [PubMed]

2000 (5)

S. J. Bryant, C. R. Nuttelman, and K. S. Anseth, “Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro,” J. Biomat. Sci. Polym. E.11(5), 439–457 (2000).

C. D. James, R. Davis, M. Meyer, A. Turner, S. Turner, G. Withers, L. Kam, G. Banker, H. Craighead, M. Isaacson, J. Turner, and W. Shain, “Aligned microcontact printing of micrometer-scale poly-L-lysine structures for controlled growth of cultured neurons on planar microelectrode arrays,” IEEE Trans. Biomed. Eng.47(1), 17–21 (2000).
[CrossRef] [PubMed]

D. W. Branch, B. C. Wheeler, G. J. Brewer, and D. E. Leckband, “Long-term maintenance of patterns of hippocampal pyramidal cells on substrates of polyethylene glycol and microstamped polylysine,” IEEE Trans. Biomed. Eng.47(3), 290–300 (2000).
[CrossRef] [PubMed]

S. J. Bryant, C. R. Nuttelman, and K. S. Anseth, “Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro,” J. Biomat. Sci. Polym. E.11, 439–457 (2000).

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun.185(1-3), 77–82 (2000).
[CrossRef]

1996 (1)

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J.70(3), 1529–1533 (1996).
[CrossRef] [PubMed]

1993 (1)

A. S. Sawhney, C. P. Pathak, and J. A. Hubbell, “Bioerodible hydrogels based on photopolymerized poly (ethylene glycol)-co-poly (. alpha.-hydroxy acid) diacrylate macromers,” Macromolecules26(4), 581–587 (1993).
[CrossRef]

Alblas, J.

N. E. Fedorovich, M. H. Oudshoorn, D. van Geemen, W. E. Hennink, J. Alblas, and W. J. A. Dhert, “The effect of photopolymerization on stem cells embedded in hydrogels,” Biomaterials30(3), 344–353 (2009).
[CrossRef] [PubMed]

Anseth, K. S.

B. D. Fairbanks, M. P. Schwartz, C. N. Bowman, and K. S. Anseth, “Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility,” Biomaterials30(35), 6702–6707 (2009).
[CrossRef] [PubMed]

S. J. Bryant, C. R. Nuttelman, and K. S. Anseth, “Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro,” J. Biomat. Sci. Polym. E.11(5), 439–457 (2000).

S. J. Bryant, C. R. Nuttelman, and K. S. Anseth, “Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro,” J. Biomat. Sci. Polym. E.11, 439–457 (2000).

Bae, H.

R. Gauvin, Y. C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, H. Bae, S. Chen, and A. Khademhosseini, “Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography,” Biomaterials33(15), 3824–3834 (2012).
[CrossRef] [PubMed]

Banker, G.

C. D. James, R. Davis, M. Meyer, A. Turner, S. Turner, G. Withers, L. Kam, G. Banker, H. Craighead, M. Isaacson, J. Turner, and W. Shain, “Aligned microcontact printing of micrometer-scale poly-L-lysine structures for controlled growth of cultured neurons on planar microelectrode arrays,” IEEE Trans. Biomed. Eng.47(1), 17–21 (2000).
[CrossRef] [PubMed]

Beck, K.

U. Mirsaidov, J. Scrimgeour, W. Timp, K. Beck, M. Mir, P. Matsudaira, and G. Timp, “Live cell lithography: using optical tweezers to create synthetic tissue,” Lab Chip8(12), 2174–2181 (2008).
[CrossRef] [PubMed]

Berns, M. W.

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J.70(3), 1529–1533 (1996).
[CrossRef] [PubMed]

Bhatia, S. N.

V. L. Tsang and S. N. Bhatia, “Three-dimensional tissue fabrication,” Adv. Drug Deliv. Rev.56(11), 1635–1647 (2004).
[CrossRef] [PubMed]

Bowman, C. N.

B. D. Fairbanks, M. P. Schwartz, C. N. Bowman, and K. S. Anseth, “Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility,” Biomaterials30(35), 6702–6707 (2009).
[CrossRef] [PubMed]

Bowman, R.

Bowman, R. W.

G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum.83(11), 113107 (2012).
[CrossRef] [PubMed]

Branch, D. W.

D. W. Branch, B. C. Wheeler, G. J. Brewer, and D. E. Leckband, “Long-term maintenance of patterns of hippocampal pyramidal cells on substrates of polyethylene glycol and microstamped polylysine,” IEEE Trans. Biomed. Eng.47(3), 290–300 (2000).
[CrossRef] [PubMed]

Brewer, G. J.

D. W. Branch, B. C. Wheeler, G. J. Brewer, and D. E. Leckband, “Long-term maintenance of patterns of hippocampal pyramidal cells on substrates of polyethylene glycol and microstamped polylysine,” IEEE Trans. Biomed. Eng.47(3), 290–300 (2000).
[CrossRef] [PubMed]

Bryant, S. J.

S. J. Bryant, C. R. Nuttelman, and K. S. Anseth, “Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro,” J. Biomat. Sci. Polym. E.11(5), 439–457 (2000).

S. J. Bryant, C. R. Nuttelman, and K. S. Anseth, “Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro,” J. Biomat. Sci. Polym. E.11, 439–457 (2000).

Carberry, D. M.

G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum.83(11), 113107 (2012).
[CrossRef] [PubMed]

Chen, S.

R. Gauvin, Y. C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, H. Bae, S. Chen, and A. Khademhosseini, “Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography,” Biomaterials33(15), 3824–3834 (2012).
[CrossRef] [PubMed]

Chen, Y. C.

R. Gauvin, Y. C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, H. Bae, S. Chen, and A. Khademhosseini, “Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography,” Biomaterials33(15), 3824–3834 (2012).
[CrossRef] [PubMed]

Cole, M. C.

A. C. Urness, M. C. Cole, K. K. Kamysiak, E. R. Moore, and R. R. McLeod “Liquid deposition photolithography for submicrometer resolution three-dimensional index structuring with large throughput,” Light Sci. Appl. 2 (2013).

Cooper, J.

G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt.51(3), 409–414 (2004).
[CrossRef]

Courtial, J.

Craighead, H.

C. D. James, R. Davis, M. Meyer, A. Turner, S. Turner, G. Withers, L. Kam, G. Banker, H. Craighead, M. Isaacson, J. Turner, and W. Shain, “Aligned microcontact printing of micrometer-scale poly-L-lysine structures for controlled growth of cultured neurons on planar microelectrode arrays,” IEEE Trans. Biomed. Eng.47(1), 17–21 (2000).
[CrossRef] [PubMed]

Davis, R.

C. D. James, R. Davis, M. Meyer, A. Turner, S. Turner, G. Withers, L. Kam, G. Banker, H. Craighead, M. Isaacson, J. Turner, and W. Shain, “Aligned microcontact printing of micrometer-scale poly-L-lysine structures for controlled growth of cultured neurons on planar microelectrode arrays,” IEEE Trans. Biomed. Eng.47(1), 17–21 (2000).
[CrossRef] [PubMed]

Dhert, W. J. A.

N. E. Fedorovich, M. H. Oudshoorn, D. van Geemen, W. E. Hennink, J. Alblas, and W. J. A. Dhert, “The effect of photopolymerization on stem cells embedded in hydrogels,” Biomaterials30(3), 344–353 (2009).
[CrossRef] [PubMed]

Dienerowitz, M.

G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum.83(11), 113107 (2012).
[CrossRef] [PubMed]

Dowell-Mesfin, N.

S. B. Jun, M. R. Hynd, N. Dowell-Mesfin, K. L. Smith, J. N. Turner, W. Shain, and S. J. Kim, “Low-density neuronal networks cultured using patterned poly-l-lysine on microelectrode arrays,” J. Neurosci. Methods160(2), 317–326 (2007).
[CrossRef] [PubMed]

Elisseeff, J. H.

C. G. Williams, A. N. Malik, T. K. Kim, P. N. Manson, and J. H. Elisseeff, “Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation,” Biomaterials26(11), 1211–1218 (2005).
[CrossRef] [PubMed]

Enger, J.

E. Eriksson, J. Scrimgeour, A. Graneli, K. Ramser, R. Wellander, J. Enger, D. Hanstorp, and M. Goksör, “Optical manipulation and microfluidics for studies of single cell dynamics,” J. Opt. A, Pure Appl. Opt.9(8), S113–S121 (2007).
[CrossRef]

Eriksson, E.

E. Eriksson, J. Scrimgeour, A. Graneli, K. Ramser, R. Wellander, J. Enger, D. Hanstorp, and M. Goksör, “Optical manipulation and microfluidics for studies of single cell dynamics,” J. Opt. A, Pure Appl. Opt.9(8), S113–S121 (2007).
[CrossRef]

Fairbanks, B. D.

B. D. Fairbanks, M. P. Schwartz, C. N. Bowman, and K. S. Anseth, “Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility,” Biomaterials30(35), 6702–6707 (2009).
[CrossRef] [PubMed]

Fang, N.

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuat. A.121, 113–120 (2005).

Fedorovich, N. E.

N. E. Fedorovich, M. H. Oudshoorn, D. van Geemen, W. E. Hennink, J. Alblas, and W. J. A. Dhert, “The effect of photopolymerization on stem cells embedded in hydrogels,” Biomaterials30(3), 344–353 (2009).
[CrossRef] [PubMed]

Gauvin, R.

R. Gauvin, Y. C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, H. Bae, S. Chen, and A. Khademhosseini, “Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography,” Biomaterials33(15), 3824–3834 (2012).
[CrossRef] [PubMed]

Gibson, G.

Gibson, G. M.

G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum.83(11), 113107 (2012).
[CrossRef] [PubMed]

Goksör, M.

E. Eriksson, J. Scrimgeour, A. Graneli, K. Ramser, R. Wellander, J. Enger, D. Hanstorp, and M. Goksör, “Optical manipulation and microfluidics for studies of single cell dynamics,” J. Opt. A, Pure Appl. Opt.9(8), S113–S121 (2007).
[CrossRef]

Graneli, A.

E. Eriksson, J. Scrimgeour, A. Graneli, K. Ramser, R. Wellander, J. Enger, D. Hanstorp, and M. Goksör, “Optical manipulation and microfluidics for studies of single cell dynamics,” J. Opt. A, Pure Appl. Opt.9(8), S113–S121 (2007).
[CrossRef]

Haist, T.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun.185(1-3), 77–82 (2000).
[CrossRef]

Hanstorp, D.

E. Eriksson, J. Scrimgeour, A. Graneli, K. Ramser, R. Wellander, J. Enger, D. Hanstorp, and M. Goksör, “Optical manipulation and microfluidics for studies of single cell dynamics,” J. Opt. A, Pure Appl. Opt.9(8), S113–S121 (2007).
[CrossRef]

Hennink, W. E.

N. E. Fedorovich, M. H. Oudshoorn, D. van Geemen, W. E. Hennink, J. Alblas, and W. J. A. Dhert, “The effect of photopolymerization on stem cells embedded in hydrogels,” Biomaterials30(3), 344–353 (2009).
[CrossRef] [PubMed]

Hubbell, J. A.

A. S. Sawhney, C. P. Pathak, and J. A. Hubbell, “Bioerodible hydrogels based on photopolymerized poly (ethylene glycol)-co-poly (. alpha.-hydroxy acid) diacrylate macromers,” Macromolecules26(4), 581–587 (1993).
[CrossRef]

Hynd, M. R.

S. B. Jun, M. R. Hynd, N. Dowell-Mesfin, K. L. Smith, J. N. Turner, W. Shain, and S. J. Kim, “Low-density neuronal networks cultured using patterned poly-l-lysine on microelectrode arrays,” J. Neurosci. Methods160(2), 317–326 (2007).
[CrossRef] [PubMed]

Isaacson, M.

C. D. James, R. Davis, M. Meyer, A. Turner, S. Turner, G. Withers, L. Kam, G. Banker, H. Craighead, M. Isaacson, J. Turner, and W. Shain, “Aligned microcontact printing of micrometer-scale poly-L-lysine structures for controlled growth of cultured neurons on planar microelectrode arrays,” IEEE Trans. Biomed. Eng.47(1), 17–21 (2000).
[CrossRef] [PubMed]

James, C. D.

C. D. James, R. Davis, M. Meyer, A. Turner, S. Turner, G. Withers, L. Kam, G. Banker, H. Craighead, M. Isaacson, J. Turner, and W. Shain, “Aligned microcontact printing of micrometer-scale poly-L-lysine structures for controlled growth of cultured neurons on planar microelectrode arrays,” IEEE Trans. Biomed. Eng.47(1), 17–21 (2000).
[CrossRef] [PubMed]

Jordan, P.

Jun, S. B.

S. B. Jun, M. R. Hynd, N. Dowell-Mesfin, K. L. Smith, J. N. Turner, W. Shain, and S. J. Kim, “Low-density neuronal networks cultured using patterned poly-l-lysine on microelectrode arrays,” J. Neurosci. Methods160(2), 317–326 (2007).
[CrossRef] [PubMed]

Kam, L.

C. D. James, R. Davis, M. Meyer, A. Turner, S. Turner, G. Withers, L. Kam, G. Banker, H. Craighead, M. Isaacson, J. Turner, and W. Shain, “Aligned microcontact printing of micrometer-scale poly-L-lysine structures for controlled growth of cultured neurons on planar microelectrode arrays,” IEEE Trans. Biomed. Eng.47(1), 17–21 (2000).
[CrossRef] [PubMed]

Kamysiak, K. K.

A. C. Urness, M. C. Cole, K. K. Kamysiak, E. R. Moore, and R. R. McLeod “Liquid deposition photolithography for submicrometer resolution three-dimensional index structuring with large throughput,” Light Sci. Appl. 2 (2013).

Khademhosseini, A.

R. Gauvin, Y. C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, H. Bae, S. Chen, and A. Khademhosseini, “Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography,” Biomaterials33(15), 3824–3834 (2012).
[CrossRef] [PubMed]

Kim, S. J.

S. B. Jun, M. R. Hynd, N. Dowell-Mesfin, K. L. Smith, J. N. Turner, W. Shain, and S. J. Kim, “Low-density neuronal networks cultured using patterned poly-l-lysine on microelectrode arrays,” J. Neurosci. Methods160(2), 317–326 (2007).
[CrossRef] [PubMed]

Kim, T. K.

C. G. Williams, A. N. Malik, T. K. Kim, P. N. Manson, and J. H. Elisseeff, “Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation,” Biomaterials26(11), 1211–1218 (2005).
[CrossRef] [PubMed]

Kimel, S.

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J.70(3), 1529–1533 (1996).
[CrossRef] [PubMed]

Krishnan, P.

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J.70(3), 1529–1533 (1996).
[CrossRef] [PubMed]

Laczik, Z.

Leach, J.

Leckband, D. E.

D. W. Branch, B. C. Wheeler, G. J. Brewer, and D. E. Leckband, “Long-term maintenance of patterns of hippocampal pyramidal cells on substrates of polyethylene glycol and microstamped polylysine,” IEEE Trans. Biomed. Eng.47(3), 290–300 (2000).
[CrossRef] [PubMed]

Lee, J. W.

R. Gauvin, Y. C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, H. Bae, S. Chen, and A. Khademhosseini, “Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography,” Biomaterials33(15), 3824–3834 (2012).
[CrossRef] [PubMed]

Liang, H.

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J.70(3), 1529–1533 (1996).
[CrossRef] [PubMed]

Liesener, J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun.185(1-3), 77–82 (2000).
[CrossRef]

Linnenberger, A.

G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum.83(11), 113107 (2012).
[CrossRef] [PubMed]

D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, and M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express17(25), 22718–22725 (2009).
[CrossRef] [PubMed]

Malik, A. N.

C. G. Williams, A. N. Malik, T. K. Kim, P. N. Manson, and J. H. Elisseeff, “Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation,” Biomaterials26(11), 1211–1218 (2005).
[CrossRef] [PubMed]

Manson, P. N.

C. G. Williams, A. N. Malik, T. K. Kim, P. N. Manson, and J. H. Elisseeff, “Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation,” Biomaterials26(11), 1211–1218 (2005).
[CrossRef] [PubMed]

Matsudaira, P.

U. Mirsaidov, J. Scrimgeour, W. Timp, K. Beck, M. Mir, P. Matsudaira, and G. Timp, “Live cell lithography: using optical tweezers to create synthetic tissue,” Lab Chip8(12), 2174–2181 (2008).
[CrossRef] [PubMed]

McLeod, R. R.

A. C. Urness, M. C. Cole, K. K. Kamysiak, E. R. Moore, and R. R. McLeod “Liquid deposition photolithography for submicrometer resolution three-dimensional index structuring with large throughput,” Light Sci. Appl. 2 (2013).

Meyer, M.

C. D. James, R. Davis, M. Meyer, A. Turner, S. Turner, G. Withers, L. Kam, G. Banker, H. Craighead, M. Isaacson, J. Turner, and W. Shain, “Aligned microcontact printing of micrometer-scale poly-L-lysine structures for controlled growth of cultured neurons on planar microelectrode arrays,” IEEE Trans. Biomed. Eng.47(1), 17–21 (2000).
[CrossRef] [PubMed]

Miles, M. J.

G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum.83(11), 113107 (2012).
[CrossRef] [PubMed]

Mir, M.

U. Mirsaidov, J. Scrimgeour, W. Timp, K. Beck, M. Mir, P. Matsudaira, and G. Timp, “Live cell lithography: using optical tweezers to create synthetic tissue,” Lab Chip8(12), 2174–2181 (2008).
[CrossRef] [PubMed]

Mirsaidov, U.

U. Mirsaidov, J. Scrimgeour, W. Timp, K. Beck, M. Mir, P. Matsudaira, and G. Timp, “Live cell lithography: using optical tweezers to create synthetic tissue,” Lab Chip8(12), 2174–2181 (2008).
[CrossRef] [PubMed]

Moore, E. R.

A. C. Urness, M. C. Cole, K. K. Kamysiak, E. R. Moore, and R. R. McLeod “Liquid deposition photolithography for submicrometer resolution three-dimensional index structuring with large throughput,” Light Sci. Appl. 2 (2013).

Nguyen, K. T.

K. T. Nguyen and J. L. West, “Photopolymerizable hydrogels for tissue engineering applications,” Biomaterials23(22), 4307–4314 (2002).
[CrossRef] [PubMed]

Nichol, J. W.

R. Gauvin, Y. C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, H. Bae, S. Chen, and A. Khademhosseini, “Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography,” Biomaterials33(15), 3824–3834 (2012).
[CrossRef] [PubMed]

Nuttelman, C. R.

S. J. Bryant, C. R. Nuttelman, and K. S. Anseth, “Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro,” J. Biomat. Sci. Polym. E.11, 439–457 (2000).

S. J. Bryant, C. R. Nuttelman, and K. S. Anseth, “Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro,” J. Biomat. Sci. Polym. E.11(5), 439–457 (2000).

Oudshoorn, M. H.

N. E. Fedorovich, M. H. Oudshoorn, D. van Geemen, W. E. Hennink, J. Alblas, and W. J. A. Dhert, “The effect of photopolymerization on stem cells embedded in hydrogels,” Biomaterials30(3), 344–353 (2009).
[CrossRef] [PubMed]

Padgett, M.

Padgett, M. J.

G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum.83(11), 113107 (2012).
[CrossRef] [PubMed]

G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt.51(3), 409–414 (2004).
[CrossRef]

Pathak, C. P.

A. S. Sawhney, C. P. Pathak, and J. A. Hubbell, “Bioerodible hydrogels based on photopolymerized poly (ethylene glycol)-co-poly (. alpha.-hydroxy acid) diacrylate macromers,” Macromolecules26(4), 581–587 (1993).
[CrossRef]

Phillips, D. B.

G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum.83(11), 113107 (2012).
[CrossRef] [PubMed]

Preece, D.

Ramser, K.

E. Eriksson, J. Scrimgeour, A. Graneli, K. Ramser, R. Wellander, J. Enger, D. Hanstorp, and M. Goksör, “Optical manipulation and microfluidics for studies of single cell dynamics,” J. Opt. A, Pure Appl. Opt.9(8), S113–S121 (2007).
[CrossRef]

Reicherter, M.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun.185(1-3), 77–82 (2000).
[CrossRef]

Sawhney, A. S.

A. S. Sawhney, C. P. Pathak, and J. A. Hubbell, “Bioerodible hydrogels based on photopolymerized poly (ethylene glycol)-co-poly (. alpha.-hydroxy acid) diacrylate macromers,” Macromolecules26(4), 581–587 (1993).
[CrossRef]

Schwartz, M. P.

B. D. Fairbanks, M. P. Schwartz, C. N. Bowman, and K. S. Anseth, “Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility,” Biomaterials30(35), 6702–6707 (2009).
[CrossRef] [PubMed]

Scrimgeour, J.

U. Mirsaidov, J. Scrimgeour, W. Timp, K. Beck, M. Mir, P. Matsudaira, and G. Timp, “Live cell lithography: using optical tweezers to create synthetic tissue,” Lab Chip8(12), 2174–2181 (2008).
[CrossRef] [PubMed]

E. Eriksson, J. Scrimgeour, A. Graneli, K. Ramser, R. Wellander, J. Enger, D. Hanstorp, and M. Goksör, “Optical manipulation and microfluidics for studies of single cell dynamics,” J. Opt. A, Pure Appl. Opt.9(8), S113–S121 (2007).
[CrossRef]

Serati, S.

Shain, W.

S. B. Jun, M. R. Hynd, N. Dowell-Mesfin, K. L. Smith, J. N. Turner, W. Shain, and S. J. Kim, “Low-density neuronal networks cultured using patterned poly-l-lysine on microelectrode arrays,” J. Neurosci. Methods160(2), 317–326 (2007).
[CrossRef] [PubMed]

C. D. James, R. Davis, M. Meyer, A. Turner, S. Turner, G. Withers, L. Kam, G. Banker, H. Craighead, M. Isaacson, J. Turner, and W. Shain, “Aligned microcontact printing of micrometer-scale poly-L-lysine structures for controlled growth of cultured neurons on planar microelectrode arrays,” IEEE Trans. Biomed. Eng.47(1), 17–21 (2000).
[CrossRef] [PubMed]

Shin, D.

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J.70(3), 1529–1533 (1996).
[CrossRef] [PubMed]

Sinclair, G.

Smith, K. L.

S. B. Jun, M. R. Hynd, N. Dowell-Mesfin, K. L. Smith, J. N. Turner, W. Shain, and S. J. Kim, “Low-density neuronal networks cultured using patterned poly-l-lysine on microelectrode arrays,” J. Neurosci. Methods160(2), 317–326 (2007).
[CrossRef] [PubMed]

Soman, P.

R. Gauvin, Y. C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, H. Bae, S. Chen, and A. Khademhosseini, “Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography,” Biomaterials33(15), 3824–3834 (2012).
[CrossRef] [PubMed]

Sun, C.

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuat. A.121, 113–120 (2005).

Timp, G.

U. Mirsaidov, J. Scrimgeour, W. Timp, K. Beck, M. Mir, P. Matsudaira, and G. Timp, “Live cell lithography: using optical tweezers to create synthetic tissue,” Lab Chip8(12), 2174–2181 (2008).
[CrossRef] [PubMed]

Timp, W.

U. Mirsaidov, J. Scrimgeour, W. Timp, K. Beck, M. Mir, P. Matsudaira, and G. Timp, “Live cell lithography: using optical tweezers to create synthetic tissue,” Lab Chip8(12), 2174–2181 (2008).
[CrossRef] [PubMed]

Tiziani, H. J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun.185(1-3), 77–82 (2000).
[CrossRef]

Trang, T. C.

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J.70(3), 1529–1533 (1996).
[CrossRef] [PubMed]

Tsang, V. L.

V. L. Tsang and S. N. Bhatia, “Three-dimensional tissue fabrication,” Adv. Drug Deliv. Rev.56(11), 1635–1647 (2004).
[CrossRef] [PubMed]

Turner, A.

C. D. James, R. Davis, M. Meyer, A. Turner, S. Turner, G. Withers, L. Kam, G. Banker, H. Craighead, M. Isaacson, J. Turner, and W. Shain, “Aligned microcontact printing of micrometer-scale poly-L-lysine structures for controlled growth of cultured neurons on planar microelectrode arrays,” IEEE Trans. Biomed. Eng.47(1), 17–21 (2000).
[CrossRef] [PubMed]

Turner, J.

C. D. James, R. Davis, M. Meyer, A. Turner, S. Turner, G. Withers, L. Kam, G. Banker, H. Craighead, M. Isaacson, J. Turner, and W. Shain, “Aligned microcontact printing of micrometer-scale poly-L-lysine structures for controlled growth of cultured neurons on planar microelectrode arrays,” IEEE Trans. Biomed. Eng.47(1), 17–21 (2000).
[CrossRef] [PubMed]

Turner, J. N.

S. B. Jun, M. R. Hynd, N. Dowell-Mesfin, K. L. Smith, J. N. Turner, W. Shain, and S. J. Kim, “Low-density neuronal networks cultured using patterned poly-l-lysine on microelectrode arrays,” J. Neurosci. Methods160(2), 317–326 (2007).
[CrossRef] [PubMed]

Turner, S.

C. D. James, R. Davis, M. Meyer, A. Turner, S. Turner, G. Withers, L. Kam, G. Banker, H. Craighead, M. Isaacson, J. Turner, and W. Shain, “Aligned microcontact printing of micrometer-scale poly-L-lysine structures for controlled growth of cultured neurons on planar microelectrode arrays,” IEEE Trans. Biomed. Eng.47(1), 17–21 (2000).
[CrossRef] [PubMed]

Urness, A. C.

A. C. Urness, M. C. Cole, K. K. Kamysiak, E. R. Moore, and R. R. McLeod “Liquid deposition photolithography for submicrometer resolution three-dimensional index structuring with large throughput,” Light Sci. Appl. 2 (2013).

van Geemen, D.

N. E. Fedorovich, M. H. Oudshoorn, D. van Geemen, W. E. Hennink, J. Alblas, and W. J. A. Dhert, “The effect of photopolymerization on stem cells embedded in hydrogels,” Biomaterials30(3), 344–353 (2009).
[CrossRef] [PubMed]

Vu, K. T.

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J.70(3), 1529–1533 (1996).
[CrossRef] [PubMed]

Wellander, R.

E. Eriksson, J. Scrimgeour, A. Graneli, K. Ramser, R. Wellander, J. Enger, D. Hanstorp, and M. Goksör, “Optical manipulation and microfluidics for studies of single cell dynamics,” J. Opt. A, Pure Appl. Opt.9(8), S113–S121 (2007).
[CrossRef]

West, J. L.

K. T. Nguyen and J. L. West, “Photopolymerizable hydrogels for tissue engineering applications,” Biomaterials23(22), 4307–4314 (2002).
[CrossRef] [PubMed]

Wheeler, B. C.

D. W. Branch, B. C. Wheeler, G. J. Brewer, and D. E. Leckband, “Long-term maintenance of patterns of hippocampal pyramidal cells on substrates of polyethylene glycol and microstamped polylysine,” IEEE Trans. Biomed. Eng.47(3), 290–300 (2000).
[CrossRef] [PubMed]

Williams, C. G.

C. G. Williams, A. N. Malik, T. K. Kim, P. N. Manson, and J. H. Elisseeff, “Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation,” Biomaterials26(11), 1211–1218 (2005).
[CrossRef] [PubMed]

Withers, G.

C. D. James, R. Davis, M. Meyer, A. Turner, S. Turner, G. Withers, L. Kam, G. Banker, H. Craighead, M. Isaacson, J. Turner, and W. Shain, “Aligned microcontact printing of micrometer-scale poly-L-lysine structures for controlled growth of cultured neurons on planar microelectrode arrays,” IEEE Trans. Biomed. Eng.47(1), 17–21 (2000).
[CrossRef] [PubMed]

Wu, D. M.

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuat. A.121, 113–120 (2005).

Yao, E.

Zhang, X.

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuat. A.121, 113–120 (2005).

Zorlutuna, P.

R. Gauvin, Y. C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, H. Bae, S. Chen, and A. Khademhosseini, “Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography,” Biomaterials33(15), 3824–3834 (2012).
[CrossRef] [PubMed]

Adv. Drug Deliv. Rev. (1)

V. L. Tsang and S. N. Bhatia, “Three-dimensional tissue fabrication,” Adv. Drug Deliv. Rev.56(11), 1635–1647 (2004).
[CrossRef] [PubMed]

Biomaterials (5)

K. T. Nguyen and J. L. West, “Photopolymerizable hydrogels for tissue engineering applications,” Biomaterials23(22), 4307–4314 (2002).
[CrossRef] [PubMed]

R. Gauvin, Y. C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, H. Bae, S. Chen, and A. Khademhosseini, “Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography,” Biomaterials33(15), 3824–3834 (2012).
[CrossRef] [PubMed]

B. D. Fairbanks, M. P. Schwartz, C. N. Bowman, and K. S. Anseth, “Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility,” Biomaterials30(35), 6702–6707 (2009).
[CrossRef] [PubMed]

C. G. Williams, A. N. Malik, T. K. Kim, P. N. Manson, and J. H. Elisseeff, “Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation,” Biomaterials26(11), 1211–1218 (2005).
[CrossRef] [PubMed]

N. E. Fedorovich, M. H. Oudshoorn, D. van Geemen, W. E. Hennink, J. Alblas, and W. J. A. Dhert, “The effect of photopolymerization on stem cells embedded in hydrogels,” Biomaterials30(3), 344–353 (2009).
[CrossRef] [PubMed]

Biophys. J. (1)

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J.70(3), 1529–1533 (1996).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (2)

D. W. Branch, B. C. Wheeler, G. J. Brewer, and D. E. Leckband, “Long-term maintenance of patterns of hippocampal pyramidal cells on substrates of polyethylene glycol and microstamped polylysine,” IEEE Trans. Biomed. Eng.47(3), 290–300 (2000).
[CrossRef] [PubMed]

C. D. James, R. Davis, M. Meyer, A. Turner, S. Turner, G. Withers, L. Kam, G. Banker, H. Craighead, M. Isaacson, J. Turner, and W. Shain, “Aligned microcontact printing of micrometer-scale poly-L-lysine structures for controlled growth of cultured neurons on planar microelectrode arrays,” IEEE Trans. Biomed. Eng.47(1), 17–21 (2000).
[CrossRef] [PubMed]

J. Biomat. Sci. Polym. E. (2)

S. J. Bryant, C. R. Nuttelman, and K. S. Anseth, “Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro,” J. Biomat. Sci. Polym. E.11(5), 439–457 (2000).

S. J. Bryant, C. R. Nuttelman, and K. S. Anseth, “Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro,” J. Biomat. Sci. Polym. E.11, 439–457 (2000).

J. Mod. Opt. (1)

G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt.51(3), 409–414 (2004).
[CrossRef]

J. Neurosci. Methods (1)

S. B. Jun, M. R. Hynd, N. Dowell-Mesfin, K. L. Smith, J. N. Turner, W. Shain, and S. J. Kim, “Low-density neuronal networks cultured using patterned poly-l-lysine on microelectrode arrays,” J. Neurosci. Methods160(2), 317–326 (2007).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

E. Eriksson, J. Scrimgeour, A. Graneli, K. Ramser, R. Wellander, J. Enger, D. Hanstorp, and M. Goksör, “Optical manipulation and microfluidics for studies of single cell dynamics,” J. Opt. A, Pure Appl. Opt.9(8), S113–S121 (2007).
[CrossRef]

Lab Chip (1)

U. Mirsaidov, J. Scrimgeour, W. Timp, K. Beck, M. Mir, P. Matsudaira, and G. Timp, “Live cell lithography: using optical tweezers to create synthetic tissue,” Lab Chip8(12), 2174–2181 (2008).
[CrossRef] [PubMed]

Liquid deposition photolithography for submicrometer resolution three-dimensional index structuring with large throughput (1)

A. C. Urness, M. C. Cole, K. K. Kamysiak, E. R. Moore, and R. R. McLeod “Liquid deposition photolithography for submicrometer resolution three-dimensional index structuring with large throughput,” Light Sci. Appl. 2 (2013).

Macromolecules (1)

A. S. Sawhney, C. P. Pathak, and J. A. Hubbell, “Bioerodible hydrogels based on photopolymerized poly (ethylene glycol)-co-poly (. alpha.-hydroxy acid) diacrylate macromers,” Macromolecules26(4), 581–587 (1993).
[CrossRef]

Opt. Commun. (1)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun.185(1-3), 77–82 (2000).
[CrossRef]

Opt. Express (2)

Rev. Sci. Instrum. (1)

G. M. Gibson, R. W. Bowman, A. Linnenberger, M. Dienerowitz, D. B. Phillips, D. M. Carberry, M. J. Miles, and M. J. Padgett, “A compact holographic optical tweezers instrument,” Rev. Sci. Instrum.83(11), 113107 (2012).
[CrossRef] [PubMed]

Sens. Actuat. A. (1)

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuat. A.121, 113–120 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics