Abstract

We present a novel method to extend the depth-of-focus of Optical Coherence Tomography (OCT). OCT is an interferometric imaging technique that provides depth-resolved scattering information. The axial resolution in OCT is provided by the coherence gate and is invariant over the full image depth. The lateral resolution is determined by the beam parameters such as wavelength and numerical aperture. The Rayleigh range determines the depth range over which the lateral resolution can be maintained. The lateral resolution is often sacrificed to maintain relatively long Rayleigh range. In this study, we propose to use a depth-encoded synthetic aperture detection scheme to extend the depth range over which a sharp focus can be maintained beyond the Rayleigh range. An annular phase plate is inserted into the light path in the sample arm, which gives rise to three separate images in a single B-scan, corresponding to three different optical path length encoded apertures. These three images are coherently summed after phase-manipulation to reconstruct a new image with a lateral resolution that is maintained over a five times larger depth range.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
    [CrossRef] [PubMed]
  3. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett.22(1), 64–66 (1997).
    [CrossRef] [PubMed]
  4. B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography,” Gastrointest. Endosc.51(4), 467–474 (2000).
    [CrossRef] [PubMed]
  5. C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett.25(18), 1355–1357 (2000).
    [CrossRef] [PubMed]
  6. B. Braaf, K. A. Vermeer, V. A. D. P. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid,” Opt. Express19(21), 20886–20903 (2011).
    [CrossRef] [PubMed]
  7. G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
    [CrossRef] [PubMed]
  8. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett.17(2), 151–153 (1992).
    [CrossRef] [PubMed]
  9. J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun.142(4-6), 203–207 (1997).
    [CrossRef]
  10. B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
    [CrossRef]
  11. B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol.55(3), 615–622 (2010).
    [CrossRef] [PubMed]
  12. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett.27(4), 243–245 (2002).
    [CrossRef] [PubMed]
  13. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett.31(16), 2450–2452 (2006).
    [CrossRef] [PubMed]
  14. L. Liu, C. Liu, W. C. Howe, C. J. R. Sheppard, and N. Chen, “Binary-phase spatial filter for real-time swept-source optical coherence microscopy,” Opt. Lett.32(16), 2375–2377 (2007).
    [CrossRef] [PubMed]
  15. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007).
    [CrossRef]
  16. Y. Yasuno, J.-i. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, “Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography,” Opt. Express14(3), 1006–1020 (2006).
    [CrossRef] [PubMed]
  17. L. Yu, B. Rao, J. Zhang, J. Su, Q. Wang, S. Guo, and Z. Chen, “Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method,” Opt. Express15(12), 7634–7641 (2007).
    [CrossRef] [PubMed]
  18. M. de Groot, C. L. Evans, and J. F. de Boer, “Self-interference fluorescence microscopy: three dimensional fluorescence imaging without depth scanning,” Opt. Express20(14), 15253–15262 (2012).
    [CrossRef] [PubMed]
  19. D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
    [CrossRef] [PubMed]
  20. J. Li, M. de Groot, F. Helderman, J. Mo, J. M. A. Daniels, K. Grünberg, T. G. Sutedja, and J. F. de Boer, “High speed miniature motorized endoscopic probe for optical frequency domain imaging,” Opt. Express20(22), 24132–24138 (2012).
    [CrossRef] [PubMed]
  21. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett.38(5), 673–675 (2013).
    [CrossRef] [PubMed]

2013 (1)

2012 (2)

2011 (1)

2010 (2)

B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol.55(3), 615–622 (2010).
[CrossRef] [PubMed]

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

2008 (1)

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

2007 (3)

2006 (2)

2004 (1)

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

2002 (1)

2000 (2)

B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography,” Gastrointest. Endosc.51(4), 467–474 (2000).
[CrossRef] [PubMed]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett.25(18), 1355–1357 (2000).
[CrossRef] [PubMed]

1997 (2)

Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett.22(1), 64–66 (1997).
[CrossRef] [PubMed]

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun.142(4-6), 203–207 (1997).
[CrossRef]

1994 (1)

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

1992 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Bachmann, A. H.

Bartlett, L. A.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Boppart, S. A.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007).
[CrossRef]

Bouma, B. E.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography,” Gastrointest. Endosc.51(4), 467–474 (2000).
[CrossRef] [PubMed]

Braaf, B.

Bremmer, R. H.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

Cable, A. E.

Carney, P. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, N.

Chen, Z.

Compton, C. C.

B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography,” Gastrointest. Endosc.51(4), 467–474 (2000).
[CrossRef] [PubMed]

Daniels, J. M. A.

Dave, D.

de Boer, J. F.

de Bruin, D. M.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

de Groot, M.

de Kinkelder, R.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

Desjardins, A. E.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Dickensheets, L. D.

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

Ding, Z.

et,

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Evans, C. L.

Faber, D. J.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Freilich, M. I.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gordon, L. M.

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Grulkowski, I.

Grünberg, K.

Guo, S.

Hee, M. R.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett.17(2), 151–153 (1992).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Helderman, F.

Himmer, A. P.

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

Howe, W. C.

Huang, D.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett.17(2), 151–153 (1992).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Itoh, M.

Izatt, J. A.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

Jayaraman, V.

Jiang, J.

Kodach, V. M.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

Lasser, T.

Lee, K. K.

B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol.55(3), 615–622 (2010).
[CrossRef] [PubMed]

Lee, S. L.

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun.142(4-6), 203–207 (1997).
[CrossRef]

Leitgeb, R. A.

Leung, M. K.

B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol.55(3), 615–622 (2010).
[CrossRef] [PubMed]

Li, J.

Lin, C. P.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett.17(2), 151–153 (1992).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, C.

Liu, J. J.

Liu, L.

Makita, S.

Mariampillai, A.

B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol.55(3), 615–622 (2010).
[CrossRef] [PubMed]

Marks, D. L.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007).
[CrossRef]

Milner, T. E.

Mo, J.

Munce, N. R.

B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol.55(3), 615–622 (2010).
[CrossRef] [PubMed]

Nakamura, Y.

Nelson, J. S.

Nishioka, N. S.

B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography,” Gastrointest. Endosc.51(4), 467–474 (2000).
[CrossRef] [PubMed]

Oh, W. Y.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Park, B. H.

Potsaid, B.

Puliafito, C. A.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett.17(2), 151–153 (1992).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Qi, B.

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

Ralston, T. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007).
[CrossRef]

Rao, B.

Ren, H.

Rosenberg, M.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Sando, Y.

Saxer, C. E.

Schmitt, J. M.

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun.142(4-6), 203–207 (1997).
[CrossRef]

Schuman, J. S.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sheppard, C. J. R.

Shishkov, M.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Sicam, V. A. D. P.

Standish, B. A.

B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol.55(3), 615–622 (2010).
[CrossRef] [PubMed]

Steinmann, L.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Su, J.

Sugisaka, J.-i.

Sutedja, T. G.

Suter, M. J.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Swanson, E. A.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett.17(2), 151–153 (1992).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography,” Gastrointest. Endosc.51(4), 467–474 (2000).
[CrossRef] [PubMed]

Vakoc, B. J.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

van Leeuwen, T. G.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

van Marle, J.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

van Meurs, J. C.

van Zeeburg, E.

Vermeer, K. A.

Villiger, M.

Vitkin, I. A.

B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol.55(3), 615–622 (2010).
[CrossRef] [PubMed]

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

Wang, Q.

Waxman, S.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Yang, V. X.

B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol.55(3), 615–622 (2010).
[CrossRef] [PubMed]

Yang, X. D. V.

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

Yasuno, Y.

Yatagai, T.

Yu, L.

Yung, K. M.

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun.142(4-6), 203–207 (1997).
[CrossRef]

Zhang, J.

Zhao, Y.

Arch. Ophthalmol. (1)

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

Gastrointest. Endosc. (1)

B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography,” Gastrointest. Endosc.51(4), 467–474 (2000).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

JACC Cardiovasc. Imaging (1)

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Nat. Phys. (1)

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007).
[CrossRef]

Opt. Commun. (2)

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun.142(4-6), 203–207 (1997).
[CrossRef]

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

Opt. Express (5)

Opt. Lett. (7)

L. Liu, C. Liu, W. C. Howe, C. J. R. Sheppard, and N. Chen, “Binary-phase spatial filter for real-time swept-source optical coherence microscopy,” Opt. Lett.32(16), 2375–2377 (2007).
[CrossRef] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett.38(5), 673–675 (2013).
[CrossRef] [PubMed]

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett.31(16), 2450–2452 (2006).
[CrossRef] [PubMed]

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett.17(2), 151–153 (1992).
[CrossRef] [PubMed]

Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett.22(1), 64–66 (1997).
[CrossRef] [PubMed]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett.25(18), 1355–1357 (2000).
[CrossRef] [PubMed]

Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett.27(4), 243–245 (2002).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol.55(3), 615–622 (2010).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Principle of the depth-encoded synthetic aperture method for extending the depth-of-focus of optical coherence tomography. The drawing shows the source of the scattered light (orange dot), the lens, the beam diameter as a function of the axial position defined by Gaussian optics (solid green), the reconstructed beam diameter after image processing (dotted green), the wavefronts before and after the phase plate (blue and red lines) in Figs. (a) and (c). Δz and n are the thickness and refractive index of the annular phase plate (PP). (a) The scattering object is located in the focus of the lens. Solid blue and red lines indicate the sections of the wavefront that pass through the inner and outer sections of the annular phase plate, respectively. The outer section is delayed by a term Δz(n1) . (b) By application of the Fourier shift theorem, the delayed part of the wavefront is shifted back (dotted red lines) and the original image is reconstructed. (c) When the scattering object is out of focus (here above the focal plane) the wavefront is curved. This leads to a small extra optical path length difference δz. (d) By compensating both the shift Δz(n1) induced by the phase plate and the extra term δz a refocused image with improved lateral resolution (indicated by the dotted green lines) can be obtained. See section 2.1 for details.

Fig. 2
Fig. 2

(a) Physical optics model including the lenses, the medium, the collection fiber and the phase plate. (b) Coupling efficiency as a function of wavelength for three different positions of the source with respect to the focal plane. (c) Phase shift of the coupling efficiency function in (b) as a function of defocus. The slope of the linear region is 7.25 mrad/μm.

Fig. 3
Fig. 3

Light intensity distribution of the focused beam in the sample. (a) The lateral and depth intensity distribution is evaluated at the plane indicated by the dotted line as a function of axial location of the sample with respect to the lens. (b) Color coded intensity distribution as a function over x (lateral) and z (depth) dimensions. The image is normalized to each row for better visibility of the lateral structure. Scale bars are 20 μm in x dimension and 200 μm in z dimension.

Fig. 4
Fig. 4

Schematic of Optical Frequency Domain Imaging (OFDI) system. PP: Annular Phase Plate; FC: Fiber-optic Coupler; CIR: Fiber-optic Circulator; CL: Collimator; L: Lens; M: Mirror; FBG: Fiber Bragg Grating; PR: Photoreceiver; BD: Balanced Detector

Fig. 5
Fig. 5

Refocusing Process: A single B-scan contains three images of the same object at different depths (i.e., top, middle and bottom); the first step is to correct the depth-separation due to the phase plate for the middle and bottom images (blue text box). Then, the phase of the middle and bottom images are further manipulated (orange text box) and coherently added to the top image to construct a new image with improved lateral resolution. The four colored windows are zoomed-in images of two spheres to better visualize the refocusing process. The image is 1.28 mm wide and its aspect ratio is 3:1.

Fig. 6
Fig. 6

(a)-(h): Intensity images acquired when the phantom is moved away from the objective at a physical step size of 80 μm. Each subfigure includes three imaging modes: (I) full beam image at top, (II) truncated Gaussian beam image at middle, and (III) refocused image at bottom. All the images are presented on a logarithmic scale with the colormap clipped to 75% of the maximum intensity of the image. The image is 1.28 mm wide and its aspect ratio is 3:1.

Fig. 7
Fig. 7

Lateral intensity profiles of the selected spheres in Fig. 6 for different phantom positions (defocused depths): (a) to (e) are spheres 1 to 5, respectively. The rows from top to bottom represent the different phantom positions with 80-μm step size, corresponding to the images in Fig. 6 from top (Fig. 6(a)) to bottom (Fig. 6(h)). Black: Refocused image; Red: Truncated Gaussian beam image; Blue: Full beam image.

Fig. 8
Fig. 8

Full width at half maximum of those selected spheres in Fig. 6 at different defocused depths: (a) Sphere 1, (b) Sphere 2, (c) Sphere 3, (d) Sphere 4, and (e) Sphere 5; (f) FWHM of full beam at different defocused depths from both experiment and physical optics simulation.

Fig. 9
Fig. 9

Scattered energy of the selected spheres in Fig. 6 at different defocused depths: (a) Sphere 1, (b) Sphere 2, (c) Sphere 3, (d) Sphere 4, and (e) Sphere 5. Black: Refocused image; Red: Truncated Gaussian beam image; Blue: Full beam image.

Fig. 10
Fig. 10

Phase factor ψapplied to middle and bottom images to optimize the image refocusing. The slopes determined by least square linear fitting are 6.81 and 13.69 mrad/μm, respectively.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I( k )= I r ( k )+ I s ( k )+2 I r ( k ) I s ( k ) αcos( 2kz ).
I( k )= I r ( k ) I s ( k ) α{ [ exp( i2kz ) +exp( i2kz+ik( Δz( n1 )+δz ) ) + exp( i2kz+ik2( Δz( n1 )+δz ) ) ]+C.C. }.
I( k )= I r ( k ) I s ( k ) αexp(i2kz)exp( i k 0 Δz( n1 )+i k 0 δz+iΔkΔz( n1 )+iΔkδz )+C.C..
I( k )=exp( i ψ middle ) I r ( k ) I s ( k ) αexp( i2kz )exp( iΔkΔz( n1 ) )+C.C.. with ψ middle = k 0 Δz( n1 )+ k 0 δz
I( k )=exp(i ψ bottom ) I r ( k ) I s ( k ) αexp( i2kz )exp( i2ΔkΔz( n1 ) )+C.C.. with ψ bottom =2 k 0 Δz( n1 )+ 2 k 0 δz
I T (k)=I(k)exp(iΔkΔϕ).
S refocused = S top + S middle exp(i ψ middle )+ S bottom exp(i ψ bottom ).

Metrics