Abstract

We propose a biocompatible hybrid photonic platform incorporating a 3D silk inverse opal (SIO) crystal and a 2D plasmonic crystal formed on the top surface of the SIO. This hybrid photonic-plasmonic crystal (HPPC) structure simultaneously exhibits both an extraordinary transmission and a pseudo-photonic band-gap in its transmission spectrum. We demonstrate the use of the HPPC as a refractive index (RI) sensor. By performing a multispectral analysis to analyze the RI value, a sensitivity of 200,000 nm·Δ%T/RIU (refractive index unit) is achieved.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chem. Acta620(1-2), 8–26 (2008).
    [CrossRef] [PubMed]
  2. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem.377(3), 528–539 (2003).
    [CrossRef] [PubMed]
  3. N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem.74(3), 504–509 (2002).
    [CrossRef] [PubMed]
  4. S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fiber-coupled surface-emitting photonic crystal bandedge laser for biochemical sensor applications,” Appl. Phys. Lett.94(13), 133503 (2009).
    [CrossRef]
  5. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
    [CrossRef] [PubMed]
  6. A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10(12), 4962–4969 (2010).
    [CrossRef] [PubMed]
  7. Y. Wang, G. A. Ameer, B. J. Sheppard, and R. Langer, “A tough biodegradable elastomer,” Nat. Biotechnol.20(6), 602–606 (2002).
    [CrossRef] [PubMed]
  8. M. Frost and M. E. Meyerhoff, “In vivo chemical sensors: Tracking biocompatibility,” Anal. Chem.78(21), 7370–7377 (2006).
    [CrossRef] [PubMed]
  9. F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics2(11), 641–643 (2008).
    [CrossRef]
  10. J. Zhang, E. Pritchard, X. Hu, T. Valentin, B. Panilatis, F. G. Omenetto, and D. L. Kaplan, “Stabilization of vaccines and antibodies in silk and eliminating the cold chain,” Proc. Nat. Acad. Soc.109(30), 11981–11986 (2012).
    [CrossRef]
  11. J. J. Amsden, P. Domachuk, A. Gopinath, R. D. White, L. D. Negro, D. L. Kaplan, and F. G. Omenetto, “Rapid nanoimprinting of silk fibroin films for biophotonic applications,” Adv. Mater.22(15), 1746–1749 (2010).
    [CrossRef] [PubMed]
  12. H. Tao, J. J. Amsden, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterial silk composites at terahertz frequencies,” Adv. Mater.22(32), 3527–3531 (2010).
    [CrossRef] [PubMed]
  13. A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nat. Photonics1(8), 468–472 (2007).
    [CrossRef]
  14. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spacer-based nanolaser,” Nature460(7259), 1110–1112 (2009).
    [CrossRef] [PubMed]
  15. S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater.23(22-23), 2515–2533 (2011).
    [CrossRef] [PubMed]
  16. L. Landström, D. Brodoceanu, D. Bäuerle, F. J. Garcia-Vidal, S. G. Rodrigo, and L. Martin-Moreno, “Extraordinary transmission through metal-coated monolayers of microspheres,” Opt. Express17(2), 761–772 (2009).
    [CrossRef] [PubMed]
  17. X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater.20(12), 1910–1916 (2010).
    [CrossRef]
  18. B. Ding, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Three-dimensional photonic crystals with an active surface: Gold film terminated opals,” Phys. Rev. B82(3), 035119 (2010).
    [CrossRef]
  19. S. Kim, A. N. Mitropoulos, J. D. Spitzberg, H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk inverse opals,” Nat. Photonics6(12), 818–823 (2012).
    [CrossRef]
  20. W. L. Vos, R. Sprik, A. Blaaderen, A. Imhof, A. Lagendijk, and G. H. Wegdam, “Strong effects of photonic band structures on the diffraction of colloidal crystals,” Phys. Rev. B53, 16231–16235 (1996).
  21. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
    [CrossRef] [PubMed]
  22. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
    [CrossRef]
  23. R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mater.14(8), 3305–3315 (2002).
    [CrossRef]
  24. A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc.127(14), 5043–5048 (2005).
    [CrossRef] [PubMed]
  25. N. Ganesh, I. D. Block, and B. T. Cunningham, “Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio,” Appl. Phys. Lett.89(2), 023901 (2006).
    [CrossRef]
  26. P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011).
    [CrossRef] [PubMed]
  27. M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17143–17148 (2006).
    [CrossRef] [PubMed]
  28. J. Maria, T. T. Truong, J. Yao, T. W. Lee, R. G. Nuzzo, S. Leyffer, S. K. Gray, and J. A. Rogers, “Optimization of 3D plasmonic crystal structures for refractive index sensing,” J. Phys. Chem. C113(24), 10493–10499 (2009).
    [CrossRef]
  29. P. Y. Chung, K. L. Lee, G. Schultz, P. K. Wei, and C. Batichm, “Multispectral refractive index sensing using surface plasmon resonance on gold nanosilts,” MRS Proc. 1253, 1253–K10–26 (2010).

2012 (2)

J. Zhang, E. Pritchard, X. Hu, T. Valentin, B. Panilatis, F. G. Omenetto, and D. L. Kaplan, “Stabilization of vaccines and antibodies in silk and eliminating the cold chain,” Proc. Nat. Acad. Soc.109(30), 11981–11986 (2012).
[CrossRef]

S. Kim, A. N. Mitropoulos, J. D. Spitzberg, H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk inverse opals,” Nat. Photonics6(12), 818–823 (2012).
[CrossRef]

2011 (2)

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater.23(22-23), 2515–2533 (2011).
[CrossRef] [PubMed]

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011).
[CrossRef] [PubMed]

2010 (6)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater.20(12), 1910–1916 (2010).
[CrossRef]

B. Ding, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Three-dimensional photonic crystals with an active surface: Gold film terminated opals,” Phys. Rev. B82(3), 035119 (2010).
[CrossRef]

J. J. Amsden, P. Domachuk, A. Gopinath, R. D. White, L. D. Negro, D. L. Kaplan, and F. G. Omenetto, “Rapid nanoimprinting of silk fibroin films for biophotonic applications,” Adv. Mater.22(15), 1746–1749 (2010).
[CrossRef] [PubMed]

H. Tao, J. J. Amsden, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterial silk composites at terahertz frequencies,” Adv. Mater.22(32), 3527–3531 (2010).
[CrossRef] [PubMed]

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10(12), 4962–4969 (2010).
[CrossRef] [PubMed]

2009 (5)

S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fiber-coupled surface-emitting photonic crystal bandedge laser for biochemical sensor applications,” Appl. Phys. Lett.94(13), 133503 (2009).
[CrossRef]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spacer-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

J. Maria, T. T. Truong, J. Yao, T. W. Lee, R. G. Nuzzo, S. Leyffer, S. K. Gray, and J. A. Rogers, “Optimization of 3D plasmonic crystal structures for refractive index sensing,” J. Phys. Chem. C113(24), 10493–10499 (2009).
[CrossRef]

L. Landström, D. Brodoceanu, D. Bäuerle, F. J. Garcia-Vidal, S. G. Rodrigo, and L. Martin-Moreno, “Extraordinary transmission through metal-coated monolayers of microspheres,” Opt. Express17(2), 761–772 (2009).
[CrossRef] [PubMed]

2008 (2)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chem. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics2(11), 641–643 (2008).
[CrossRef]

2007 (2)

A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nat. Photonics1(8), 468–472 (2007).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

2006 (3)

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

N. Ganesh, I. D. Block, and B. T. Cunningham, “Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio,” Appl. Phys. Lett.89(2), 023901 (2006).
[CrossRef]

M. Frost and M. E. Meyerhoff, “In vivo chemical sensors: Tracking biocompatibility,” Anal. Chem.78(21), 7370–7377 (2006).
[CrossRef] [PubMed]

2005 (1)

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc.127(14), 5043–5048 (2005).
[CrossRef] [PubMed]

2003 (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem.377(3), 528–539 (2003).
[CrossRef] [PubMed]

2002 (3)

N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem.74(3), 504–509 (2002).
[CrossRef] [PubMed]

Y. Wang, G. A. Ameer, B. J. Sheppard, and R. Langer, “A tough biodegradable elastomer,” Nat. Biotechnol.20(6), 602–606 (2002).
[CrossRef] [PubMed]

R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mater.14(8), 3305–3315 (2002).
[CrossRef]

1996 (1)

W. L. Vos, R. Sprik, A. Blaaderen, A. Imhof, A. Lagendijk, and G. H. Wegdam, “Strong effects of photonic band structures on the diffraction of colloidal crystals,” Phys. Rev. B53, 16231–16235 (1996).

Al-Daous, M.

R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mater.14(8), 3305–3315 (2002).
[CrossRef]

Altug, H.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10(12), 4962–4969 (2010).
[CrossRef] [PubMed]

Ameer, G. A.

Y. Wang, G. A. Ameer, B. J. Sheppard, and R. Langer, “A tough biodegradable elastomer,” Nat. Biotechnol.20(6), 602–606 (2002).
[CrossRef] [PubMed]

Amsden, J. J.

J. J. Amsden, P. Domachuk, A. Gopinath, R. D. White, L. D. Negro, D. L. Kaplan, and F. G. Omenetto, “Rapid nanoimprinting of silk fibroin films for biophotonic applications,” Adv. Mater.22(15), 1746–1749 (2010).
[CrossRef] [PubMed]

H. Tao, J. J. Amsden, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterial silk composites at terahertz frequencies,” Adv. Mater.22(32), 3527–3531 (2010).
[CrossRef] [PubMed]

Arsenault, A. C.

A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nat. Photonics1(8), 468–472 (2007).
[CrossRef]

Artar, A.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10(12), 4962–4969 (2010).
[CrossRef] [PubMed]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Averitt, R. D.

H. Tao, J. J. Amsden, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterial silk composites at terahertz frequencies,” Adv. Mater.22(32), 3527–3531 (2010).
[CrossRef] [PubMed]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spacer-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Bäuerle, D.

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spacer-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Blaaderen, A.

W. L. Vos, R. Sprik, A. Blaaderen, A. Imhof, A. Lagendijk, and G. H. Wegdam, “Strong effects of photonic band structures on the diffraction of colloidal crystals,” Phys. Rev. B53, 16231–16235 (1996).

Blanford, C. F.

R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mater.14(8), 3305–3315 (2002).
[CrossRef]

Block, I. D.

N. Ganesh, I. D. Block, and B. T. Cunningham, “Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio,” Appl. Phys. Lett.89(2), 023901 (2006).
[CrossRef]

Braun, P. V.

X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater.20(12), 1910–1916 (2010).
[CrossRef]

Brodoceanu, D.

Brongersma, S. H.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011).
[CrossRef] [PubMed]

Chilkoti, A.

N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem.74(3), 504–509 (2002).
[CrossRef] [PubMed]

Connor, J. H.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10(12), 4962–4969 (2010).
[CrossRef] [PubMed]

Crego-Calama, M.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011).
[CrossRef] [PubMed]

Cunningham, B. T.

N. Ganesh, I. D. Block, and B. T. Cunningham, “Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio,” Appl. Phys. Lett.89(2), 023901 (2006).
[CrossRef]

Dahlin, A.

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc.127(14), 5043–5048 (2005).
[CrossRef] [PubMed]

Ding, B.

B. Ding, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Three-dimensional photonic crystals with an active surface: Gold film terminated opals,” Phys. Rev. B82(3), 035119 (2010).
[CrossRef]

Domachuk, P.

J. J. Amsden, P. Domachuk, A. Gopinath, R. D. White, L. D. Negro, D. L. Kaplan, and F. G. Omenetto, “Rapid nanoimprinting of silk fibroin films for biophotonic applications,” Adv. Mater.22(15), 1746–1749 (2010).
[CrossRef] [PubMed]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Fan, K.

H. Tao, J. J. Amsden, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterial silk composites at terahertz frequencies,” Adv. Mater.22(32), 3527–3531 (2010).
[CrossRef] [PubMed]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chem. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Frost, M.

M. Frost and M. E. Meyerhoff, “In vivo chemical sensors: Tracking biocompatibility,” Anal. Chem.78(21), 7370–7377 (2006).
[CrossRef] [PubMed]

Ganesh, N.

N. Ganesh, I. D. Block, and B. T. Cunningham, “Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio,” Appl. Phys. Lett.89(2), 023901 (2006).
[CrossRef]

Garcia-Vidal, F. J.

Geisbert, T. W.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10(12), 4962–4969 (2010).
[CrossRef] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Gómez Rivas, J.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011).
[CrossRef] [PubMed]

Gopinath, A.

J. J. Amsden, P. Domachuk, A. Gopinath, R. D. White, L. D. Negro, D. L. Kaplan, and F. G. Omenetto, “Rapid nanoimprinting of silk fibroin films for biophotonic applications,” Adv. Mater.22(15), 1746–1749 (2010).
[CrossRef] [PubMed]

Gray, S. K.

J. Maria, T. T. Truong, J. Yao, T. W. Lee, R. G. Nuzzo, S. Leyffer, S. K. Gray, and J. A. Rogers, “Optimization of 3D plasmonic crystal structures for refractive index sensing,” J. Phys. Chem. C113(24), 10493–10499 (2009).
[CrossRef]

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Han, D.

X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater.20(12), 1910–1916 (2010).
[CrossRef]

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spacer-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Homola, J.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem.377(3), 528–539 (2003).
[CrossRef] [PubMed]

Höök, F.

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc.127(14), 5043–5048 (2005).
[CrossRef] [PubMed]

Hu, X.

J. Zhang, E. Pritchard, X. Hu, T. Valentin, B. Panilatis, F. G. Omenetto, and D. L. Kaplan, “Stabilization of vaccines and antibodies in silk and eliminating the cold chain,” Proc. Nat. Acad. Soc.109(30), 11981–11986 (2012).
[CrossRef]

Huang, M.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10(12), 4962–4969 (2010).
[CrossRef] [PubMed]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Imhof, A.

W. L. Vos, R. Sprik, A. Blaaderen, A. Imhof, A. Lagendijk, and G. H. Wegdam, “Strong effects of photonic band structures on the diffraction of colloidal crystals,” Phys. Rev. B53, 16231–16235 (1996).

Jeon, H.

S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fiber-coupled surface-emitting photonic crystal bandedge laser for biochemical sensor applications,” Appl. Phys. Lett.94(13), 133503 (2009).
[CrossRef]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Käll, M.

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc.127(14), 5043–5048 (2005).
[CrossRef] [PubMed]

Kamohara, O.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10(12), 4962–4969 (2010).
[CrossRef] [PubMed]

Kaplan, D. L.

J. Zhang, E. Pritchard, X. Hu, T. Valentin, B. Panilatis, F. G. Omenetto, and D. L. Kaplan, “Stabilization of vaccines and antibodies in silk and eliminating the cold chain,” Proc. Nat. Acad. Soc.109(30), 11981–11986 (2012).
[CrossRef]

S. Kim, A. N. Mitropoulos, J. D. Spitzberg, H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk inverse opals,” Nat. Photonics6(12), 818–823 (2012).
[CrossRef]

H. Tao, J. J. Amsden, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterial silk composites at terahertz frequencies,” Adv. Mater.22(32), 3527–3531 (2010).
[CrossRef] [PubMed]

J. J. Amsden, P. Domachuk, A. Gopinath, R. D. White, L. D. Negro, D. L. Kaplan, and F. G. Omenetto, “Rapid nanoimprinting of silk fibroin films for biophotonic applications,” Adv. Mater.22(15), 1746–1749 (2010).
[CrossRef] [PubMed]

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics2(11), 641–643 (2008).
[CrossRef]

Kim, H. J.

S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fiber-coupled surface-emitting photonic crystal bandedge laser for biochemical sensor applications,” Appl. Phys. Lett.94(13), 133503 (2009).
[CrossRef]

Kim, S.

S. Kim, A. N. Mitropoulos, J. D. Spitzberg, H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk inverse opals,” Nat. Photonics6(12), 818–823 (2012).
[CrossRef]

S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fiber-coupled surface-emitting photonic crystal bandedge laser for biochemical sensor applications,” Appl. Phys. Lett.94(13), 133503 (2009).
[CrossRef]

Korovin, A. V.

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater.23(22-23), 2515–2533 (2011).
[CrossRef] [PubMed]

B. Ding, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Three-dimensional photonic crystals with an active surface: Gold film terminated opals,” Phys. Rev. B82(3), 035119 (2010).
[CrossRef]

Lagendijk, A.

W. L. Vos, R. Sprik, A. Blaaderen, A. Imhof, A. Lagendijk, and G. H. Wegdam, “Strong effects of photonic band structures on the diffraction of colloidal crystals,” Phys. Rev. B53, 16231–16235 (1996).

Landström, L.

Langer, R.

Y. Wang, G. A. Ameer, B. J. Sheppard, and R. Langer, “A tough biodegradable elastomer,” Nat. Biotechnol.20(6), 602–606 (2002).
[CrossRef] [PubMed]

Lee, J.

S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fiber-coupled surface-emitting photonic crystal bandedge laser for biochemical sensor applications,” Appl. Phys. Lett.94(13), 133503 (2009).
[CrossRef]

Lee, T. W.

J. Maria, T. T. Truong, J. Yao, T. W. Lee, R. G. Nuzzo, S. Leyffer, S. K. Gray, and J. A. Rogers, “Optimization of 3D plasmonic crystal structures for refractive index sensing,” J. Phys. Chem. C113(24), 10493–10499 (2009).
[CrossRef]

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Leyffer, S.

J. Maria, T. T. Truong, J. Yao, T. W. Lee, R. G. Nuzzo, S. Leyffer, S. K. Gray, and J. A. Rogers, “Optimization of 3D plasmonic crystal structures for refractive index sensing,” J. Phys. Chem. C113(24), 10493–10499 (2009).
[CrossRef]

Mack, N. H.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Malyarchuk, V.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Manners, I.

A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nat. Photonics1(8), 468–472 (2007).
[CrossRef]

Maria, J.

J. Maria, T. T. Truong, J. Yao, T. W. Lee, R. G. Nuzzo, S. Leyffer, S. K. Gray, and J. A. Rogers, “Optimization of 3D plasmonic crystal structures for refractive index sensing,” J. Phys. Chem. C113(24), 10493–10499 (2009).
[CrossRef]

Martin-Moreno, L.

Meyerhoff, M. E.

M. Frost and M. E. Meyerhoff, “In vivo chemical sensors: Tracking biocompatibility,” Anal. Chem.78(21), 7370–7377 (2006).
[CrossRef] [PubMed]

Mitropoulos, A. N.

S. Kim, A. N. Mitropoulos, J. D. Spitzberg, H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk inverse opals,” Nat. Photonics6(12), 818–823 (2012).
[CrossRef]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spacer-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Nath, N.

N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem.74(3), 504–509 (2002).
[CrossRef] [PubMed]

Negro, L. D.

J. J. Amsden, P. Domachuk, A. Gopinath, R. D. White, L. D. Negro, D. L. Kaplan, and F. G. Omenetto, “Rapid nanoimprinting of silk fibroin films for biophotonic applications,” Adv. Mater.22(15), 1746–1749 (2010).
[CrossRef] [PubMed]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spacer-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Nuzzo, R. G.

J. Maria, T. T. Truong, J. Yao, T. W. Lee, R. G. Nuzzo, S. Leyffer, S. K. Gray, and J. A. Rogers, “Optimization of 3D plasmonic crystal structures for refractive index sensing,” J. Phys. Chem. C113(24), 10493–10499 (2009).
[CrossRef]

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Offermans, P.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011).
[CrossRef] [PubMed]

Omenetto, F. G.

J. Zhang, E. Pritchard, X. Hu, T. Valentin, B. Panilatis, F. G. Omenetto, and D. L. Kaplan, “Stabilization of vaccines and antibodies in silk and eliminating the cold chain,” Proc. Nat. Acad. Soc.109(30), 11981–11986 (2012).
[CrossRef]

S. Kim, A. N. Mitropoulos, J. D. Spitzberg, H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk inverse opals,” Nat. Photonics6(12), 818–823 (2012).
[CrossRef]

H. Tao, J. J. Amsden, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterial silk composites at terahertz frequencies,” Adv. Mater.22(32), 3527–3531 (2010).
[CrossRef] [PubMed]

J. J. Amsden, P. Domachuk, A. Gopinath, R. D. White, L. D. Negro, D. L. Kaplan, and F. G. Omenetto, “Rapid nanoimprinting of silk fibroin films for biophotonic applications,” Adv. Mater.22(15), 1746–1749 (2010).
[CrossRef] [PubMed]

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics2(11), 641–643 (2008).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Ozin, G. A.

A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nat. Photonics1(8), 468–472 (2007).
[CrossRef]

Panilatis, B.

J. Zhang, E. Pritchard, X. Hu, T. Valentin, B. Panilatis, F. G. Omenetto, and D. L. Kaplan, “Stabilization of vaccines and antibodies in silk and eliminating the cold chain,” Proc. Nat. Acad. Soc.109(30), 11981–11986 (2012).
[CrossRef]

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pemble, M. E.

B. Ding, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Three-dimensional photonic crystals with an active surface: Gold film terminated opals,” Phys. Rev. B82(3), 035119 (2010).
[CrossRef]

Peschel, U.

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater.23(22-23), 2515–2533 (2011).
[CrossRef] [PubMed]

B. Ding, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Three-dimensional photonic crystals with an active surface: Gold film terminated opals,” Phys. Rev. B82(3), 035119 (2010).
[CrossRef]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pritchard, E.

J. Zhang, E. Pritchard, X. Hu, T. Valentin, B. Panilatis, F. G. Omenetto, and D. L. Kaplan, “Stabilization of vaccines and antibodies in silk and eliminating the cold chain,” Proc. Nat. Acad. Soc.109(30), 11981–11986 (2012).
[CrossRef]

Puzzo, D. P.

A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nat. Photonics1(8), 468–472 (2007).
[CrossRef]

Regensburger, A.

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater.23(22-23), 2515–2533 (2011).
[CrossRef] [PubMed]

Rindzevicius, T.

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc.127(14), 5043–5048 (2005).
[CrossRef] [PubMed]

Rodrigo, S. G.

Rodriguez, S. R. K.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011).
[CrossRef] [PubMed]

Rogers, J. A.

J. Maria, T. T. Truong, J. Yao, T. W. Lee, R. G. Nuzzo, S. Leyffer, S. K. Gray, and J. A. Rogers, “Optimization of 3D plasmonic crystal structures for refractive index sensing,” J. Phys. Chem. C113(24), 10493–10499 (2009).
[CrossRef]

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Romanov, S. G.

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater.23(22-23), 2515–2533 (2011).
[CrossRef] [PubMed]

B. Ding, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Three-dimensional photonic crystals with an active surface: Gold film terminated opals,” Phys. Rev. B82(3), 035119 (2010).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Schaafsma, M. C.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011).
[CrossRef] [PubMed]

Schroden, R. C.

R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mater.14(8), 3305–3315 (2002).
[CrossRef]

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spacer-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Sheppard, B. J.

Y. Wang, G. A. Ameer, B. J. Sheppard, and R. Langer, “A tough biodegradable elastomer,” Nat. Biotechnol.20(6), 602–606 (2002).
[CrossRef] [PubMed]

Shi, L.

X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater.20(12), 1910–1916 (2010).
[CrossRef]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chem. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Soares, J. A. N. T.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Spitzberg, J. D.

S. Kim, A. N. Mitropoulos, J. D. Spitzberg, H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk inverse opals,” Nat. Photonics6(12), 818–823 (2012).
[CrossRef]

Sprik, R.

W. L. Vos, R. Sprik, A. Blaaderen, A. Imhof, A. Lagendijk, and G. H. Wegdam, “Strong effects of photonic band structures on the diffraction of colloidal crystals,” Phys. Rev. B53, 16231–16235 (1996).

Stein, A.

R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mater.14(8), 3305–3315 (2002).
[CrossRef]

Stewart, M. E.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spacer-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Strikwerda, A. C.

H. Tao, J. J. Amsden, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterial silk composites at terahertz frequencies,” Adv. Mater.22(32), 3527–3531 (2010).
[CrossRef] [PubMed]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chem. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spacer-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chem. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Sutherland, D. S.

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc.127(14), 5043–5048 (2005).
[CrossRef] [PubMed]

Tao, H.

S. Kim, A. N. Mitropoulos, J. D. Spitzberg, H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk inverse opals,” Nat. Photonics6(12), 818–823 (2012).
[CrossRef]

H. Tao, J. J. Amsden, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterial silk composites at terahertz frequencies,” Adv. Mater.22(32), 3527–3531 (2010).
[CrossRef] [PubMed]

Truong, T. T.

J. Maria, T. T. Truong, J. Yao, T. W. Lee, R. G. Nuzzo, S. Leyffer, S. K. Gray, and J. A. Rogers, “Optimization of 3D plasmonic crystal structures for refractive index sensing,” J. Phys. Chem. C113(24), 10493–10499 (2009).
[CrossRef]

Valentin, T.

J. Zhang, E. Pritchard, X. Hu, T. Valentin, B. Panilatis, F. G. Omenetto, and D. L. Kaplan, “Stabilization of vaccines and antibodies in silk and eliminating the cold chain,” Proc. Nat. Acad. Soc.109(30), 11981–11986 (2012).
[CrossRef]

Vos, W. L.

W. L. Vos, R. Sprik, A. Blaaderen, A. Imhof, A. Lagendijk, and G. H. Wegdam, “Strong effects of photonic band structures on the diffraction of colloidal crystals,” Phys. Rev. B53, 16231–16235 (1996).

Wang, Y.

Y. Wang, G. A. Ameer, B. J. Sheppard, and R. Langer, “A tough biodegradable elastomer,” Nat. Biotechnol.20(6), 602–606 (2002).
[CrossRef] [PubMed]

Wegdam, G. H.

W. L. Vos, R. Sprik, A. Blaaderen, A. Imhof, A. Lagendijk, and G. H. Wegdam, “Strong effects of photonic band structures on the diffraction of colloidal crystals,” Phys. Rev. B53, 16231–16235 (1996).

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chem. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

White, R. D.

J. J. Amsden, P. Domachuk, A. Gopinath, R. D. White, L. D. Negro, D. L. Kaplan, and F. G. Omenetto, “Rapid nanoimprinting of silk fibroin films for biophotonic applications,” Adv. Mater.22(15), 1746–1749 (2010).
[CrossRef] [PubMed]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spacer-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Yanik, A. A.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10(12), 4962–4969 (2010).
[CrossRef] [PubMed]

Yao, J.

J. Maria, T. T. Truong, J. Yao, T. W. Lee, R. G. Nuzzo, S. Leyffer, S. K. Gray, and J. A. Rogers, “Optimization of 3D plasmonic crystal structures for refractive index sensing,” J. Phys. Chem. C113(24), 10493–10499 (2009).
[CrossRef]

Yu, X.

X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater.20(12), 1910–1916 (2010).
[CrossRef]

Zäch, M.

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc.127(14), 5043–5048 (2005).
[CrossRef] [PubMed]

Zayats, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Zhang, J.

J. Zhang, E. Pritchard, X. Hu, T. Valentin, B. Panilatis, F. G. Omenetto, and D. L. Kaplan, “Stabilization of vaccines and antibodies in silk and eliminating the cold chain,” Proc. Nat. Acad. Soc.109(30), 11981–11986 (2012).
[CrossRef]

Zhang, X.

H. Tao, J. J. Amsden, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterial silk composites at terahertz frequencies,” Adv. Mater.22(32), 3527–3531 (2010).
[CrossRef] [PubMed]

Zhang, Y.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011).
[CrossRef] [PubMed]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spacer-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chem. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Zi, J.

X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater.20(12), 1910–1916 (2010).
[CrossRef]

ACS Nano (1)

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater.20(12), 1910–1916 (2010).
[CrossRef]

Adv. Mater. (3)

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater.23(22-23), 2515–2533 (2011).
[CrossRef] [PubMed]

J. J. Amsden, P. Domachuk, A. Gopinath, R. D. White, L. D. Negro, D. L. Kaplan, and F. G. Omenetto, “Rapid nanoimprinting of silk fibroin films for biophotonic applications,” Adv. Mater.22(15), 1746–1749 (2010).
[CrossRef] [PubMed]

H. Tao, J. J. Amsden, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterial silk composites at terahertz frequencies,” Adv. Mater.22(32), 3527–3531 (2010).
[CrossRef] [PubMed]

Anal. Bioanal. Chem. (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem.377(3), 528–539 (2003).
[CrossRef] [PubMed]

Anal. Chem. (2)

N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem.74(3), 504–509 (2002).
[CrossRef] [PubMed]

M. Frost and M. E. Meyerhoff, “In vivo chemical sensors: Tracking biocompatibility,” Anal. Chem.78(21), 7370–7377 (2006).
[CrossRef] [PubMed]

Anal. Chem. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chem. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fiber-coupled surface-emitting photonic crystal bandedge laser for biochemical sensor applications,” Appl. Phys. Lett.94(13), 133503 (2009).
[CrossRef]

N. Ganesh, I. D. Block, and B. T. Cunningham, “Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio,” Appl. Phys. Lett.89(2), 023901 (2006).
[CrossRef]

Chem. Mater. (1)

R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mater.14(8), 3305–3315 (2002).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

J. Am. Chem. Soc. (1)

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc.127(14), 5043–5048 (2005).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

J. Maria, T. T. Truong, J. Yao, T. W. Lee, R. G. Nuzzo, S. Leyffer, S. K. Gray, and J. A. Rogers, “Optimization of 3D plasmonic crystal structures for refractive index sensing,” J. Phys. Chem. C113(24), 10493–10499 (2009).
[CrossRef]

Nano Lett. (1)

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10(12), 4962–4969 (2010).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

Y. Wang, G. A. Ameer, B. J. Sheppard, and R. Langer, “A tough biodegradable elastomer,” Nat. Biotechnol.20(6), 602–606 (2002).
[CrossRef] [PubMed]

Nat. Mater. (1)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Nat. Photonics (3)

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics2(11), 641–643 (2008).
[CrossRef]

A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, “Photonic-crystal full-colour displays,” Nat. Photonics1(8), 468–472 (2007).
[CrossRef]

S. Kim, A. N. Mitropoulos, J. D. Spitzberg, H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk inverse opals,” Nat. Photonics6(12), 818–823 (2012).
[CrossRef]

Nature (2)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spacer-based nanolaser,” Nature460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. B (2)

W. L. Vos, R. Sprik, A. Blaaderen, A. Imhof, A. Lagendijk, and G. H. Wegdam, “Strong effects of photonic band structures on the diffraction of colloidal crystals,” Phys. Rev. B53, 16231–16235 (1996).

B. Ding, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Three-dimensional photonic crystals with an active surface: Gold film terminated opals,” Phys. Rev. B82(3), 035119 (2010).
[CrossRef]

Proc. Nat. Acad. Soc. (1)

J. Zhang, E. Pritchard, X. Hu, T. Valentin, B. Panilatis, F. G. Omenetto, and D. L. Kaplan, “Stabilization of vaccines and antibodies in silk and eliminating the cold chain,” Proc. Nat. Acad. Soc.109(30), 11981–11986 (2012).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Other (1)

P. Y. Chung, K. L. Lee, G. Schultz, P. K. Wei, and C. Batichm, “Multispectral refractive index sensing using surface plasmon resonance on gold nanosilts,” MRS Proc. 1253, 1253–K10–26 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic illustration of the fabrication of the hybrid photonic-plasmonic crystal composed of a biocompatible silk inverse opal (SIO) and an Ag cap array.

Fig. 2
Fig. 2

(a), (b) SEM images of an Ag-deposited PMMA opal and a SIO. (c) Optical image of the top view of the HPPC. Green irradiation originates from diffraction by the SIO. The scale bars in both (a) and (b) are 500-nm.

Fig. 3
Fig. 3

Transmission spectra of (a) the bare opal, (b) the plasmonic crystal, and (c) the HPPC. By comparison, a linear superposition (black dots) of (b) and (c) is plotted in (c). (d) Calculated transmission spectrum for the plasmonic crystal. (e) Computed intensity of the magnetic field (perpendicular component to the image plane) associated with the resonance at 470 nm. The intensity is concentrated at the Ag/silk interface.

Fig. 4
Fig. 4

(a) Transmission spectra of the HPPC structure immerged in analytes with different RI (inset) and (b) magnified spectra to appear a pseudo-PBG shift. (c) Normalized differences in transmission as a function of wavelength when the 1.30 of RI is base. The plot is evaluated at different RI; 1.32 (black), 1.34 (blue), 1.36 (cyan), and 1.38 (red). (d) Plot of the integrated response of the HPPC over a wavelength range of 350-850 nm as a function of the change in RI. From a linear fit of the plot in (b), the HPPC exhibits a sensitivity ≈200,000 nm·Δ%T/RIU (refractive index unit).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

m λ Bragg =2 d 111 n eff 2 sin 2 θ ,
k(ω)=± k SPP (ω) 2 { 2π 3 a (2ji)} 2 2πj a , (i,j)=0,±1,±2,,
R= | T analyte T base T base | dλ,

Metrics