## Abstract

A new kind of plenoptic imaging system based on Laser Optical Feedback Imaging (LOFI) is presented and is compared to another previously existing device based on microlens array. Improved photometric performances, resolution and depth of field are obtained at the price of a slow point by point scanning. Main properties of plenoptic microscopes such as numerical refocusing on any curved surface or aberrations compensation are both theoretically and experimentally demonstrated with a LOFI-based device.

© 2013 OSA

Full Article |

PDF Article
### Equations (9)

Equations on this page are rendered with MathJax. Learn more.

(1)
$${h}_{R}(L,x,y)={\left(\mathrm{exp}(-\frac{{x}^{2}+{y}^{2}}{{\left(\frac{\lambda L}{\pi r}\right)}^{2}})\mathrm{exp}(j2\pi \frac{{x}^{2}+{y}^{2}}{2L\lambda})\right)}^{2}$$
(2)
$${H}_{R}(L,\upsilon ,\mu )\propto \mathrm{exp}(-\frac{{\upsilon}^{2}+{\mu}^{2}}{{\left(\frac{\sqrt{2}}{\pi r}\right)}^{2}})\mathrm{exp}(-j\frac{\pi L\lambda ({\upsilon}^{2}+{\mu}^{2})}{2})$$
(3)
$${H}_{filt}(L,\upsilon ,\mu )=\mathrm{exp}\left(j\frac{\pi L\lambda ({\upsilon}^{2}+{\mu}^{2})}{2}\right)$$
(4)
$$\left|{h}_{SA}(x,y)\right|=\left|T{F}^{-1}\left({H}_{R}(L,\upsilon ,\mu ){H}_{filt}(L,\upsilon ,\mu )\right)\right|=\mathrm{exp}\left(-\frac{{x}^{2}+{y}^{2}}{{\left(\frac{r}{\sqrt{2}}\right)}^{2}}\right)$$
(5)
$${H}_{R}^{\text{'}}(L,\upsilon ,\mu )={H}_{R}(L,\upsilon ,\mu ){H}_{aber}(\upsilon ,\mu )$$
(6)
$${H}_{filt}^{\text{'}}(L,\upsilon ,\mu )={H}_{filt}(L,\upsilon ,\mu ){H}_{aber}^{-1}(\upsilon ,\mu )$$
(7)
$$\begin{array}{l}{H}_{aber}(\rho ,\phi )={H}_{astig}(A,\rho ,\phi ){H}_{coma}(B,\rho ,\phi )\\ {H}_{astig}(A,\rho ,\phi )=\mathrm{exp}\left(jA{\rho}^{2}\mathrm{cos}\left(2(\phi -{\phi}_{0})\right)\right)\\ {H}_{coma}(B,\rho ,\phi )=\mathrm{exp}\left(jB{\rho}^{3}\mathrm{cos}\left(\phi -{\phi}_{0}\right)\right)\end{array}$$
(8)
$${s}_{SA}(x,y)={s}_{R}(x,y)*{h}_{filt}(L,x,y)$$
(9)
$${s}_{SA}(x,y)={\displaystyle \underset{S}{\iint}{s}_{R}({x}_{0},{y}_{0}){h}_{filt}\left(L(x,y),{x}_{0}-x,{y}_{0}-y\right)d{x}_{0}d{y}_{0}}$$