Abstract

We demonstrate trapping and characterization of multiple gold nanospheres with a setup composed of dark field imaging and optical tweezers. The number of trapped nanospheres is quantified by the overall dark-field scattering intensity. The spectra of the scattering intensity show that there is no interparticle coupling among trapped nanospheres when the density of nanospheres in the trap is low enough (less than 10 particles), while the density of nanosphere increases the interparticle coupling of nanospheres becomes obvious. In addition, the trapping potential of a single gold nanosphere is obtained by trapping an ensemble of gold nanospheres.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970).
    [CrossRef]
  2. A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett.19(8), 283–285 (1971).
    [CrossRef]
  3. E. Fällman and O. Axner, “Design for fully steerable dual-trap optical tweezers,” Appl. Opt.36(10), 2107–2113 (1997).
    [CrossRef] [PubMed]
  4. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun.185(1-3), 77–82 (2000).
    [CrossRef]
  5. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207(1-6), 169–175 (2002).
    [CrossRef]
  6. L. Ling, H. L. Guo, L. Huang, E. Qu, Z. L. Li, and Z. Y. Li, “The measurement of displacement and optical force in multi-optical tweezers,” Chin. Phys. Lett.29(1), 014214 (2012).
    [CrossRef]
  7. J. P. Yin, Y. F. Zhu, W. B. Wang, Y. Z. Wang, and W. Jhe, “Optical potential for atom guidance in a dark hollow laser beam,” J. Opt. Soc. Am. B15(1), 25–33 (1998).
    [CrossRef]
  8. A. T. O’Neil and M. J. Padgett, “Axial and lateral trapping efficiency of Laguerre–Gaussian modes in inverted optical tweezers,” Opt. Commun.193(1-6), 45–50 (2001).
    [CrossRef]
  9. Q. W. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express12(15), 3377–3382 (2004).
    [CrossRef] [PubMed]
  10. L. Huang, H. L. Guo, J. F. Li, L. Ling, B. H. Feng, and Z. Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett.37(10), 1694–1696 (2012).
    [CrossRef] [PubMed]
  11. T. Ketelaar, H. S. van der Honing, and A. M. Emons, “Probing cytoplasmic organization and the actin cytoskeleton of plant cells with optical tweezers,” Biochem. Soc. Trans.38(3), 823–828 (2010).
    [CrossRef] [PubMed]
  12. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett.19(13), 930–932 (1994).
    [CrossRef] [PubMed]
  13. T. Rodgers, S. Shoji, Z. Sekkat, and S. Kawata, “Selective aggregation of single-walled carbon nanotubes using the large optical field gradient of a focused laser beam,” Phys. Rev. Lett.101(12), 127402 (2008).
    [CrossRef] [PubMed]
  14. M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev.35(11), 1084–1094 (2006).
    [CrossRef] [PubMed]
  15. J. F. Li, S. Y. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic filminduced by aligned gold nanorods,” Appl. Phys. Lett.96(26), 263103 (2010).
    [CrossRef]
  16. F. Zhou, Z. Y. Li, Y. Liu, and Y. N. Xia, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles,” J. Phys. Chem. C112(51), 20233–20240 (2008).
    [CrossRef]
  17. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett.5(10), 1937–1942 (2005).
    [CrossRef] [PubMed]
  18. J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett.4(1), 115–118 (2004).
    [CrossRef]
  19. L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett.10(1), 268–273 (2010).
    [CrossRef] [PubMed]
  20. B. Agate, C. Brown, W. Sibbett, and K. Dholakia, “Femtosecond optical tweezers for in-situ control of two-photon fluorescence,” Opt. Express12(13), 3011–3017 (2004).
    [CrossRef] [PubMed]
  21. Y. Jiang, T. Narushima, and H. Okamoto, “Nonlinear optical effects in trapping nanoparticles with femtosecond pulses,” Nat. Phys.6(12), 1005–1009 (2010).
    [CrossRef]
  22. M. J. Guffey and N. F. Scherer, “All-optical patterning of au nanoparticles on surfaces using optical traps,” Nano Lett.10(11), 4302–4308 (2010).
    [CrossRef] [PubMed]
  23. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–2809 (2004).
    [CrossRef] [PubMed]
  24. P. Wu, R. Huang, C. Tischer, A. Jonas, and E. L. Florin, “Direct measurement of the nonconservative force field generated by optical tweezers,” Phys. Rev. Lett.103(10), 108101 (2009).
    [CrossRef] [PubMed]
  25. R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J.70(4), 1813–1822 (1996).
    [CrossRef] [PubMed]
  26. L. A. Hough and H. D. Ou-Yang, “A new probe for mechanical testing of nanostructures in soft materials,” J. Nanopart. Res.1(4), 495–499 (1999).
    [CrossRef]
  27. M. J. Lang, P. M. Fordyce, and S. M. Block, “Combined optical trapping and single-molecule fluorescence,” J. Biol.2(1), 6 (2003).
    [CrossRef] [PubMed]
  28. K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum.75(3), 594 (2004).
    [CrossRef]
  29. E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys A.66(7), S75–S78 (1998).
    [CrossRef]
  30. J. Junio, J. Ng, J. A. Cohen, Z. F. Lin, and H. D. Ou-Yang, “Ensemble method to measure the potential energy of nanoparticles in an optical trap,” Opt. Lett.36(8), 1497–1499 (2011).
    [CrossRef] [PubMed]
  31. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
    [CrossRef]
  32. C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature382(6592), 607–609 (1996).
    [CrossRef] [PubMed]
  33. L. Ling, F. Zhou, L. Huang, and Z. Y. Li, “Optical forces on arbitrary shaped particles in optical tweezers,” J. Appl. Phys.108(7), 073110 (2010).
    [CrossRef]

2012 (2)

L. Ling, H. L. Guo, L. Huang, E. Qu, Z. L. Li, and Z. Y. Li, “The measurement of displacement and optical force in multi-optical tweezers,” Chin. Phys. Lett.29(1), 014214 (2012).
[CrossRef]

L. Huang, H. L. Guo, J. F. Li, L. Ling, B. H. Feng, and Z. Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett.37(10), 1694–1696 (2012).
[CrossRef] [PubMed]

2011 (1)

2010 (6)

L. Ling, F. Zhou, L. Huang, and Z. Y. Li, “Optical forces on arbitrary shaped particles in optical tweezers,” J. Appl. Phys.108(7), 073110 (2010).
[CrossRef]

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett.10(1), 268–273 (2010).
[CrossRef] [PubMed]

Y. Jiang, T. Narushima, and H. Okamoto, “Nonlinear optical effects in trapping nanoparticles with femtosecond pulses,” Nat. Phys.6(12), 1005–1009 (2010).
[CrossRef]

M. J. Guffey and N. F. Scherer, “All-optical patterning of au nanoparticles on surfaces using optical traps,” Nano Lett.10(11), 4302–4308 (2010).
[CrossRef] [PubMed]

T. Ketelaar, H. S. van der Honing, and A. M. Emons, “Probing cytoplasmic organization and the actin cytoskeleton of plant cells with optical tweezers,” Biochem. Soc. Trans.38(3), 823–828 (2010).
[CrossRef] [PubMed]

J. F. Li, S. Y. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic filminduced by aligned gold nanorods,” Appl. Phys. Lett.96(26), 263103 (2010).
[CrossRef]

2009 (1)

P. Wu, R. Huang, C. Tischer, A. Jonas, and E. L. Florin, “Direct measurement of the nonconservative force field generated by optical tweezers,” Phys. Rev. Lett.103(10), 108101 (2009).
[CrossRef] [PubMed]

2008 (2)

F. Zhou, Z. Y. Li, Y. Liu, and Y. N. Xia, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles,” J. Phys. Chem. C112(51), 20233–20240 (2008).
[CrossRef]

T. Rodgers, S. Shoji, Z. Sekkat, and S. Kawata, “Selective aggregation of single-walled carbon nanotubes using the large optical field gradient of a focused laser beam,” Phys. Rev. Lett.101(12), 127402 (2008).
[CrossRef] [PubMed]

2006 (1)

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev.35(11), 1084–1094 (2006).
[CrossRef] [PubMed]

2005 (1)

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett.5(10), 1937–1942 (2005).
[CrossRef] [PubMed]

2004 (5)

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett.4(1), 115–118 (2004).
[CrossRef]

Q. W. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express12(15), 3377–3382 (2004).
[CrossRef] [PubMed]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

B. Agate, C. Brown, W. Sibbett, and K. Dholakia, “Femtosecond optical tweezers for in-situ control of two-photon fluorescence,” Opt. Express12(13), 3011–3017 (2004).
[CrossRef] [PubMed]

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum.75(3), 594 (2004).
[CrossRef]

2003 (2)

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

M. J. Lang, P. M. Fordyce, and S. M. Block, “Combined optical trapping and single-molecule fluorescence,” J. Biol.2(1), 6 (2003).
[CrossRef] [PubMed]

2002 (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207(1-6), 169–175 (2002).
[CrossRef]

2001 (1)

A. T. O’Neil and M. J. Padgett, “Axial and lateral trapping efficiency of Laguerre–Gaussian modes in inverted optical tweezers,” Opt. Commun.193(1-6), 45–50 (2001).
[CrossRef]

2000 (1)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun.185(1-3), 77–82 (2000).
[CrossRef]

1999 (1)

L. A. Hough and H. D. Ou-Yang, “A new probe for mechanical testing of nanostructures in soft materials,” J. Nanopart. Res.1(4), 495–499 (1999).
[CrossRef]

1998 (2)

E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys A.66(7), S75–S78 (1998).
[CrossRef]

J. P. Yin, Y. F. Zhu, W. B. Wang, Y. Z. Wang, and W. Jhe, “Optical potential for atom guidance in a dark hollow laser beam,” J. Opt. Soc. Am. B15(1), 25–33 (1998).
[CrossRef]

1997 (1)

1996 (2)

C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature382(6592), 607–609 (1996).
[CrossRef] [PubMed]

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J.70(4), 1813–1822 (1996).
[CrossRef] [PubMed]

1994 (1)

1971 (1)

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett.19(8), 283–285 (1971).
[CrossRef]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970).
[CrossRef]

Agate, B.

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett.19(8), 283–285 (1971).
[CrossRef]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970).
[CrossRef]

Au, L.

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev.35(11), 1084–1094 (2006).
[CrossRef] [PubMed]

Axner, O.

Berg-Sørensen, K.

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum.75(3), 594 (2004).
[CrossRef]

Bhatia, V. K.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett.5(10), 1937–1942 (2005).
[CrossRef] [PubMed]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

M. J. Lang, P. M. Fordyce, and S. M. Block, “Combined optical trapping and single-molecule fluorescence,” J. Biol.2(1), 6 (2003).
[CrossRef] [PubMed]

K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett.19(13), 930–932 (1994).
[CrossRef] [PubMed]

Brown, C.

Chen, J. Y.

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev.35(11), 1084–1094 (2006).
[CrossRef] [PubMed]

Chu, S.

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J.70(4), 1813–1822 (1996).
[CrossRef] [PubMed]

Cohen, J. A.

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207(1-6), 169–175 (2002).
[CrossRef]

Dholakia, K.

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett.19(8), 283–285 (1971).
[CrossRef]

Emons, A. M.

T. Ketelaar, H. S. van der Honing, and A. M. Emons, “Probing cytoplasmic organization and the actin cytoskeleton of plant cells with optical tweezers,” Biochem. Soc. Trans.38(3), 823–828 (2010).
[CrossRef] [PubMed]

Enger, J.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett.4(1), 115–118 (2004).
[CrossRef]

Fällman, E.

Feng, B. H.

Finer, J. T.

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J.70(4), 1813–1822 (1996).
[CrossRef] [PubMed]

Florin, E. L.

P. Wu, R. Huang, C. Tischer, A. Jonas, and E. L. Florin, “Direct measurement of the nonconservative force field generated by optical tweezers,” Phys. Rev. Lett.103(10), 108101 (2009).
[CrossRef] [PubMed]

E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys A.66(7), S75–S78 (1998).
[CrossRef]

Flyvbjerg, H.

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum.75(3), 594 (2004).
[CrossRef]

Fordyce, P. M.

M. J. Lang, P. M. Fordyce, and S. M. Block, “Combined optical trapping and single-molecule fluorescence,” J. Biol.2(1), 6 (2003).
[CrossRef] [PubMed]

Goksör, M.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett.4(1), 115–118 (2004).
[CrossRef]

Grier, D. G.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207(1-6), 169–175 (2002).
[CrossRef]

Guffey, M. J.

M. J. Guffey and N. F. Scherer, “All-optical patterning of au nanoparticles on surfaces using optical traps,” Nano Lett.10(11), 4302–4308 (2010).
[CrossRef] [PubMed]

Guo, H. L.

L. Ling, H. L. Guo, L. Huang, E. Qu, Z. L. Li, and Z. Y. Li, “The measurement of displacement and optical force in multi-optical tweezers,” Chin. Phys. Lett.29(1), 014214 (2012).
[CrossRef]

L. Huang, H. L. Guo, J. F. Li, L. Ling, B. H. Feng, and Z. Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett.37(10), 1694–1696 (2012).
[CrossRef] [PubMed]

Haist, T.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun.185(1-3), 77–82 (2000).
[CrossRef]

Hansen, P. M.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett.5(10), 1937–1942 (2005).
[CrossRef] [PubMed]

Hanstorp, D.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett.4(1), 115–118 (2004).
[CrossRef]

Harrit, N.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett.5(10), 1937–1942 (2005).
[CrossRef] [PubMed]

Hartland, G. V.

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev.35(11), 1084–1094 (2006).
[CrossRef] [PubMed]

Hörber, J. K. H.

E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys A.66(7), S75–S78 (1998).
[CrossRef]

Hough, L. A.

L. A. Hough and H. D. Ou-Yang, “A new probe for mechanical testing of nanostructures in soft materials,” J. Nanopart. Res.1(4), 495–499 (1999).
[CrossRef]

Hu, M.

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev.35(11), 1084–1094 (2006).
[CrossRef] [PubMed]

Huang, L.

L. Ling, H. L. Guo, L. Huang, E. Qu, Z. L. Li, and Z. Y. Li, “The measurement of displacement and optical force in multi-optical tweezers,” Chin. Phys. Lett.29(1), 014214 (2012).
[CrossRef]

L. Huang, H. L. Guo, J. F. Li, L. Ling, B. H. Feng, and Z. Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett.37(10), 1694–1696 (2012).
[CrossRef] [PubMed]

L. Ling, F. Zhou, L. Huang, and Z. Y. Li, “Optical forces on arbitrary shaped particles in optical tweezers,” J. Appl. Phys.108(7), 073110 (2010).
[CrossRef]

Huang, R.

P. Wu, R. Huang, C. Tischer, A. Jonas, and E. L. Florin, “Direct measurement of the nonconservative force field generated by optical tweezers,” Phys. Rev. Lett.103(10), 108101 (2009).
[CrossRef] [PubMed]

Jhe, W.

Jiang, Y.

Y. Jiang, T. Narushima, and H. Okamoto, “Nonlinear optical effects in trapping nanoparticles with femtosecond pulses,” Nat. Phys.6(12), 1005–1009 (2010).
[CrossRef]

Jonas, A.

P. Wu, R. Huang, C. Tischer, A. Jonas, and E. L. Florin, “Direct measurement of the nonconservative force field generated by optical tweezers,” Phys. Rev. Lett.103(10), 108101 (2009).
[CrossRef] [PubMed]

Junio, J.

Käll, M.

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett.10(1), 268–273 (2010).
[CrossRef] [PubMed]

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett.4(1), 115–118 (2004).
[CrossRef]

Kawata, S.

T. Rodgers, S. Shoji, Z. Sekkat, and S. Kawata, “Selective aggregation of single-walled carbon nanotubes using the large optical field gradient of a focused laser beam,” Phys. Rev. Lett.101(12), 127402 (2008).
[CrossRef] [PubMed]

Ketelaar, T.

T. Ketelaar, H. S. van der Honing, and A. M. Emons, “Probing cytoplasmic organization and the actin cytoskeleton of plant cells with optical tweezers,” Biochem. Soc. Trans.38(3), 823–828 (2010).
[CrossRef] [PubMed]

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207(1-6), 169–175 (2002).
[CrossRef]

Lang, M. J.

M. J. Lang, P. M. Fordyce, and S. M. Block, “Combined optical trapping and single-molecule fluorescence,” J. Biol.2(1), 6 (2003).
[CrossRef] [PubMed]

Letsinger, R. L.

C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature382(6592), 607–609 (1996).
[CrossRef] [PubMed]

Li, J. F.

L. Huang, H. L. Guo, J. F. Li, L. Ling, B. H. Feng, and Z. Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett.37(10), 1694–1696 (2012).
[CrossRef] [PubMed]

J. F. Li, S. Y. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic filminduced by aligned gold nanorods,” Appl. Phys. Lett.96(26), 263103 (2010).
[CrossRef]

Li, X. D.

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev.35(11), 1084–1094 (2006).
[CrossRef] [PubMed]

Li, Z. L.

L. Ling, H. L. Guo, L. Huang, E. Qu, Z. L. Li, and Z. Y. Li, “The measurement of displacement and optical force in multi-optical tweezers,” Chin. Phys. Lett.29(1), 014214 (2012).
[CrossRef]

Li, Z. Y.

L. Ling, H. L. Guo, L. Huang, E. Qu, Z. L. Li, and Z. Y. Li, “The measurement of displacement and optical force in multi-optical tweezers,” Chin. Phys. Lett.29(1), 014214 (2012).
[CrossRef]

L. Huang, H. L. Guo, J. F. Li, L. Ling, B. H. Feng, and Z. Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett.37(10), 1694–1696 (2012).
[CrossRef] [PubMed]

J. F. Li, S. Y. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic filminduced by aligned gold nanorods,” Appl. Phys. Lett.96(26), 263103 (2010).
[CrossRef]

L. Ling, F. Zhou, L. Huang, and Z. Y. Li, “Optical forces on arbitrary shaped particles in optical tweezers,” J. Appl. Phys.108(7), 073110 (2010).
[CrossRef]

F. Zhou, Z. Y. Li, Y. Liu, and Y. N. Xia, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles,” J. Phys. Chem. C112(51), 20233–20240 (2008).
[CrossRef]

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev.35(11), 1084–1094 (2006).
[CrossRef] [PubMed]

Liesener, J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun.185(1-3), 77–82 (2000).
[CrossRef]

Lin, Z. F.

Ling, L.

L. Ling, H. L. Guo, L. Huang, E. Qu, Z. L. Li, and Z. Y. Li, “The measurement of displacement and optical force in multi-optical tweezers,” Chin. Phys. Lett.29(1), 014214 (2012).
[CrossRef]

L. Huang, H. L. Guo, J. F. Li, L. Ling, B. H. Feng, and Z. Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett.37(10), 1694–1696 (2012).
[CrossRef] [PubMed]

L. Ling, F. Zhou, L. Huang, and Z. Y. Li, “Optical forces on arbitrary shaped particles in optical tweezers,” J. Appl. Phys.108(7), 073110 (2010).
[CrossRef]

Liu, S. Y.

J. F. Li, S. Y. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic filminduced by aligned gold nanorods,” Appl. Phys. Lett.96(26), 263103 (2010).
[CrossRef]

Liu, Y.

J. F. Li, S. Y. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic filminduced by aligned gold nanorods,” Appl. Phys. Lett.96(26), 263103 (2010).
[CrossRef]

F. Zhou, Z. Y. Li, Y. Liu, and Y. N. Xia, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles,” J. Phys. Chem. C112(51), 20233–20240 (2008).
[CrossRef]

Marquez, M.

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev.35(11), 1084–1094 (2006).
[CrossRef] [PubMed]

Miljkovic, V. D.

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett.10(1), 268–273 (2010).
[CrossRef] [PubMed]

Mirkin, C. A.

C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature382(6592), 607–609 (1996).
[CrossRef] [PubMed]

Mock, J. J.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Mucic, R. C.

C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature382(6592), 607–609 (1996).
[CrossRef] [PubMed]

Narushima, T.

Y. Jiang, T. Narushima, and H. Okamoto, “Nonlinear optical effects in trapping nanoparticles with femtosecond pulses,” Nat. Phys.6(12), 1005–1009 (2010).
[CrossRef]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

Ng, J.

O’Neil, A. T.

A. T. O’Neil and M. J. Padgett, “Axial and lateral trapping efficiency of Laguerre–Gaussian modes in inverted optical tweezers,” Opt. Commun.193(1-6), 45–50 (2001).
[CrossRef]

Oddershede, L.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett.5(10), 1937–1942 (2005).
[CrossRef] [PubMed]

Okamoto, H.

Y. Jiang, T. Narushima, and H. Okamoto, “Nonlinear optical effects in trapping nanoparticles with femtosecond pulses,” Nat. Phys.6(12), 1005–1009 (2010).
[CrossRef]

Ou-Yang, H. D.

J. Junio, J. Ng, J. A. Cohen, Z. F. Lin, and H. D. Ou-Yang, “Ensemble method to measure the potential energy of nanoparticles in an optical trap,” Opt. Lett.36(8), 1497–1499 (2011).
[CrossRef] [PubMed]

L. A. Hough and H. D. Ou-Yang, “A new probe for mechanical testing of nanostructures in soft materials,” J. Nanopart. Res.1(4), 495–499 (1999).
[CrossRef]

Padgett, M. J.

A. T. O’Neil and M. J. Padgett, “Axial and lateral trapping efficiency of Laguerre–Gaussian modes in inverted optical tweezers,” Opt. Commun.193(1-6), 45–50 (2001).
[CrossRef]

Pralle, A.

E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys A.66(7), S75–S78 (1998).
[CrossRef]

Prikulis, J.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett.4(1), 115–118 (2004).
[CrossRef]

Qu, E.

L. Ling, H. L. Guo, L. Huang, E. Qu, Z. L. Li, and Z. Y. Li, “The measurement of displacement and optical force in multi-optical tweezers,” Chin. Phys. Lett.29(1), 014214 (2012).
[CrossRef]

Ramser, K.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett.4(1), 115–118 (2004).
[CrossRef]

Reicherter, M.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun.185(1-3), 77–82 (2000).
[CrossRef]

Rodgers, T.

T. Rodgers, S. Shoji, Z. Sekkat, and S. Kawata, “Selective aggregation of single-walled carbon nanotubes using the large optical field gradient of a focused laser beam,” Phys. Rev. Lett.101(12), 127402 (2008).
[CrossRef] [PubMed]

Scherer, N. F.

M. J. Guffey and N. F. Scherer, “All-optical patterning of au nanoparticles on surfaces using optical traps,” Nano Lett.10(11), 4302–4308 (2010).
[CrossRef] [PubMed]

Schultz, S.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Sekkat, Z.

T. Rodgers, S. Shoji, Z. Sekkat, and S. Kawata, “Selective aggregation of single-walled carbon nanotubes using the large optical field gradient of a focused laser beam,” Phys. Rev. Lett.101(12), 127402 (2008).
[CrossRef] [PubMed]

Shoji, S.

T. Rodgers, S. Shoji, Z. Sekkat, and S. Kawata, “Selective aggregation of single-walled carbon nanotubes using the large optical field gradient of a focused laser beam,” Phys. Rev. Lett.101(12), 127402 (2008).
[CrossRef] [PubMed]

Sibbett, W.

Simmons, R. M.

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J.70(4), 1813–1822 (1996).
[CrossRef] [PubMed]

Smith, D. R.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Spudich, J. A.

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J.70(4), 1813–1822 (1996).
[CrossRef] [PubMed]

Stelzer, E. H. K.

E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys A.66(7), S75–S78 (1998).
[CrossRef]

Storhoff, J. J.

C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature382(6592), 607–609 (1996).
[CrossRef] [PubMed]

Su, K. H.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Svedberg, F.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett.4(1), 115–118 (2004).
[CrossRef]

Svoboda, K.

Tischer, C.

P. Wu, R. Huang, C. Tischer, A. Jonas, and E. L. Florin, “Direct measurement of the nonconservative force field generated by optical tweezers,” Phys. Rev. Lett.103(10), 108101 (2009).
[CrossRef] [PubMed]

Tiziani, H. J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun.185(1-3), 77–82 (2000).
[CrossRef]

Tong, L.

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett.10(1), 268–273 (2010).
[CrossRef] [PubMed]

van der Honing, H. S.

T. Ketelaar, H. S. van der Honing, and A. M. Emons, “Probing cytoplasmic organization and the actin cytoskeleton of plant cells with optical tweezers,” Biochem. Soc. Trans.38(3), 823–828 (2010).
[CrossRef] [PubMed]

Wang, W. B.

Wang, Y. Z.

Wei, Q. H.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Wu, P.

P. Wu, R. Huang, C. Tischer, A. Jonas, and E. L. Florin, “Direct measurement of the nonconservative force field generated by optical tweezers,” Phys. Rev. Lett.103(10), 108101 (2009).
[CrossRef] [PubMed]

Xia, Y. N.

F. Zhou, Z. Y. Li, Y. Liu, and Y. N. Xia, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles,” J. Phys. Chem. C112(51), 20233–20240 (2008).
[CrossRef]

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev.35(11), 1084–1094 (2006).
[CrossRef] [PubMed]

Yin, J. P.

Zhan, Q. W.

Zhang, X.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Zhou, F.

L. Ling, F. Zhou, L. Huang, and Z. Y. Li, “Optical forces on arbitrary shaped particles in optical tweezers,” J. Appl. Phys.108(7), 073110 (2010).
[CrossRef]

J. F. Li, S. Y. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic filminduced by aligned gold nanorods,” Appl. Phys. Lett.96(26), 263103 (2010).
[CrossRef]

F. Zhou, Z. Y. Li, Y. Liu, and Y. N. Xia, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles,” J. Phys. Chem. C112(51), 20233–20240 (2008).
[CrossRef]

Zhu, Y. F.

Appl. Opt. (1)

Appl. Phys A. (1)

E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys A.66(7), S75–S78 (1998).
[CrossRef]

Appl. Phys. Lett. (2)

J. F. Li, S. Y. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic filminduced by aligned gold nanorods,” Appl. Phys. Lett.96(26), 263103 (2010).
[CrossRef]

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett.19(8), 283–285 (1971).
[CrossRef]

Biochem. Soc. Trans. (1)

T. Ketelaar, H. S. van der Honing, and A. M. Emons, “Probing cytoplasmic organization and the actin cytoskeleton of plant cells with optical tweezers,” Biochem. Soc. Trans.38(3), 823–828 (2010).
[CrossRef] [PubMed]

Biophys. J. (1)

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J.70(4), 1813–1822 (1996).
[CrossRef] [PubMed]

Chem. Soc. Rev. (1)

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev.35(11), 1084–1094 (2006).
[CrossRef] [PubMed]

Chin. Phys. Lett. (1)

L. Ling, H. L. Guo, L. Huang, E. Qu, Z. L. Li, and Z. Y. Li, “The measurement of displacement and optical force in multi-optical tweezers,” Chin. Phys. Lett.29(1), 014214 (2012).
[CrossRef]

J. Appl. Phys. (1)

L. Ling, F. Zhou, L. Huang, and Z. Y. Li, “Optical forces on arbitrary shaped particles in optical tweezers,” J. Appl. Phys.108(7), 073110 (2010).
[CrossRef]

J. Biol. (1)

M. J. Lang, P. M. Fordyce, and S. M. Block, “Combined optical trapping and single-molecule fluorescence,” J. Biol.2(1), 6 (2003).
[CrossRef] [PubMed]

J. Nanopart. Res. (1)

L. A. Hough and H. D. Ou-Yang, “A new probe for mechanical testing of nanostructures in soft materials,” J. Nanopart. Res.1(4), 495–499 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

F. Zhou, Z. Y. Li, Y. Liu, and Y. N. Xia, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles,” J. Phys. Chem. C112(51), 20233–20240 (2008).
[CrossRef]

Nano Lett. (5)

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett.5(10), 1937–1942 (2005).
[CrossRef] [PubMed]

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett.4(1), 115–118 (2004).
[CrossRef]

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett.10(1), 268–273 (2010).
[CrossRef] [PubMed]

M. J. Guffey and N. F. Scherer, “All-optical patterning of au nanoparticles on surfaces using optical traps,” Nano Lett.10(11), 4302–4308 (2010).
[CrossRef] [PubMed]

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Nat. Phys. (1)

Y. Jiang, T. Narushima, and H. Okamoto, “Nonlinear optical effects in trapping nanoparticles with femtosecond pulses,” Nat. Phys.6(12), 1005–1009 (2010).
[CrossRef]

Nature (1)

C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature382(6592), 607–609 (1996).
[CrossRef] [PubMed]

Opt. Commun. (3)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun.185(1-3), 77–82 (2000).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207(1-6), 169–175 (2002).
[CrossRef]

A. T. O’Neil and M. J. Padgett, “Axial and lateral trapping efficiency of Laguerre–Gaussian modes in inverted optical tweezers,” Opt. Commun.193(1-6), 45–50 (2001).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. Lett. (3)

T. Rodgers, S. Shoji, Z. Sekkat, and S. Kawata, “Selective aggregation of single-walled carbon nanotubes using the large optical field gradient of a focused laser beam,” Phys. Rev. Lett.101(12), 127402 (2008).
[CrossRef] [PubMed]

P. Wu, R. Huang, C. Tischer, A. Jonas, and E. L. Florin, “Direct measurement of the nonconservative force field generated by optical tweezers,” Phys. Rev. Lett.103(10), 108101 (2009).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970).
[CrossRef]

Rev. Sci. Instrum. (2)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum.75(3), 594 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup. The wide red line represents 1064nm laser, and the thin green line represents the visible light emitted from the tungsten Lamp. A beam of 1064nm laser was expanded by lens L1 and L2, and then focused by the objective to form the optical trap. DF imaging system was mainly formed by condenser and objective. The DF image of the trapped spheres can be observed by eyepiece and CCD camera.

Fig. 2
Fig. 2

(a)A typical pseudo color image of the trapped gold spheres captured by the CCD.(b)Measured scattering intensity change with the time. Numbers indicated in the figure represent the gold sphere quantity in the trap.

Fig. 3
Fig. 3

(a)Several spectra of the trapped gold spheres captured at ten different time points. Inset is the normalized spectra of scattering intensity. (b) Peak intensities of the spectra in (a) versus the estimated number of the trapped gold spheres. The black dots are the experimental data, and the red curve is the linear fitting one.

Fig. 4
Fig. 4

The normalized scattering spectra of the trapped single and multiple gold nanoparticles.

Fig. 5
Fig. 5

The dependence of △N/N on the trapping intensity at five different particle concentrations.

Fig. 6
Fig. 6

(2 × initial slope of △N/N vs. I)−1 for different particle concentrations.

Metrics