Abstract

Chromatic confocal microscopy (CCM) is a promising technology that enables high-speed three-dimensional surface profiling without mechanical depth scanning. However, the spectrometer, which measures depth information encoded by axial color, limits the speed of three-dimensional imaging. We present a novel method for chromatic confocal microscopy with transmittance detection. Depth information can be instantaneously obtained by the ratio of intensity signals from two photomultiplier tubes by detecting a peak wavelength using transmittance of a color filter. This non-destructive and high-speed surface profiling method might be useful in many fields, including the semiconductor and flat panel display industries, and in material science.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Leeghim, M. Ahn, and K. Kim, “Novel approach to optical profiler with gradient focal point methods,” Opt. Express20(21), 23061–23073 (2012).
    [CrossRef] [PubMed]
  2. F. Chen, G. M. Brown, and M. M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng.39(1), 10–22 (2000).
    [CrossRef]
  3. M. F. M. Costa, “Surface inspection by an optical triangulation method,” Opt. Eng.35(9), 2743–2747 (1996).
    [CrossRef]
  4. L. Deck and P. de Groot, “High-Speed Noncontact Profiler Based on Scanning White-Light Interferometry,” Appl. Opt.33(31), 7334–7338 (1994).
    [CrossRef] [PubMed]
  5. D. K. Hamilton and T. Wilson, “3-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B27(4), 211–213 (1982).
    [CrossRef]
  6. W. Zhao, J. Tan, and L. Qiu, “Bipolar absolute differential confocal approach to higher spatial resolution,” Opt. Express12(21), 5013–5021 (2004).
    [CrossRef] [PubMed]
  7. J. Liu, J. Tan, H. Bin, and Y. Wang, “Improved differential confocal microscopy with ultrahigh signal-to-noise ratio and reflectance disturbance resistibility,” Appl. Opt.48(32), 6195–6201 (2009).
    [CrossRef] [PubMed]
  8. G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun.49(4), 229–233 (1984).
    [CrossRef]
  9. A. Boyde, “The tandem scanning reflected light microscope part 2,” Pre-Micro 84 Applications at UCL Proc. Royal Microsc. Soc. May 1985. 20, 131–139 (1985).
  10. M. A. Browne, O. Akinyemi, and A. Boyde, “Confocal surface profiling utilizing chromatic aberration,” Scanning14(3), 145–153 (1992).
    [CrossRef]
  11. M. Maly and A. Boyde, “Real-time stereoscopic confocal reflection microscopy using objective lenses with linear longitudinal chromatic dispersion,” Scanning16, 187–192 (1994).
  12. H. J. Tiziani and H. M. Uhde, “Three-dimensional image sensing by chromatic confocal microscopy,” Appl. Opt.33(10), 1838–1843 (1994).
    [CrossRef] [PubMed]
  13. P. C. Lin, P. C. Sun, L. J. Zhu, and Y. Fainman, “Single-shot depth-section imaging through chromatic slit-scan confocal microscopy,” Appl. Opt.37(28), 6764–6770 (1998).
    [CrossRef] [PubMed]
  14. K. B. Shi, P. Li, S. Z. Yin, and Z. W. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Express12(10), 2096–2101 (2004).
    [CrossRef] [PubMed]
  15. K. B. Shi, S. H. Nam, P. Li, S. Z. Yin, and Z. W. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun.263(2), 156–162 (2006).
    [CrossRef]
  16. B. S. Chun, K. Kim, and D. Gweon, “Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope,” Rev. Sci. Instrum.80(7), 073706 (2009).
    [CrossRef] [PubMed]
  17. S. L. Dobson, P. C. Sun, and Y. Fainman, “Diffractive lenses for chromatic confocal imaging,” Appl. Opt.36(20), 4744–4748 (1997).
    [CrossRef] [PubMed]
  18. S. D. Cha, P. C. Lin, L. J. Zhu, P. C. Sun, and Y. Fainman, “Nontranslational three-dimensional profilometry by chromatic confocal microscopy with dynamically configurable micromirror scanning,” Appl. Opt.39(16), 2605–2613 (2000).
    [CrossRef] [PubMed]
  19. J. G. R, J. Meneses, G. Tribillon, T. Gharbi, and A. Plata, “Chromatic confocal microscopy by means of continuum light generated through a standard single-mode fibre,” J. Opt. A, Pure Appl. Opt.6(6), 544–548 (2004).
    [CrossRef]
  20. E. Ng, F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Contrast and resolution analysis of iterative angular domain optical projection tomography,” Opt. Express18(19), 19444–19455 (2010).
    [CrossRef] [PubMed]

2012

2010

2009

J. Liu, J. Tan, H. Bin, and Y. Wang, “Improved differential confocal microscopy with ultrahigh signal-to-noise ratio and reflectance disturbance resistibility,” Appl. Opt.48(32), 6195–6201 (2009).
[CrossRef] [PubMed]

B. S. Chun, K. Kim, and D. Gweon, “Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope,” Rev. Sci. Instrum.80(7), 073706 (2009).
[CrossRef] [PubMed]

2006

K. B. Shi, S. H. Nam, P. Li, S. Z. Yin, and Z. W. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun.263(2), 156–162 (2006).
[CrossRef]

2004

2000

1998

1997

1996

M. F. M. Costa, “Surface inspection by an optical triangulation method,” Opt. Eng.35(9), 2743–2747 (1996).
[CrossRef]

1994

1992

M. A. Browne, O. Akinyemi, and A. Boyde, “Confocal surface profiling utilizing chromatic aberration,” Scanning14(3), 145–153 (1992).
[CrossRef]

1984

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun.49(4), 229–233 (1984).
[CrossRef]

1982

D. K. Hamilton and T. Wilson, “3-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B27(4), 211–213 (1982).
[CrossRef]

Ahn, M.

Akinyemi, O.

M. A. Browne, O. Akinyemi, and A. Boyde, “Confocal surface profiling utilizing chromatic aberration,” Scanning14(3), 145–153 (1992).
[CrossRef]

Bin, H.

Boyde, A.

M. Maly and A. Boyde, “Real-time stereoscopic confocal reflection microscopy using objective lenses with linear longitudinal chromatic dispersion,” Scanning16, 187–192 (1994).

M. A. Browne, O. Akinyemi, and A. Boyde, “Confocal surface profiling utilizing chromatic aberration,” Scanning14(3), 145–153 (1992).
[CrossRef]

Brown, G. M.

F. Chen, G. M. Brown, and M. M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng.39(1), 10–22 (2000).
[CrossRef]

Browne, M. A.

M. A. Browne, O. Akinyemi, and A. Boyde, “Confocal surface profiling utilizing chromatic aberration,” Scanning14(3), 145–153 (1992).
[CrossRef]

Carson, J. J. L.

Cha, S. D.

Chapman, G. H.

Chen, F.

F. Chen, G. M. Brown, and M. M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng.39(1), 10–22 (2000).
[CrossRef]

Chun, B. S.

B. S. Chun, K. Kim, and D. Gweon, “Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope,” Rev. Sci. Instrum.80(7), 073706 (2009).
[CrossRef] [PubMed]

Costa, M. F. M.

M. F. M. Costa, “Surface inspection by an optical triangulation method,” Opt. Eng.35(9), 2743–2747 (1996).
[CrossRef]

de Groot, P.

Deck, L.

Dobson, S. L.

Fainman, Y.

Gharbi, T.

J. G. R, J. Meneses, G. Tribillon, T. Gharbi, and A. Plata, “Chromatic confocal microscopy by means of continuum light generated through a standard single-mode fibre,” J. Opt. A, Pure Appl. Opt.6(6), 544–548 (2004).
[CrossRef]

Gweon, D.

B. S. Chun, K. Kim, and D. Gweon, “Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope,” Rev. Sci. Instrum.80(7), 073706 (2009).
[CrossRef] [PubMed]

Hamilton, D. K.

D. K. Hamilton and T. Wilson, “3-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B27(4), 211–213 (1982).
[CrossRef]

Kaminska, B.

Kim, K.

H. Leeghim, M. Ahn, and K. Kim, “Novel approach to optical profiler with gradient focal point methods,” Opt. Express20(21), 23061–23073 (2012).
[CrossRef] [PubMed]

B. S. Chun, K. Kim, and D. Gweon, “Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope,” Rev. Sci. Instrum.80(7), 073706 (2009).
[CrossRef] [PubMed]

Leeghim, H.

Li, P.

K. B. Shi, S. H. Nam, P. Li, S. Z. Yin, and Z. W. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun.263(2), 156–162 (2006).
[CrossRef]

K. B. Shi, P. Li, S. Z. Yin, and Z. W. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Express12(10), 2096–2101 (2004).
[CrossRef] [PubMed]

Lin, P. C.

Liu, J.

Liu, Z. W.

K. B. Shi, S. H. Nam, P. Li, S. Z. Yin, and Z. W. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun.263(2), 156–162 (2006).
[CrossRef]

K. B. Shi, P. Li, S. Z. Yin, and Z. W. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Express12(10), 2096–2101 (2004).
[CrossRef] [PubMed]

Maly, M.

M. Maly and A. Boyde, “Real-time stereoscopic confocal reflection microscopy using objective lenses with linear longitudinal chromatic dispersion,” Scanning16, 187–192 (1994).

Meneses, J.

J. G. R, J. Meneses, G. Tribillon, T. Gharbi, and A. Plata, “Chromatic confocal microscopy by means of continuum light generated through a standard single-mode fibre,” J. Opt. A, Pure Appl. Opt.6(6), 544–548 (2004).
[CrossRef]

Molesini, G.

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun.49(4), 229–233 (1984).
[CrossRef]

Nam, S. H.

K. B. Shi, S. H. Nam, P. Li, S. Z. Yin, and Z. W. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun.263(2), 156–162 (2006).
[CrossRef]

Ng, E.

Pedrini, G.

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun.49(4), 229–233 (1984).
[CrossRef]

Plata, A.

J. G. R, J. Meneses, G. Tribillon, T. Gharbi, and A. Plata, “Chromatic confocal microscopy by means of continuum light generated through a standard single-mode fibre,” J. Opt. A, Pure Appl. Opt.6(6), 544–548 (2004).
[CrossRef]

Poggi, P.

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun.49(4), 229–233 (1984).
[CrossRef]

Qiu, L.

Quercioli, F.

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun.49(4), 229–233 (1984).
[CrossRef]

R, J. G.

J. G. R, J. Meneses, G. Tribillon, T. Gharbi, and A. Plata, “Chromatic confocal microscopy by means of continuum light generated through a standard single-mode fibre,” J. Opt. A, Pure Appl. Opt.6(6), 544–548 (2004).
[CrossRef]

Shi, K. B.

K. B. Shi, S. H. Nam, P. Li, S. Z. Yin, and Z. W. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun.263(2), 156–162 (2006).
[CrossRef]

K. B. Shi, P. Li, S. Z. Yin, and Z. W. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Express12(10), 2096–2101 (2004).
[CrossRef] [PubMed]

Song, M. M.

F. Chen, G. M. Brown, and M. M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng.39(1), 10–22 (2000).
[CrossRef]

Sun, P. C.

Tan, J.

Tiziani, H. J.

Tribillon, G.

J. G. R, J. Meneses, G. Tribillon, T. Gharbi, and A. Plata, “Chromatic confocal microscopy by means of continuum light generated through a standard single-mode fibre,” J. Opt. A, Pure Appl. Opt.6(6), 544–548 (2004).
[CrossRef]

Uhde, H. M.

Vasefi, F.

Wang, Y.

Wilson, T.

D. K. Hamilton and T. Wilson, “3-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B27(4), 211–213 (1982).
[CrossRef]

Yin, S. Z.

K. B. Shi, S. H. Nam, P. Li, S. Z. Yin, and Z. W. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun.263(2), 156–162 (2006).
[CrossRef]

K. B. Shi, P. Li, S. Z. Yin, and Z. W. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Express12(10), 2096–2101 (2004).
[CrossRef] [PubMed]

Zhao, W.

Zhu, L. J.

Appl. Opt.

Appl. Phys. B

D. K. Hamilton and T. Wilson, “3-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B27(4), 211–213 (1982).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

J. G. R, J. Meneses, G. Tribillon, T. Gharbi, and A. Plata, “Chromatic confocal microscopy by means of continuum light generated through a standard single-mode fibre,” J. Opt. A, Pure Appl. Opt.6(6), 544–548 (2004).
[CrossRef]

Opt. Commun.

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun.49(4), 229–233 (1984).
[CrossRef]

K. B. Shi, S. H. Nam, P. Li, S. Z. Yin, and Z. W. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun.263(2), 156–162 (2006).
[CrossRef]

Opt. Eng.

F. Chen, G. M. Brown, and M. M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng.39(1), 10–22 (2000).
[CrossRef]

M. F. M. Costa, “Surface inspection by an optical triangulation method,” Opt. Eng.35(9), 2743–2747 (1996).
[CrossRef]

Opt. Express

Rev. Sci. Instrum.

B. S. Chun, K. Kim, and D. Gweon, “Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope,” Rev. Sci. Instrum.80(7), 073706 (2009).
[CrossRef] [PubMed]

Scanning

M. A. Browne, O. Akinyemi, and A. Boyde, “Confocal surface profiling utilizing chromatic aberration,” Scanning14(3), 145–153 (1992).
[CrossRef]

M. Maly and A. Boyde, “Real-time stereoscopic confocal reflection microscopy using objective lenses with linear longitudinal chromatic dispersion,” Scanning16, 187–192 (1994).

Other

A. Boyde, “The tandem scanning reflected light microscope part 2,” Pre-Micro 84 Applications at UCL Proc. Royal Microsc. Soc. May 1985. 20, 131–139 (1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the chromatic confocal microscope with a transmittance detection method.

Fig. 2
Fig. 2

Depth measurement process. (a) Depth information encoded by the wavelength due to axial chromatic aberration. (b) Dependence of color filter transmittance on the wavelength. (c) Depth information measured by the transmittance of the color filter.

Fig. 3
Fig. 3

A schematic diagram of the chromatic confocal microscope with the transmittance detection method. BF: bandpass filter, BS: beam splitter, PBS: polarizing beam splitter, PMT: photo multiplier tube.

Fig. 4
Fig. 4

Measured spectrum of the Xenon lamp.

Fig. 5
Fig. 5

Transmittance curve of the colored glass filter.

Fig. 6
Fig. 6

Layout of the designed lens system.

Fig. 7
Fig. 7

Chromatic focal shift of the lens system.

Fig. 8
Fig. 8

Relationship between the depth of the sample and transmittance of the reflected light. (a) Scatter plot and curve fitting of the experimental data and (b) expanded view with the standard deviation (SD).

Fig. 9
Fig. 9

Lateral resolution of the developed system.

Fig. 10
Fig. 10

Lateral resolution of the developed system.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I PMT,1 I PMT,2 = I( t 0 , λ 0 )R( λ 0 )T( λ 0 )/2 I( t 0 , λ 0 )R( λ 0 )/2 =T( λ 0 ).

Metrics