Abstract

A terahertz plasmonic waveguide is experimentally demonstrated using a plastic ribbon waveguide integrated with a diffraction metal grating to approach subwavelength-scaled confinement and long-distance delivery. Appropriately adjusting the metal-thickness and the periodical slit width of a grating greatly improves both guiding ability and field confinement in the hybrid waveguide structure. The measured lateral decay length of the bound terahertz surface waves on the hybrid waveguide can be reduced to less than λ/4 after propagating a waveguide of around 50mm-long in length. The subwavelength-confined field is potentially advantageous to biomolecular sensing or membrane detection because of the long interaction length between the THz field and analytes.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007).
    [CrossRef]
  2. E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett.7(2), 334–337 (2007).
    [CrossRef] [PubMed]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  4. T. I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett.88(6), 061113 (2006).
    [CrossRef]
  5. T. I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett.86(16), 161904 (2005).
    [CrossRef]
  6. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2(3), 175–179 (2008).
    [CrossRef]
  7. W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express16(9), 6216–6226 (2008).
    [CrossRef] [PubMed]
  8. F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt.7(2), S97–S101 (2005).
    [CrossRef]
  9. C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. C. Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett.96(1), 011101 (2010).
    [CrossRef]
  10. A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett.34(13), 2063–2065 (2009).
    [CrossRef] [PubMed]
  11. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett.97(17), 176805 (2006).
    [CrossRef] [PubMed]
  12. L. Shen, X. Chen, and T. J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express16(5), 3326–3333 (2008).
    [CrossRef] [PubMed]
  13. D. Martin-Cano, O. Quevedo-Teruel, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Waveguided spoof surface plasmons with deep-subwavelength lateral confinement,” Opt. Lett.36(23), 4635–4637 (2011).
    [CrossRef] [PubMed]
  14. A. Hassani and M. Skorobogatiy, “Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors,” J. Opt. Soc. Am. B24(6), 1423–1429 (2007).
    [CrossRef]
  15. M. Weisser, B. Menges, and S. M. Neher, “Refractive index and thickness determination of monolayers by multi-mode waveguide coupled surface plasmons,” Sens. Actuators B Chem.56(3), 189–197 (1999).
    [CrossRef]
  16. M. Martl, J. Darmo, K. Unterrainer, and E. Gornik, “Excitation of terahertz surface plasmon polaritons on etched groove gratings,” J. Opt. Soc. Am. B26(3), 554–558 (2009).
    [CrossRef]
  17. L. S. Mukina, M. M. Nazarov, and A. P. Shkurinov, “Propagation of THz plasmon pulse on corrugated and flat metal surface,” Surf. Sci.600(20), 4771–4776 (2006).
    [CrossRef]
  18. M. Nazarov, J. L. Coutaz, A. Shkurinov, and F. Garet, “THz surface plasmon jump between two metal edges,” Opt. Commun.277(1), 33–39 (2007).
    [CrossRef]
  19. G. Gaborit, D. Armand, J. L. Coutaz, M. Nazarov, and A. Shkurinov, “Excitation and focusing of terahertz surface plasmons using a grating coupler with elliptically curved grooves,” Appl. Phys. Lett.94(23), 231108 (2009).
    [CrossRef]
  20. M. Gong, T. I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express17(19), 17088–17101 (2009).
    [CrossRef] [PubMed]
  21. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express16(9), 6340–6351 (2008).
    [CrossRef] [PubMed]
  22. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett.31(3), 308–310 (2006).
    [CrossRef] [PubMed]
  23. C. Yeh, F. Shimabukuro, and P. H. Siegel, “Low-loss terahertz ribbon waveguides,” Appl. Opt.44(28), 5937–5946 (2005).
    [CrossRef] [PubMed]
  24. M. Nagel, F. Richter, P. Haring-Bolívar, and H. Kurz, “A functionalized THz sensor for marker-free DNA analysis,” Phys. Med. Biol.48(22), 3625–3636 (2003).
    [CrossRef] [PubMed]
  25. A. Hassani and M. Skorobogatiy, “Surface plasmon resonance-like integrated sensor at terahertz frequencies for gaseous analytes,” Opt. Express16(25), 20206–20214 (2008).
    [CrossRef] [PubMed]
  26. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys.88(7), 4449–4451 (2000).
    [CrossRef]
  27. B. You, J. Y. Lu, T. A. Liu, J. L. Peng, and C. L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett.96(5), 051105 (2010).
    [CrossRef]
  28. J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett.93(25), 256804 (2004).
    [CrossRef] [PubMed]
  29. S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun.150(1–6), 22–26 (1998).
    [CrossRef]
  30. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22(7), 1099–20 (1983).
    [CrossRef] [PubMed]
  31. E. S. Lee, D. H. Kang, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, D. S. Kim, and T. I. Jeon, “Bragg reflection of terahertz waves in plasmonic crystals,” Opt. Express17(11), 9212–9218 (2009).
    [CrossRef] [PubMed]

2011

2010

C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. C. Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett.96(1), 011101 (2010).
[CrossRef]

B. You, J. Y. Lu, T. A. Liu, J. L. Peng, and C. L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett.96(5), 051105 (2010).
[CrossRef]

2009

2008

2007

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007).
[CrossRef]

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett.7(2), 334–337 (2007).
[CrossRef] [PubMed]

M. Nazarov, J. L. Coutaz, A. Shkurinov, and F. Garet, “THz surface plasmon jump between two metal edges,” Opt. Commun.277(1), 33–39 (2007).
[CrossRef]

A. Hassani and M. Skorobogatiy, “Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors,” J. Opt. Soc. Am. B24(6), 1423–1429 (2007).
[CrossRef]

2006

L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett.31(3), 308–310 (2006).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

T. I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett.88(6), 061113 (2006).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett.97(17), 176805 (2006).
[CrossRef] [PubMed]

L. S. Mukina, M. M. Nazarov, and A. P. Shkurinov, “Propagation of THz plasmon pulse on corrugated and flat metal surface,” Surf. Sci.600(20), 4771–4776 (2006).
[CrossRef]

2005

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt.7(2), S97–S101 (2005).
[CrossRef]

T. I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett.86(16), 161904 (2005).
[CrossRef]

C. Yeh, F. Shimabukuro, and P. H. Siegel, “Low-loss terahertz ribbon waveguides,” Appl. Opt.44(28), 5937–5946 (2005).
[CrossRef] [PubMed]

2004

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett.93(25), 256804 (2004).
[CrossRef] [PubMed]

2003

M. Nagel, F. Richter, P. Haring-Bolívar, and H. Kurz, “A functionalized THz sensor for marker-free DNA analysis,” Phys. Med. Biol.48(22), 3625–3636 (2003).
[CrossRef] [PubMed]

2000

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys.88(7), 4449–4451 (2000).
[CrossRef]

1999

M. Weisser, B. Menges, and S. M. Neher, “Refractive index and thickness determination of monolayers by multi-mode waveguide coupled surface plasmons,” Sens. Actuators B Chem.56(3), 189–197 (1999).
[CrossRef]

1998

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun.150(1–6), 22–26 (1998).
[CrossRef]

1983

Agrawal, A.

Alexander, R. W.

Andrews, S. R.

C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. C. Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett.96(1), 011101 (2010).
[CrossRef]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2(3), 175–179 (2008).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett.97(17), 176805 (2006).
[CrossRef] [PubMed]

Armand, D.

G. Gaborit, D. Armand, J. L. Coutaz, M. Nazarov, and A. Shkurinov, “Excitation and focusing of terahertz surface plasmons using a grating coupler with elliptically curved grooves,” Appl. Phys. Lett.94(23), 231108 (2009).
[CrossRef]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bolivar, P. H.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett.93(25), 256804 (2004).
[CrossRef] [PubMed]

Brener, I.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun.150(1–6), 22–26 (1998).
[CrossRef]

Chen, H. W.

Chen, L. J.

Chen, X.

Coutaz, J. L.

G. Gaborit, D. Armand, J. L. Coutaz, M. Nazarov, and A. Shkurinov, “Excitation and focusing of terahertz surface plasmons using a grating coupler with elliptically curved grooves,” Appl. Phys. Lett.94(23), 231108 (2009).
[CrossRef]

M. Nazarov, J. L. Coutaz, A. Shkurinov, and F. Garet, “THz surface plasmon jump between two metal edges,” Opt. Commun.277(1), 33–39 (2007).
[CrossRef]

Darmo, J.

Dupuis, A.

Fernandez-Dominguez, A. I.

Fernández-Domínguez, A. I.

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett.34(13), 2063–2065 (2009).
[CrossRef] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2(3), 175–179 (2008).
[CrossRef]

Gaborit, G.

G. Gaborit, D. Armand, J. L. Coutaz, M. Nazarov, and A. Shkurinov, “Excitation and focusing of terahertz surface plasmons using a grating coupler with elliptically curved grooves,” Appl. Phys. Lett.94(23), 231108 (2009).
[CrossRef]

Garcia-Vidal, F. J.

D. Martin-Cano, O. Quevedo-Teruel, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Waveguided spoof surface plasmons with deep-subwavelength lateral confinement,” Opt. Lett.36(23), 4635–4637 (2011).
[CrossRef] [PubMed]

C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. C. Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett.96(1), 011101 (2010).
[CrossRef]

E. S. Lee, D. H. Kang, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, D. S. Kim, and T. I. Jeon, “Bragg reflection of terahertz waves in plasmonic crystals,” Opt. Express17(11), 9212–9218 (2009).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt.7(2), S97–S101 (2005).
[CrossRef]

García-Vidal, F. J.

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett.34(13), 2063–2065 (2009).
[CrossRef] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2(3), 175–179 (2008).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett.97(17), 176805 (2006).
[CrossRef] [PubMed]

Garet, F.

M. Nazarov, J. L. Coutaz, A. Shkurinov, and F. Garet, “THz surface plasmon jump between two metal edges,” Opt. Commun.277(1), 33–39 (2007).
[CrossRef]

Gong, M.

Gornik, E.

Grischkowsky, D.

M. Gong, T. I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express17(19), 17088–17101 (2009).
[CrossRef] [PubMed]

T. I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett.88(6), 061113 (2006).
[CrossRef]

T. I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett.86(16), 161904 (2005).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys.88(7), 4449–4451 (2000).
[CrossRef]

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007).
[CrossRef]

Haring-Bolívar, P.

M. Nagel, F. Richter, P. Haring-Bolívar, and H. Kurz, “A functionalized THz sensor for marker-free DNA analysis,” Phys. Med. Biol.48(22), 3625–3636 (2003).
[CrossRef] [PubMed]

Hassani, A.

Hunsche, S.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun.150(1–6), 22–26 (1998).
[CrossRef]

Jeon, T. I.

M. Gong, T. I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express17(19), 17088–17101 (2009).
[CrossRef] [PubMed]

E. S. Lee, D. H. Kang, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, D. S. Kim, and T. I. Jeon, “Bragg reflection of terahertz waves in plasmonic crystals,” Opt. Express17(11), 9212–9218 (2009).
[CrossRef] [PubMed]

T. I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett.88(6), 061113 (2006).
[CrossRef]

T. I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett.86(16), 161904 (2005).
[CrossRef]

Kang, D. H.

Kao, T. F.

Kim, D. S.

Koch, M.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun.150(1–6), 22–26 (1998).
[CrossRef]

Kuipers, L.

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett.7(2), 334–337 (2007).
[CrossRef] [PubMed]

Kurz, H.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett.93(25), 256804 (2004).
[CrossRef] [PubMed]

M. Nagel, F. Richter, P. Haring-Bolívar, and H. Kurz, “A functionalized THz sensor for marker-free DNA analysis,” Phys. Med. Biol.48(22), 3625–3636 (2003).
[CrossRef] [PubMed]

Kuttge, M.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett.93(25), 256804 (2004).
[CrossRef] [PubMed]

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007).
[CrossRef]

Lee, E. S.

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007).
[CrossRef]

Liu, T. A.

B. You, J. Y. Lu, T. A. Liu, J. L. Peng, and C. L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett.96(5), 051105 (2010).
[CrossRef]

Long, L. L.

Lu, J. Y.

B. You, J. Y. Lu, T. A. Liu, J. L. Peng, and C. L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett.96(5), 051105 (2010).
[CrossRef]

L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett.31(3), 308–310 (2006).
[CrossRef] [PubMed]

Maier, S. A.

C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. C. Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett.96(1), 011101 (2010).
[CrossRef]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2(3), 175–179 (2008).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett.97(17), 176805 (2006).
[CrossRef] [PubMed]

Martin-Cano, D.

Martin-Moreno, L.

Martín-Moreno, L.

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett.34(13), 2063–2065 (2009).
[CrossRef] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2(3), 175–179 (2008).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett.97(17), 176805 (2006).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt.7(2), S97–S101 (2005).
[CrossRef]

Martl, M.

Mendis, R.

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys.88(7), 4449–4451 (2000).
[CrossRef]

Menges, B.

M. Weisser, B. Menges, and S. M. Neher, “Refractive index and thickness determination of monolayers by multi-mode waveguide coupled surface plasmons,” Sens. Actuators B Chem.56(3), 189–197 (1999).
[CrossRef]

Misra, M.

C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. C. Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett.96(1), 011101 (2010).
[CrossRef]

Moreno, E.

Mukina, L. S.

L. S. Mukina, M. M. Nazarov, and A. P. Shkurinov, “Propagation of THz plasmon pulse on corrugated and flat metal surface,” Surf. Sci.600(20), 4771–4776 (2006).
[CrossRef]

Nagel, M.

M. Nagel, F. Richter, P. Haring-Bolívar, and H. Kurz, “A functionalized THz sensor for marker-free DNA analysis,” Phys. Med. Biol.48(22), 3625–3636 (2003).
[CrossRef] [PubMed]

Nahata, A.

Nazarov, M.

G. Gaborit, D. Armand, J. L. Coutaz, M. Nazarov, and A. Shkurinov, “Excitation and focusing of terahertz surface plasmons using a grating coupler with elliptically curved grooves,” Appl. Phys. Lett.94(23), 231108 (2009).
[CrossRef]

M. Nazarov, J. L. Coutaz, A. Shkurinov, and F. Garet, “THz surface plasmon jump between two metal edges,” Opt. Commun.277(1), 33–39 (2007).
[CrossRef]

Nazarov, M. M.

L. S. Mukina, M. M. Nazarov, and A. P. Shkurinov, “Propagation of THz plasmon pulse on corrugated and flat metal surface,” Surf. Sci.600(20), 4771–4776 (2006).
[CrossRef]

Neher, S. M.

M. Weisser, B. Menges, and S. M. Neher, “Refractive index and thickness determination of monolayers by multi-mode waveguide coupled surface plasmons,” Sens. Actuators B Chem.56(3), 189–197 (1999).
[CrossRef]

Nuss, M. C.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun.150(1–6), 22–26 (1998).
[CrossRef]

Ordal, M. A.

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Palacios, S. C.

C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. C. Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett.96(1), 011101 (2010).
[CrossRef]

Pan, C. L.

B. You, J. Y. Lu, T. A. Liu, J. L. Peng, and C. L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett.96(5), 051105 (2010).
[CrossRef]

Pendry, J. B.

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt.7(2), S97–S101 (2005).
[CrossRef]

Peng, J. L.

B. You, J. Y. Lu, T. A. Liu, J. L. Peng, and C. L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett.96(5), 051105 (2010).
[CrossRef]

Polman, A.

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett.7(2), 334–337 (2007).
[CrossRef] [PubMed]

Quevedo-Teruel, O.

Richter, F.

M. Nagel, F. Richter, P. Haring-Bolívar, and H. Kurz, “A functionalized THz sensor for marker-free DNA analysis,” Phys. Med. Biol.48(22), 3625–3636 (2003).
[CrossRef] [PubMed]

Rivas, J. G.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett.93(25), 256804 (2004).
[CrossRef] [PubMed]

Rodrigo, S. G.

C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. C. Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett.96(1), 011101 (2010).
[CrossRef]

Sánchez-Gil, J. A.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett.93(25), 256804 (2004).
[CrossRef] [PubMed]

Shen, L.

Shimabukuro, F.

Shkurinov, A.

G. Gaborit, D. Armand, J. L. Coutaz, M. Nazarov, and A. Shkurinov, “Excitation and focusing of terahertz surface plasmons using a grating coupler with elliptically curved grooves,” Appl. Phys. Lett.94(23), 231108 (2009).
[CrossRef]

M. Nazarov, J. L. Coutaz, A. Shkurinov, and F. Garet, “THz surface plasmon jump between two metal edges,” Opt. Commun.277(1), 33–39 (2007).
[CrossRef]

Shkurinov, A. P.

L. S. Mukina, M. M. Nazarov, and A. P. Shkurinov, “Propagation of THz plasmon pulse on corrugated and flat metal surface,” Surf. Sci.600(20), 4771–4776 (2006).
[CrossRef]

Siegel, P. H.

Skorobogatiy, M.

Sun, C. K.

Unterrainer, K.

Verhagen, E.

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett.7(2), 334–337 (2007).
[CrossRef] [PubMed]

Ward, C. A.

Weisser, M.

M. Weisser, B. Menges, and S. M. Neher, “Refractive index and thickness determination of monolayers by multi-mode waveguide coupled surface plasmons,” Sens. Actuators B Chem.56(3), 189–197 (1999).
[CrossRef]

Williams, C. R.

C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. C. Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett.96(1), 011101 (2010).
[CrossRef]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2(3), 175–179 (2008).
[CrossRef]

Yang, T. J.

Yeh, C.

You, B.

B. You, J. Y. Lu, T. A. Liu, J. L. Peng, and C. L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett.96(5), 051105 (2010).
[CrossRef]

Zhang, J.

T. I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett.86(16), 161904 (2005).
[CrossRef]

Zhu, W.

Appl. Opt.

Appl. Phys. Lett.

T. I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett.88(6), 061113 (2006).
[CrossRef]

T. I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett.86(16), 161904 (2005).
[CrossRef]

C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. C. Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett.96(1), 011101 (2010).
[CrossRef]

G. Gaborit, D. Armand, J. L. Coutaz, M. Nazarov, and A. Shkurinov, “Excitation and focusing of terahertz surface plasmons using a grating coupler with elliptically curved grooves,” Appl. Phys. Lett.94(23), 231108 (2009).
[CrossRef]

B. You, J. Y. Lu, T. A. Liu, J. L. Peng, and C. L. Pan, “Subwavelength plastic wire terahertz time-domain spectroscopy,” Appl. Phys. Lett.96(5), 051105 (2010).
[CrossRef]

J. Appl. Phys.

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys.88(7), 4449–4451 (2000).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt.7(2), S97–S101 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Nano Lett.

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett.7(2), 334–337 (2007).
[CrossRef] [PubMed]

Nat. Photonics

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics2(3), 175–179 (2008).
[CrossRef]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007).
[CrossRef]

Opt. Commun.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun.150(1–6), 22–26 (1998).
[CrossRef]

M. Nazarov, J. L. Coutaz, A. Shkurinov, and F. Garet, “THz surface plasmon jump between two metal edges,” Opt. Commun.277(1), 33–39 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

M. Nagel, F. Richter, P. Haring-Bolívar, and H. Kurz, “A functionalized THz sensor for marker-free DNA analysis,” Phys. Med. Biol.48(22), 3625–3636 (2003).
[CrossRef] [PubMed]

Phys. Rev. Lett.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett.93(25), 256804 (2004).
[CrossRef] [PubMed]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett.97(17), 176805 (2006).
[CrossRef] [PubMed]

Science

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Sens. Actuators B Chem.

M. Weisser, B. Menges, and S. M. Neher, “Refractive index and thickness determination of monolayers by multi-mode waveguide coupled surface plasmons,” Sens. Actuators B Chem.56(3), 189–197 (1999).
[CrossRef]

Surf. Sci.

L. S. Mukina, M. M. Nazarov, and A. P. Shkurinov, “Propagation of THz plasmon pulse on corrugated and flat metal surface,” Surf. Sci.600(20), 4771–4776 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A schematic drawing of the planar hybrid plasmonic waveguide, where the diffraction grating composed of periodically-spaced rectangular slits is represented in orange and the subwavelength-thick PE ribbon is cyan. The TM-polarized THz waves are coupled from the ribbon edge to the ribbon waveguide.

Fig. 2
Fig. 2

(a) Power transmittance of a 50mm-long grating waveguide with different grating thicknesses and the same grating structure. (b) THz transmittance of a 50mm-long integrated grating waveguide with different slit-widths but the same lattice constant of 1.5mm and metal thickness of 200μm.

Fig. 3
Fig. 3

(a) Electric-field oscillations of a THz pulse propagates along a 220mm-long ribbon waveguide without an attached grating, and with the attachment of various gratings with metal thicknesses of (b) 100μm, (c) 200μm, (d) 400mm. (e) Phase-variation spectrum for different metal thicknesses contributed by the metal grating. (f) Effective-index-variation spectrum for different metal thickneses contributed by the metal grating.

Fig. 4
Fig. 4

(a) Simulated and measured THz-wave transmittance of 200μm-thick metal grating waveguide. (b) ~(g) THz field distribution of different frequencies at the output end of grating waveguides with various metal thicknesses. (b) 200μm-thick grating at 0.200THz. (c) 200μm-thick grating at 0.250THz. (d) 200μm-thick grating at 0.278THz. (e) 100μm-thick grating at 0.250THz. (f) 400μm-thick grating at 0.250THz. (g) 200μm-thick grating at 0.300THz.

Fig. 5
Fig. 5

Experimental and theoretical power decay lengths of a blank ribbon and grating-waveguides integrated with different grating thickness.

Fig. 6
Fig. 6

Simulated cross sections of power-distribution at (a) 0.278THz-, (b) 0.300THz-, and (c) 0.318THz-waves propagated along a 50mm-long hybrid waveguide with a 200μm-thickness grating.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

K in + K Λ = K R

Metrics