Abstract

The radial angular filter array (RAFA) consists of a series of radially-distributed micro-machined channels, where the long axes of the channels converge at a focal point. The high aspect ratio of each channel provides a means to reject photons with trajectories outside the acceptance angle of the channel. The output of the RAFA represents the angular distribution of photons emitted from the focal point. A series of RAFAs were designed, fabricated, and tested to evaluate the impact of device geometry, inter-channel cross talk, achromaticity, and channel leakage on device performance. As an application example, an RAFA was used together with an imaging spectrometer to capture angle-resolved spectra of turbid samples.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt.38(16), 3651–3661 (1999).
    [PubMed]
  2. A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J.82(4), 2256–2264 (2002).
    [PubMed]
  3. Y. Zhu, N. G. Terry, J. T. Woosley, N. J. Shaheen, and A. Wax, “Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology,” J. Biomed. Opt.16(1), 011003 (2011).
    [PubMed]
  4. A. Wax, C. Yang, V. Backman, M. Kalashnikov, R. R. Dasari, and M. S. Feld, “Determination of particle size by using the angular distribution of backscattered light as measured with low-coherence interferometry,” J. Opt. Soc. Am. A19(4), 737–744 (2002).
    [PubMed]
  5. J. Miettinen, A. Harkonen, and T. H. Piironen, “Optical scattering measurement instrument for the design of machine vision illumination,” Proc. SPIE1614, 45–56 (1992).
  6. P. Kadkhoda, W. Sakiew, S. Günster, and D. Ristau, “Fast total scattering facility for 2D inspection of optical and functional surfaces,” Proc. SPIE7389, 73890S (2009).
  7. N. N. Boustany and N. V. Thakor, “Light scatter spectroscopy and imaging of cellular and subcellular events,” in Biomedical Photonics Handbook (CRC Press, 2002), pp. 16.1–16.23.
  8. D. P. Gibbs, A. K. Fung, and A. J. Blanchard, “A bistatic optical scattering measurement system: design, fabrication, and experimental results,” in Proceedings of Geoscience and Remote Sensing Symposium (1990), pp. 2133–2136.
  9. V. Krishnaswamy, P. J. Hoopes, K. S. Samkoe, J. A. O’Hara, T. Hasan, and B. W. Pogue, “Quantitative imaging of scattering changes associated with epithelial proliferation, necrosis, and fibrosis in tumors using microsampling reflectance spectroscopy,” J. Biomed. Opt.14(1), 014004 (2009).
    [PubMed]
  10. C. Lau, O. Sćepanović, J. Mirkovic, S. McGee, C. C. Yu, S. Fulghum, M. Wallace, J. Tunnell, K. Bechtel, and M. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt.14(2), 024031 (2009).
    [PubMed]
  11. T. Weyrich, W. Matusik, H. Pfister, A. Ngan, and M. Gross, “Measuring skin reflectance and subsurface scattering,” http://www.merl.com/papers/docs/TR2005-046.pdf .
  12. T. Dennis, S. D. Dyer, A. Dienstfrey, G. Singh, and P. Rice, “Analyzing quantitative light scattering spectra of phantoms measured with optical coherence tomography,” J. Biomed. Opt.13(2), 024004 (2008).
    [PubMed]
  13. C. Y. Liu, T. A. Liu, and W. E. Fu, “Polarized optical scattering measurements of nanoparticles upon a thin film silicon wafer,” in Proceedings of IEEE Conference on Nanotechnology (Institute of Electrical and Electronics Engineers, New York, 2008), pp. 116–119.
  14. R. Lu and Y. Peng, “Development of a multispectral imaging prototype for real-time detection of apple fruit firmness,” Opt. Eng.46(12), 123201 (2007).
  15. N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt.16(3), 030503 (2011).
    [PubMed]
  16. F. E. Robles and A. Wax, “Measuring structural features using a dual window method for light scattering spectroscopy and Fourier-domain low coherence interferometry,” Proc. SPIE7573, 757310 (2010).
  17. F. Vasefi, M. Najiminaini, E. Ng, B. Kaminska, H. Zeng, G. H. Chapman, and J. J. L. Carson, “Angle-resolved spectroscopy using a radial angular filter array,” Proc. SPIE7562, 756209 (2010).
  18. Y. Zhang, F. Vasefi, M. Najiminaini, B. Kaminska, and J. J. L. Carson, “Optimization of radial angular filter arrays for detecting the angular distribution of light,” Proc. SPIE7894, 78940M (2011).
  19. Y. Zhang, F. Vasefi, M. Najiminaini, B. Kaminska, and J. J. L. Carson, “Use of a radial angular filter array to estimate the position of an optically attenuating object within a turbid medium,” Proc. SPIE8230, 82300A (2012).
  20. Y. Zhang, F. Vasefi, M. Najiminaini, B. Kaminska, and J. J. L. Carson, “Angle-resolved spectroscopy: a tissue-mimicking phantom study,” Proc. SPIE8221, 82211B (2012).
  21. F. Vasefi, M. Najiminaini, E. Ng, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular domain trans-illumination imaging optimization with an ultra-fast gated camera,” J. Biomed. Opt.15(6), 061710 (2010).
    [PubMed]
  22. J. C. Stover, Optical scattering: measurement and analysis (SPIE Press, 19–22, 1995).
  23. F. E. Nicodemus, “Directional reflectance and emissivity of an opaque surface,” Appl. Opt.4(7), 767–775 (1965).
  24. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation Studies,” Lasers Surg. Med.12(5), 510–519 (1992).
    [PubMed]
  25. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991).
    [PubMed]
  26. F. Vasefi, M. Najiminaini, E. Ng, A. Chamson-Reig, B. Kaminska, M. Brackstone, and J. J. L. Carson, “Transillumination hyperspectral imaging for histopathological examination of excised tissue,” J. Biomed. Opt.16(8), 086014 (2011).
    [PubMed]

2012 (2)

Y. Zhang, F. Vasefi, M. Najiminaini, B. Kaminska, and J. J. L. Carson, “Use of a radial angular filter array to estimate the position of an optically attenuating object within a turbid medium,” Proc. SPIE8230, 82300A (2012).

Y. Zhang, F. Vasefi, M. Najiminaini, B. Kaminska, and J. J. L. Carson, “Angle-resolved spectroscopy: a tissue-mimicking phantom study,” Proc. SPIE8221, 82211B (2012).

2011 (4)

Y. Zhu, N. G. Terry, J. T. Woosley, N. J. Shaheen, and A. Wax, “Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology,” J. Biomed. Opt.16(1), 011003 (2011).
[PubMed]

F. Vasefi, M. Najiminaini, E. Ng, A. Chamson-Reig, B. Kaminska, M. Brackstone, and J. J. L. Carson, “Transillumination hyperspectral imaging for histopathological examination of excised tissue,” J. Biomed. Opt.16(8), 086014 (2011).
[PubMed]

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt.16(3), 030503 (2011).
[PubMed]

Y. Zhang, F. Vasefi, M. Najiminaini, B. Kaminska, and J. J. L. Carson, “Optimization of radial angular filter arrays for detecting the angular distribution of light,” Proc. SPIE7894, 78940M (2011).

2010 (3)

F. E. Robles and A. Wax, “Measuring structural features using a dual window method for light scattering spectroscopy and Fourier-domain low coherence interferometry,” Proc. SPIE7573, 757310 (2010).

F. Vasefi, M. Najiminaini, E. Ng, B. Kaminska, H. Zeng, G. H. Chapman, and J. J. L. Carson, “Angle-resolved spectroscopy using a radial angular filter array,” Proc. SPIE7562, 756209 (2010).

F. Vasefi, M. Najiminaini, E. Ng, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular domain trans-illumination imaging optimization with an ultra-fast gated camera,” J. Biomed. Opt.15(6), 061710 (2010).
[PubMed]

2009 (3)

P. Kadkhoda, W. Sakiew, S. Günster, and D. Ristau, “Fast total scattering facility for 2D inspection of optical and functional surfaces,” Proc. SPIE7389, 73890S (2009).

V. Krishnaswamy, P. J. Hoopes, K. S. Samkoe, J. A. O’Hara, T. Hasan, and B. W. Pogue, “Quantitative imaging of scattering changes associated with epithelial proliferation, necrosis, and fibrosis in tumors using microsampling reflectance spectroscopy,” J. Biomed. Opt.14(1), 014004 (2009).
[PubMed]

C. Lau, O. Sćepanović, J. Mirkovic, S. McGee, C. C. Yu, S. Fulghum, M. Wallace, J. Tunnell, K. Bechtel, and M. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt.14(2), 024031 (2009).
[PubMed]

2008 (1)

T. Dennis, S. D. Dyer, A. Dienstfrey, G. Singh, and P. Rice, “Analyzing quantitative light scattering spectra of phantoms measured with optical coherence tomography,” J. Biomed. Opt.13(2), 024004 (2008).
[PubMed]

2007 (1)

R. Lu and Y. Peng, “Development of a multispectral imaging prototype for real-time detection of apple fruit firmness,” Opt. Eng.46(12), 123201 (2007).

2002 (2)

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J.82(4), 2256–2264 (2002).
[PubMed]

A. Wax, C. Yang, V. Backman, M. Kalashnikov, R. R. Dasari, and M. S. Feld, “Determination of particle size by using the angular distribution of backscattered light as measured with low-coherence interferometry,” J. Opt. Soc. Am. A19(4), 737–744 (2002).
[PubMed]

1999 (1)

1992 (2)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation Studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[PubMed]

J. Miettinen, A. Harkonen, and T. H. Piironen, “Optical scattering measurement instrument for the design of machine vision illumination,” Proc. SPIE1614, 45–56 (1992).

1991 (1)

1965 (1)

Aalders, M. C. G.

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt.16(3), 030503 (2011).
[PubMed]

Backman, V.

A. Wax, C. Yang, V. Backman, M. Kalashnikov, R. R. Dasari, and M. S. Feld, “Determination of particle size by using the angular distribution of backscattered light as measured with low-coherence interferometry,” J. Opt. Soc. Am. A19(4), 737–744 (2002).
[PubMed]

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J.82(4), 2256–2264 (2002).
[PubMed]

Badizadegan, K.

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J.82(4), 2256–2264 (2002).
[PubMed]

Bechtel, K.

C. Lau, O. Sćepanović, J. Mirkovic, S. McGee, C. C. Yu, S. Fulghum, M. Wallace, J. Tunnell, K. Bechtel, and M. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt.14(2), 024031 (2009).
[PubMed]

Boone, C. W.

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J.82(4), 2256–2264 (2002).
[PubMed]

Bosschaart, N.

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt.16(3), 030503 (2011).
[PubMed]

Brackstone, M.

F. Vasefi, M. Najiminaini, E. Ng, A. Chamson-Reig, B. Kaminska, M. Brackstone, and J. J. L. Carson, “Transillumination hyperspectral imaging for histopathological examination of excised tissue,” J. Biomed. Opt.16(8), 086014 (2011).
[PubMed]

Carson, J. J. L.

Y. Zhang, F. Vasefi, M. Najiminaini, B. Kaminska, and J. J. L. Carson, “Use of a radial angular filter array to estimate the position of an optically attenuating object within a turbid medium,” Proc. SPIE8230, 82300A (2012).

Y. Zhang, F. Vasefi, M. Najiminaini, B. Kaminska, and J. J. L. Carson, “Angle-resolved spectroscopy: a tissue-mimicking phantom study,” Proc. SPIE8221, 82211B (2012).

Y. Zhang, F. Vasefi, M. Najiminaini, B. Kaminska, and J. J. L. Carson, “Optimization of radial angular filter arrays for detecting the angular distribution of light,” Proc. SPIE7894, 78940M (2011).

F. Vasefi, M. Najiminaini, E. Ng, A. Chamson-Reig, B. Kaminska, M. Brackstone, and J. J. L. Carson, “Transillumination hyperspectral imaging for histopathological examination of excised tissue,” J. Biomed. Opt.16(8), 086014 (2011).
[PubMed]

F. Vasefi, M. Najiminaini, E. Ng, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular domain trans-illumination imaging optimization with an ultra-fast gated camera,” J. Biomed. Opt.15(6), 061710 (2010).
[PubMed]

F. Vasefi, M. Najiminaini, E. Ng, B. Kaminska, H. Zeng, G. H. Chapman, and J. J. L. Carson, “Angle-resolved spectroscopy using a radial angular filter array,” Proc. SPIE7562, 756209 (2010).

Chamson-Reig, A.

F. Vasefi, M. Najiminaini, E. Ng, A. Chamson-Reig, B. Kaminska, M. Brackstone, and J. J. L. Carson, “Transillumination hyperspectral imaging for histopathological examination of excised tissue,” J. Biomed. Opt.16(8), 086014 (2011).
[PubMed]

Chapman, G. H.

F. Vasefi, M. Najiminaini, E. Ng, B. Kaminska, H. Zeng, G. H. Chapman, and J. J. L. Carson, “Angle-resolved spectroscopy using a radial angular filter array,” Proc. SPIE7562, 756209 (2010).

F. Vasefi, M. Najiminaini, E. Ng, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular domain trans-illumination imaging optimization with an ultra-fast gated camera,” J. Biomed. Opt.15(6), 061710 (2010).
[PubMed]

Dasari, R. R.

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J.82(4), 2256–2264 (2002).
[PubMed]

A. Wax, C. Yang, V. Backman, M. Kalashnikov, R. R. Dasari, and M. S. Feld, “Determination of particle size by using the angular distribution of backscattered light as measured with low-coherence interferometry,” J. Opt. Soc. Am. A19(4), 737–744 (2002).
[PubMed]

Dennis, T.

T. Dennis, S. D. Dyer, A. Dienstfrey, G. Singh, and P. Rice, “Analyzing quantitative light scattering spectra of phantoms measured with optical coherence tomography,” J. Biomed. Opt.13(2), 024004 (2008).
[PubMed]

Dienstfrey, A.

T. Dennis, S. D. Dyer, A. Dienstfrey, G. Singh, and P. Rice, “Analyzing quantitative light scattering spectra of phantoms measured with optical coherence tomography,” J. Biomed. Opt.13(2), 024004 (2008).
[PubMed]

Drezek, R.

Dunn, A.

Dyer, S. D.

T. Dennis, S. D. Dyer, A. Dienstfrey, G. Singh, and P. Rice, “Analyzing quantitative light scattering spectra of phantoms measured with optical coherence tomography,” J. Biomed. Opt.13(2), 024004 (2008).
[PubMed]

Faber, D. J.

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt.16(3), 030503 (2011).
[PubMed]

Feld, M.

C. Lau, O. Sćepanović, J. Mirkovic, S. McGee, C. C. Yu, S. Fulghum, M. Wallace, J. Tunnell, K. Bechtel, and M. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt.14(2), 024031 (2009).
[PubMed]

Feld, M. S.

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J.82(4), 2256–2264 (2002).
[PubMed]

A. Wax, C. Yang, V. Backman, M. Kalashnikov, R. R. Dasari, and M. S. Feld, “Determination of particle size by using the angular distribution of backscattered light as measured with low-coherence interferometry,” J. Opt. Soc. Am. A19(4), 737–744 (2002).
[PubMed]

Flock, S. T.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation Studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[PubMed]

Fulghum, S.

C. Lau, O. Sćepanović, J. Mirkovic, S. McGee, C. C. Yu, S. Fulghum, M. Wallace, J. Tunnell, K. Bechtel, and M. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt.14(2), 024031 (2009).
[PubMed]

Günster, S.

P. Kadkhoda, W. Sakiew, S. Günster, and D. Ristau, “Fast total scattering facility for 2D inspection of optical and functional surfaces,” Proc. SPIE7389, 73890S (2009).

Harkonen, A.

J. Miettinen, A. Harkonen, and T. H. Piironen, “Optical scattering measurement instrument for the design of machine vision illumination,” Proc. SPIE1614, 45–56 (1992).

Hasan, T.

V. Krishnaswamy, P. J. Hoopes, K. S. Samkoe, J. A. O’Hara, T. Hasan, and B. W. Pogue, “Quantitative imaging of scattering changes associated with epithelial proliferation, necrosis, and fibrosis in tumors using microsampling reflectance spectroscopy,” J. Biomed. Opt.14(1), 014004 (2009).
[PubMed]

Hoopes, P. J.

V. Krishnaswamy, P. J. Hoopes, K. S. Samkoe, J. A. O’Hara, T. Hasan, and B. W. Pogue, “Quantitative imaging of scattering changes associated with epithelial proliferation, necrosis, and fibrosis in tumors using microsampling reflectance spectroscopy,” J. Biomed. Opt.14(1), 014004 (2009).
[PubMed]

Jacques, S. L.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation Studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[PubMed]

Kadkhoda, P.

P. Kadkhoda, W. Sakiew, S. Günster, and D. Ristau, “Fast total scattering facility for 2D inspection of optical and functional surfaces,” Proc. SPIE7389, 73890S (2009).

Kalashnikov, M.

Kaminska, B.

Y. Zhang, F. Vasefi, M. Najiminaini, B. Kaminska, and J. J. L. Carson, “Use of a radial angular filter array to estimate the position of an optically attenuating object within a turbid medium,” Proc. SPIE8230, 82300A (2012).

Y. Zhang, F. Vasefi, M. Najiminaini, B. Kaminska, and J. J. L. Carson, “Angle-resolved spectroscopy: a tissue-mimicking phantom study,” Proc. SPIE8221, 82211B (2012).

Y. Zhang, F. Vasefi, M. Najiminaini, B. Kaminska, and J. J. L. Carson, “Optimization of radial angular filter arrays for detecting the angular distribution of light,” Proc. SPIE7894, 78940M (2011).

F. Vasefi, M. Najiminaini, E. Ng, A. Chamson-Reig, B. Kaminska, M. Brackstone, and J. J. L. Carson, “Transillumination hyperspectral imaging for histopathological examination of excised tissue,” J. Biomed. Opt.16(8), 086014 (2011).
[PubMed]

F. Vasefi, M. Najiminaini, E. Ng, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular domain trans-illumination imaging optimization with an ultra-fast gated camera,” J. Biomed. Opt.15(6), 061710 (2010).
[PubMed]

F. Vasefi, M. Najiminaini, E. Ng, B. Kaminska, H. Zeng, G. H. Chapman, and J. J. L. Carson, “Angle-resolved spectroscopy using a radial angular filter array,” Proc. SPIE7562, 756209 (2010).

Krishnaswamy, V.

V. Krishnaswamy, P. J. Hoopes, K. S. Samkoe, J. A. O’Hara, T. Hasan, and B. W. Pogue, “Quantitative imaging of scattering changes associated with epithelial proliferation, necrosis, and fibrosis in tumors using microsampling reflectance spectroscopy,” J. Biomed. Opt.14(1), 014004 (2009).
[PubMed]

Lau, C.

C. Lau, O. Sćepanović, J. Mirkovic, S. McGee, C. C. Yu, S. Fulghum, M. Wallace, J. Tunnell, K. Bechtel, and M. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt.14(2), 024031 (2009).
[PubMed]

Lu, R.

R. Lu and Y. Peng, “Development of a multispectral imaging prototype for real-time detection of apple fruit firmness,” Opt. Eng.46(12), 123201 (2007).

McGee, S.

C. Lau, O. Sćepanović, J. Mirkovic, S. McGee, C. C. Yu, S. Fulghum, M. Wallace, J. Tunnell, K. Bechtel, and M. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt.14(2), 024031 (2009).
[PubMed]

Miettinen, J.

J. Miettinen, A. Harkonen, and T. H. Piironen, “Optical scattering measurement instrument for the design of machine vision illumination,” Proc. SPIE1614, 45–56 (1992).

Mirkovic, J.

C. Lau, O. Sćepanović, J. Mirkovic, S. McGee, C. C. Yu, S. Fulghum, M. Wallace, J. Tunnell, K. Bechtel, and M. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt.14(2), 024031 (2009).
[PubMed]

Moes, C. J. M.

Najiminaini, M.

Y. Zhang, F. Vasefi, M. Najiminaini, B. Kaminska, and J. J. L. Carson, “Angle-resolved spectroscopy: a tissue-mimicking phantom study,” Proc. SPIE8221, 82211B (2012).

Y. Zhang, F. Vasefi, M. Najiminaini, B. Kaminska, and J. J. L. Carson, “Use of a radial angular filter array to estimate the position of an optically attenuating object within a turbid medium,” Proc. SPIE8230, 82300A (2012).

Y. Zhang, F. Vasefi, M. Najiminaini, B. Kaminska, and J. J. L. Carson, “Optimization of radial angular filter arrays for detecting the angular distribution of light,” Proc. SPIE7894, 78940M (2011).

F. Vasefi, M. Najiminaini, E. Ng, A. Chamson-Reig, B. Kaminska, M. Brackstone, and J. J. L. Carson, “Transillumination hyperspectral imaging for histopathological examination of excised tissue,” J. Biomed. Opt.16(8), 086014 (2011).
[PubMed]

F. Vasefi, M. Najiminaini, E. Ng, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular domain trans-illumination imaging optimization with an ultra-fast gated camera,” J. Biomed. Opt.15(6), 061710 (2010).
[PubMed]

F. Vasefi, M. Najiminaini, E. Ng, B. Kaminska, H. Zeng, G. H. Chapman, and J. J. L. Carson, “Angle-resolved spectroscopy using a radial angular filter array,” Proc. SPIE7562, 756209 (2010).

Ng, E.

F. Vasefi, M. Najiminaini, E. Ng, A. Chamson-Reig, B. Kaminska, M. Brackstone, and J. J. L. Carson, “Transillumination hyperspectral imaging for histopathological examination of excised tissue,” J. Biomed. Opt.16(8), 086014 (2011).
[PubMed]

F. Vasefi, M. Najiminaini, E. Ng, B. Kaminska, H. Zeng, G. H. Chapman, and J. J. L. Carson, “Angle-resolved spectroscopy using a radial angular filter array,” Proc. SPIE7562, 756209 (2010).

F. Vasefi, M. Najiminaini, E. Ng, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular domain trans-illumination imaging optimization with an ultra-fast gated camera,” J. Biomed. Opt.15(6), 061710 (2010).
[PubMed]

Nicodemus, F. E.

O’Hara, J. A.

V. Krishnaswamy, P. J. Hoopes, K. S. Samkoe, J. A. O’Hara, T. Hasan, and B. W. Pogue, “Quantitative imaging of scattering changes associated with epithelial proliferation, necrosis, and fibrosis in tumors using microsampling reflectance spectroscopy,” J. Biomed. Opt.14(1), 014004 (2009).
[PubMed]

Peng, Y.

R. Lu and Y. Peng, “Development of a multispectral imaging prototype for real-time detection of apple fruit firmness,” Opt. Eng.46(12), 123201 (2007).

Piironen, T. H.

J. Miettinen, A. Harkonen, and T. H. Piironen, “Optical scattering measurement instrument for the design of machine vision illumination,” Proc. SPIE1614, 45–56 (1992).

Pogue, B. W.

V. Krishnaswamy, P. J. Hoopes, K. S. Samkoe, J. A. O’Hara, T. Hasan, and B. W. Pogue, “Quantitative imaging of scattering changes associated with epithelial proliferation, necrosis, and fibrosis in tumors using microsampling reflectance spectroscopy,” J. Biomed. Opt.14(1), 014004 (2009).
[PubMed]

Prahl, S. A.

Rice, P.

T. Dennis, S. D. Dyer, A. Dienstfrey, G. Singh, and P. Rice, “Analyzing quantitative light scattering spectra of phantoms measured with optical coherence tomography,” J. Biomed. Opt.13(2), 024004 (2008).
[PubMed]

Richards-Kortum, R.

Ristau, D.

P. Kadkhoda, W. Sakiew, S. Günster, and D. Ristau, “Fast total scattering facility for 2D inspection of optical and functional surfaces,” Proc. SPIE7389, 73890S (2009).

Robles, F. E.

F. E. Robles and A. Wax, “Measuring structural features using a dual window method for light scattering spectroscopy and Fourier-domain low coherence interferometry,” Proc. SPIE7573, 757310 (2010).

Sakiew, W.

P. Kadkhoda, W. Sakiew, S. Günster, and D. Ristau, “Fast total scattering facility for 2D inspection of optical and functional surfaces,” Proc. SPIE7389, 73890S (2009).

Samkoe, K. S.

V. Krishnaswamy, P. J. Hoopes, K. S. Samkoe, J. A. O’Hara, T. Hasan, and B. W. Pogue, “Quantitative imaging of scattering changes associated with epithelial proliferation, necrosis, and fibrosis in tumors using microsampling reflectance spectroscopy,” J. Biomed. Opt.14(1), 014004 (2009).
[PubMed]

Scepanovic, O.

C. Lau, O. Sćepanović, J. Mirkovic, S. McGee, C. C. Yu, S. Fulghum, M. Wallace, J. Tunnell, K. Bechtel, and M. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt.14(2), 024031 (2009).
[PubMed]

Shaheen, N. J.

Y. Zhu, N. G. Terry, J. T. Woosley, N. J. Shaheen, and A. Wax, “Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology,” J. Biomed. Opt.16(1), 011003 (2011).
[PubMed]

Singh, G.

T. Dennis, S. D. Dyer, A. Dienstfrey, G. Singh, and P. Rice, “Analyzing quantitative light scattering spectra of phantoms measured with optical coherence tomography,” J. Biomed. Opt.13(2), 024004 (2008).
[PubMed]

Star, W. M.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation Studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[PubMed]

Terry, N. G.

Y. Zhu, N. G. Terry, J. T. Woosley, N. J. Shaheen, and A. Wax, “Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology,” J. Biomed. Opt.16(1), 011003 (2011).
[PubMed]

Tunnell, J.

C. Lau, O. Sćepanović, J. Mirkovic, S. McGee, C. C. Yu, S. Fulghum, M. Wallace, J. Tunnell, K. Bechtel, and M. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt.14(2), 024031 (2009).
[PubMed]

van Gemert, M. J. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation Studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[PubMed]

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991).
[PubMed]

van Leeuwen, T. G.

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt.16(3), 030503 (2011).
[PubMed]

van Marie, J.

van Staveren, H. J.

Vasefi, F.

Y. Zhang, F. Vasefi, M. Najiminaini, B. Kaminska, and J. J. L. Carson, “Angle-resolved spectroscopy: a tissue-mimicking phantom study,” Proc. SPIE8221, 82211B (2012).

Y. Zhang, F. Vasefi, M. Najiminaini, B. Kaminska, and J. J. L. Carson, “Use of a radial angular filter array to estimate the position of an optically attenuating object within a turbid medium,” Proc. SPIE8230, 82300A (2012).

Y. Zhang, F. Vasefi, M. Najiminaini, B. Kaminska, and J. J. L. Carson, “Optimization of radial angular filter arrays for detecting the angular distribution of light,” Proc. SPIE7894, 78940M (2011).

F. Vasefi, M. Najiminaini, E. Ng, A. Chamson-Reig, B. Kaminska, M. Brackstone, and J. J. L. Carson, “Transillumination hyperspectral imaging for histopathological examination of excised tissue,” J. Biomed. Opt.16(8), 086014 (2011).
[PubMed]

F. Vasefi, M. Najiminaini, E. Ng, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular domain trans-illumination imaging optimization with an ultra-fast gated camera,” J. Biomed. Opt.15(6), 061710 (2010).
[PubMed]

F. Vasefi, M. Najiminaini, E. Ng, B. Kaminska, H. Zeng, G. H. Chapman, and J. J. L. Carson, “Angle-resolved spectroscopy using a radial angular filter array,” Proc. SPIE7562, 756209 (2010).

Wallace, M.

C. Lau, O. Sćepanović, J. Mirkovic, S. McGee, C. C. Yu, S. Fulghum, M. Wallace, J. Tunnell, K. Bechtel, and M. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt.14(2), 024031 (2009).
[PubMed]

Wax, A.

Y. Zhu, N. G. Terry, J. T. Woosley, N. J. Shaheen, and A. Wax, “Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology,” J. Biomed. Opt.16(1), 011003 (2011).
[PubMed]

F. E. Robles and A. Wax, “Measuring structural features using a dual window method for light scattering spectroscopy and Fourier-domain low coherence interferometry,” Proc. SPIE7573, 757310 (2010).

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J.82(4), 2256–2264 (2002).
[PubMed]

A. Wax, C. Yang, V. Backman, M. Kalashnikov, R. R. Dasari, and M. S. Feld, “Determination of particle size by using the angular distribution of backscattered light as measured with low-coherence interferometry,” J. Opt. Soc. Am. A19(4), 737–744 (2002).
[PubMed]

Wilson, B. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation Studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[PubMed]

Woosley, J. T.

Y. Zhu, N. G. Terry, J. T. Woosley, N. J. Shaheen, and A. Wax, “Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology,” J. Biomed. Opt.16(1), 011003 (2011).
[PubMed]

Yang, C.

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J.82(4), 2256–2264 (2002).
[PubMed]

A. Wax, C. Yang, V. Backman, M. Kalashnikov, R. R. Dasari, and M. S. Feld, “Determination of particle size by using the angular distribution of backscattered light as measured with low-coherence interferometry,” J. Opt. Soc. Am. A19(4), 737–744 (2002).
[PubMed]

Yu, C. C.

C. Lau, O. Sćepanović, J. Mirkovic, S. McGee, C. C. Yu, S. Fulghum, M. Wallace, J. Tunnell, K. Bechtel, and M. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt.14(2), 024031 (2009).
[PubMed]

Zeng, H.

F. Vasefi, M. Najiminaini, E. Ng, B. Kaminska, H. Zeng, G. H. Chapman, and J. J. L. Carson, “Angle-resolved spectroscopy using a radial angular filter array,” Proc. SPIE7562, 756209 (2010).

Zhang, Y.

Y. Zhang, F. Vasefi, M. Najiminaini, B. Kaminska, and J. J. L. Carson, “Angle-resolved spectroscopy: a tissue-mimicking phantom study,” Proc. SPIE8221, 82211B (2012).

Y. Zhang, F. Vasefi, M. Najiminaini, B. Kaminska, and J. J. L. Carson, “Use of a radial angular filter array to estimate the position of an optically attenuating object within a turbid medium,” Proc. SPIE8230, 82300A (2012).

Y. Zhang, F. Vasefi, M. Najiminaini, B. Kaminska, and J. J. L. Carson, “Optimization of radial angular filter arrays for detecting the angular distribution of light,” Proc. SPIE7894, 78940M (2011).

Zhu, Y.

Y. Zhu, N. G. Terry, J. T. Woosley, N. J. Shaheen, and A. Wax, “Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology,” J. Biomed. Opt.16(1), 011003 (2011).
[PubMed]

Appl. Opt. (3)

Biophys. J. (1)

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J.82(4), 2256–2264 (2002).
[PubMed]

J. Biomed. Opt. (7)

Y. Zhu, N. G. Terry, J. T. Woosley, N. J. Shaheen, and A. Wax, “Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology,” J. Biomed. Opt.16(1), 011003 (2011).
[PubMed]

F. Vasefi, M. Najiminaini, E. Ng, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular domain trans-illumination imaging optimization with an ultra-fast gated camera,” J. Biomed. Opt.15(6), 061710 (2010).
[PubMed]

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt.16(3), 030503 (2011).
[PubMed]

V. Krishnaswamy, P. J. Hoopes, K. S. Samkoe, J. A. O’Hara, T. Hasan, and B. W. Pogue, “Quantitative imaging of scattering changes associated with epithelial proliferation, necrosis, and fibrosis in tumors using microsampling reflectance spectroscopy,” J. Biomed. Opt.14(1), 014004 (2009).
[PubMed]

C. Lau, O. Sćepanović, J. Mirkovic, S. McGee, C. C. Yu, S. Fulghum, M. Wallace, J. Tunnell, K. Bechtel, and M. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt.14(2), 024031 (2009).
[PubMed]

T. Dennis, S. D. Dyer, A. Dienstfrey, G. Singh, and P. Rice, “Analyzing quantitative light scattering spectra of phantoms measured with optical coherence tomography,” J. Biomed. Opt.13(2), 024004 (2008).
[PubMed]

F. Vasefi, M. Najiminaini, E. Ng, A. Chamson-Reig, B. Kaminska, M. Brackstone, and J. J. L. Carson, “Transillumination hyperspectral imaging for histopathological examination of excised tissue,” J. Biomed. Opt.16(8), 086014 (2011).
[PubMed]

J. Opt. Soc. Am. A (1)

Lasers Surg. Med. (1)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation Studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[PubMed]

Opt. Eng. (1)

R. Lu and Y. Peng, “Development of a multispectral imaging prototype for real-time detection of apple fruit firmness,” Opt. Eng.46(12), 123201 (2007).

Proc. SPIE (7)

F. E. Robles and A. Wax, “Measuring structural features using a dual window method for light scattering spectroscopy and Fourier-domain low coherence interferometry,” Proc. SPIE7573, 757310 (2010).

F. Vasefi, M. Najiminaini, E. Ng, B. Kaminska, H. Zeng, G. H. Chapman, and J. J. L. Carson, “Angle-resolved spectroscopy using a radial angular filter array,” Proc. SPIE7562, 756209 (2010).

Y. Zhang, F. Vasefi, M. Najiminaini, B. Kaminska, and J. J. L. Carson, “Optimization of radial angular filter arrays for detecting the angular distribution of light,” Proc. SPIE7894, 78940M (2011).

Y. Zhang, F. Vasefi, M. Najiminaini, B. Kaminska, and J. J. L. Carson, “Use of a radial angular filter array to estimate the position of an optically attenuating object within a turbid medium,” Proc. SPIE8230, 82300A (2012).

Y. Zhang, F. Vasefi, M. Najiminaini, B. Kaminska, and J. J. L. Carson, “Angle-resolved spectroscopy: a tissue-mimicking phantom study,” Proc. SPIE8221, 82211B (2012).

J. Miettinen, A. Harkonen, and T. H. Piironen, “Optical scattering measurement instrument for the design of machine vision illumination,” Proc. SPIE1614, 45–56 (1992).

P. Kadkhoda, W. Sakiew, S. Günster, and D. Ristau, “Fast total scattering facility for 2D inspection of optical and functional surfaces,” Proc. SPIE7389, 73890S (2009).

Other (5)

N. N. Boustany and N. V. Thakor, “Light scatter spectroscopy and imaging of cellular and subcellular events,” in Biomedical Photonics Handbook (CRC Press, 2002), pp. 16.1–16.23.

D. P. Gibbs, A. K. Fung, and A. J. Blanchard, “A bistatic optical scattering measurement system: design, fabrication, and experimental results,” in Proceedings of Geoscience and Remote Sensing Symposium (1990), pp. 2133–2136.

C. Y. Liu, T. A. Liu, and W. E. Fu, “Polarized optical scattering measurements of nanoparticles upon a thin film silicon wafer,” in Proceedings of IEEE Conference on Nanotechnology (Institute of Electrical and Electronics Engineers, New York, 2008), pp. 116–119.

T. Weyrich, W. Matusik, H. Pfister, A. Ngan, and M. Gross, “Measuring skin reflectance and subsurface scattering,” http://www.merl.com/papers/docs/TR2005-046.pdf .

J. C. Stover, Optical scattering: measurement and analysis (SPIE Press, 19–22, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagrams of radial angular filter array designs showing (a) a constant aspect ratio design with micro-mirror bending structures; (b) a constant acceptance angle design with micro-mirror bending structures; (c) a constant aspect ratio design lacking bending structures; and (d) a constant acceptance angle design without bending structures. The areas highlighted by the dash lines in (a) and (b) represent the extent of the bending structures. The thick dashed line marked “OA” represents the optical axis for each design.

Fig. 2
Fig. 2

(a) SEM image of the top of an RAFA (the top piece was removed) corresponding to the design in Fig. 1(a). The white area represents the extent of the aluminum layer. (b) An image of the area highlighted by the red rectangular in (a). (c) An image of the area highlighted by the white rectangular in (a). (d) An image of the area highlighted by the green rectangle in (c) from a slightly different perspective.

Fig. 3
Fig. 3

Experimental setup for calibrating a RAFA. The achromatic lens was replaced by an iris and 5 mm cuvette in the Intralipid® experiment. Elements in the diagram are not to scale.

Fig. 4
Fig. 4

Light scattering profiles of an angularly uniform incident beam measured with RAFA devices. Panels (a-d) correspond to RAFA designs shown in Fig. 1(a-d), respectively.

Fig. 5
Fig. 5

(a) Ray-tracing model for circular bending (30°). (b) Ray-tracing model for a discrete mirrored bending region (30°). Black lines represent the shape of the channel; blue lines are rays and red arrows indicate the direction of photon propagation. Optical axis is marked as a dashed arrow. Cross-sectional output of the RAFA output aperture viewed 1 mm away from the output for the device with circular bending (c), or discrete mirrored bending (d). In panels (c) and (d), the white rectangular demarcates the size of the output channel aperture.

Fig. 6
Fig. 6

The measured intensity profile for with an angularly uniform incident beam with one RAFA (constant aspect ratio of 120:1) (a) at 1 mm away from the device output (b) at 6 mm away from the device output and (c) at 11 mm away from the device output. Data represents cumulative camera counts for 10 images.

Fig. 7
Fig. 7

(a) Measured light intensity after normalization to the median intensity across the spectral range at each angle. (b) Light intensity after normalization of data shown in panel (a) to the median intensity across the angular range at each wavelength.

Fig. 8
Fig. 8

(a-d) Measured channel signals at each angle across the spectral range of 690 nm to 910 nm for 0.05 wt%, 0.1 wt%, 0.5 wt% and 2.0 wt% Intralipid® dilutions, respectively. (e-h) Angle-resolved spectral maps of intensity for wavelength range of 690 nm to 910 nm, and an angle range of −22.5° and + 22.5° corresponding to panels (a-d), respectively. Intensity is displayed in arbitrary units.

Tables (1)

Tables Icon

Table 1 Leakage Measurement Results for the RAFA in Fig. 1(a)α

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

BTDF( θ s ,λ ) P s ( λ ) P i ( λ )cos θ s Ω s
BTD F 0 ( θ s0 ,λ ) P s0 ( λ ) P i0 ( λ )cos θ s0 Ω s0
P s0 (λ) BTD F 0 ( θ s0 ,λ) = P i0 ( λ )cos θ s0 Ω s0 = A 0 ( θ s0 ,λ)
BTDF( θ s ,λ ) P s (λ) P i ( λ )cos θ s Ω s = P s ( λ ) A 0 ( θ s0 ,λ )
L( θ c )= log 10 P( θ c ) P(0)

Metrics