Abstract

This work discusses the use of matched filtering Generalized Phase Contrast (mGPC) as an efficient and cost-effective beam shaper for applications such as in biophotonics, optical micromanipulation, microscopy and two-photon polymerization. The theoretical foundation of mGPC is described as a combination of Generalized Phase Contrast and phase-only correlation. Such an analysis makes it convenient to optimize an mGPC system for different setup conditions. Results showing binary-only phase generation of dynamic spot arrays and line patterns are presented.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev.6(1), 24–27 (1999).
    [CrossRef]
  2. R. L. Eriksen, P. C. Mogensen, and J. Glückstad, “Multiple-beam optical tweezers generated by the generalized phase-contrast method,” Opt. Lett.27(4), 267–269 (2002).
    [CrossRef] [PubMed]
  3. D. Palima, A. R. Bañas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Glückstad, “Wave-guided optical waveguides,” Opt. Express20(3), 2004–2014 (2012).
    [CrossRef] [PubMed]
  4. E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods7(10), 848–854 (2010).
    [CrossRef] [PubMed]
  5. M. Go, C. Stricker, S. Redman, H. Bachor, and V. Daria, “Simultaneous multi-site two-photon photostimulation in three dimensions,” J. Biophotonics (2012) doi:10.1002/jbio.201100101.
    [CrossRef]
  6. D. Palima and J. Glückstad, “Comparison of generalized phase contrast and computer generated holography for laser image projection,” Opt. Express16(8), 5338–5349 (2008).
    [CrossRef] [PubMed]
  7. J. Glückstad, D. Palima, J. S. Dam, and I. Perch-Nielsen, “Dynamically reconfigurable multiple beam illumination based on optical correlation,” J. Opt. A, Pure Appl. Opt.11, 034012 (2009).
  8. A. Bañas, D. Palima, and J. Glückstad, “Matched-filtering generalized phase contrast using LCoS pico-projectors for beam-forming,” Opt. Express20(9), 9705–9712 (2012).
    [CrossRef] [PubMed]
  9. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik (Stuttg.)35, 237 (1972).
  10. H. Ulriksen, J. Thogersen, S. Keiding, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc.-Rapid3, 08034 (2008).
  11. I. Perch-Nielsen, D. Palima, J. S. Dam, and J. Glückstad, “Parallel particle identification and separation for active optical sorting,” J. Opt. A, Pure Appl. Opt.11, 034013 (2009).
  12. S. Yin, G. Lu, J. Zhang, F. T. S. Yu, and J. N. Mait, “Kinoform-based Nipkow disk for a confocal microscope,” Appl. Opt.34(25), 5695–5698 (1995).
    [CrossRef] [PubMed]
  13. P. J. Smith, C. M. Taylor, A. J. Shaw, and E. M. McCabe, “Programmable array microscopy with a ferroelectric liquid-crystal spatial light modulator,” Appl. Opt.39(16), 2664–2669 (2000).
    [CrossRef] [PubMed]
  14. J. Glückstad and D. Palima, Generalized Phase Contrast: Applications in Optics and Photonics, Vol. 146, (Springer Series in Optical Sciences, 2009), 310.
  15. S. Tauro, A. Bañas, D. Palima, and J. Glückstad, “Experimental demonstration of Generalized Phase Contrast based Gaussian beam-shaper,” Opt. Express19(8), 7106–7111 (2011).
    [CrossRef] [PubMed]
  16. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4(6), 388–394 (2010).
    [CrossRef]
  17. A. Bañas, D. Palima, F. Pedersen, and J. Glückstad, “Development of a compact Bio-Optofluidic Cell Sorter,” Proc. SPIE8274, 1–6 (2012).

2012 (3)

2011 (1)

2010 (2)

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4(6), 388–394 (2010).
[CrossRef]

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods7(10), 848–854 (2010).
[CrossRef] [PubMed]

2009 (2)

I. Perch-Nielsen, D. Palima, J. S. Dam, and J. Glückstad, “Parallel particle identification and separation for active optical sorting,” J. Opt. A, Pure Appl. Opt.11, 034013 (2009).

J. Glückstad, D. Palima, J. S. Dam, and I. Perch-Nielsen, “Dynamically reconfigurable multiple beam illumination based on optical correlation,” J. Opt. A, Pure Appl. Opt.11, 034012 (2009).

2008 (2)

H. Ulriksen, J. Thogersen, S. Keiding, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc.-Rapid3, 08034 (2008).

D. Palima and J. Glückstad, “Comparison of generalized phase contrast and computer generated holography for laser image projection,” Opt. Express16(8), 5338–5349 (2008).
[CrossRef] [PubMed]

2002 (1)

2000 (1)

1999 (1)

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev.6(1), 24–27 (1999).
[CrossRef]

1995 (1)

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik (Stuttg.)35, 237 (1972).

Anselmi, F.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods7(10), 848–854 (2010).
[CrossRef] [PubMed]

Bañas, A.

Bañas, A. R.

Bègue, A.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods7(10), 848–854 (2010).
[CrossRef] [PubMed]

Cižmár, T.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4(6), 388–394 (2010).
[CrossRef]

Dam, J. S.

J. Glückstad, D. Palima, J. S. Dam, and I. Perch-Nielsen, “Dynamically reconfigurable multiple beam illumination based on optical correlation,” J. Opt. A, Pure Appl. Opt.11, 034012 (2009).

I. Perch-Nielsen, D. Palima, J. S. Dam, and J. Glückstad, “Parallel particle identification and separation for active optical sorting,” J. Opt. A, Pure Appl. Opt.11, 034013 (2009).

H. Ulriksen, J. Thogersen, S. Keiding, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc.-Rapid3, 08034 (2008).

de Sars, V.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods7(10), 848–854 (2010).
[CrossRef] [PubMed]

Dholakia, K.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4(6), 388–394 (2010).
[CrossRef]

Emiliani, V.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods7(10), 848–854 (2010).
[CrossRef] [PubMed]

Eriksen, R. L.

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik (Stuttg.)35, 237 (1972).

Glückstad, J.

D. Palima, A. R. Bañas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Glückstad, “Wave-guided optical waveguides,” Opt. Express20(3), 2004–2014 (2012).
[CrossRef] [PubMed]

A. Bañas, D. Palima, F. Pedersen, and J. Glückstad, “Development of a compact Bio-Optofluidic Cell Sorter,” Proc. SPIE8274, 1–6 (2012).

A. Bañas, D. Palima, and J. Glückstad, “Matched-filtering generalized phase contrast using LCoS pico-projectors for beam-forming,” Opt. Express20(9), 9705–9712 (2012).
[CrossRef] [PubMed]

S. Tauro, A. Bañas, D. Palima, and J. Glückstad, “Experimental demonstration of Generalized Phase Contrast based Gaussian beam-shaper,” Opt. Express19(8), 7106–7111 (2011).
[CrossRef] [PubMed]

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods7(10), 848–854 (2010).
[CrossRef] [PubMed]

I. Perch-Nielsen, D. Palima, J. S. Dam, and J. Glückstad, “Parallel particle identification and separation for active optical sorting,” J. Opt. A, Pure Appl. Opt.11, 034013 (2009).

J. Glückstad, D. Palima, J. S. Dam, and I. Perch-Nielsen, “Dynamically reconfigurable multiple beam illumination based on optical correlation,” J. Opt. A, Pure Appl. Opt.11, 034012 (2009).

D. Palima and J. Glückstad, “Comparison of generalized phase contrast and computer generated holography for laser image projection,” Opt. Express16(8), 5338–5349 (2008).
[CrossRef] [PubMed]

H. Ulriksen, J. Thogersen, S. Keiding, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc.-Rapid3, 08034 (2008).

R. L. Eriksen, P. C. Mogensen, and J. Glückstad, “Multiple-beam optical tweezers generated by the generalized phase-contrast method,” Opt. Lett.27(4), 267–269 (2002).
[CrossRef] [PubMed]

Hayasaki, Y.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev.6(1), 24–27 (1999).
[CrossRef]

Isacoff, E. Y.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods7(10), 848–854 (2010).
[CrossRef] [PubMed]

Itoh, M.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev.6(1), 24–27 (1999).
[CrossRef]

Keiding, S.

H. Ulriksen, J. Thogersen, S. Keiding, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc.-Rapid3, 08034 (2008).

Kelemen, L.

Lu, G.

Mait, J. N.

Mazilu, M.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4(6), 388–394 (2010).
[CrossRef]

McCabe, E. M.

Mogensen, P. C.

Nishida, N.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev.6(1), 24–27 (1999).
[CrossRef]

Ormos, P.

Palima, D.

D. Palima, A. R. Bañas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Glückstad, “Wave-guided optical waveguides,” Opt. Express20(3), 2004–2014 (2012).
[CrossRef] [PubMed]

A. Bañas, D. Palima, and J. Glückstad, “Matched-filtering generalized phase contrast using LCoS pico-projectors for beam-forming,” Opt. Express20(9), 9705–9712 (2012).
[CrossRef] [PubMed]

A. Bañas, D. Palima, F. Pedersen, and J. Glückstad, “Development of a compact Bio-Optofluidic Cell Sorter,” Proc. SPIE8274, 1–6 (2012).

S. Tauro, A. Bañas, D. Palima, and J. Glückstad, “Experimental demonstration of Generalized Phase Contrast based Gaussian beam-shaper,” Opt. Express19(8), 7106–7111 (2011).
[CrossRef] [PubMed]

J. Glückstad, D. Palima, J. S. Dam, and I. Perch-Nielsen, “Dynamically reconfigurable multiple beam illumination based on optical correlation,” J. Opt. A, Pure Appl. Opt.11, 034012 (2009).

I. Perch-Nielsen, D. Palima, J. S. Dam, and J. Glückstad, “Parallel particle identification and separation for active optical sorting,” J. Opt. A, Pure Appl. Opt.11, 034013 (2009).

D. Palima and J. Glückstad, “Comparison of generalized phase contrast and computer generated holography for laser image projection,” Opt. Express16(8), 5338–5349 (2008).
[CrossRef] [PubMed]

Palima, D. Z.

H. Ulriksen, J. Thogersen, S. Keiding, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc.-Rapid3, 08034 (2008).

Papagiakoumou, E.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods7(10), 848–854 (2010).
[CrossRef] [PubMed]

Pedersen, F.

A. Bañas, D. Palima, F. Pedersen, and J. Glückstad, “Development of a compact Bio-Optofluidic Cell Sorter,” Proc. SPIE8274, 1–6 (2012).

Perch-Nielsen, I.

I. Perch-Nielsen, D. Palima, J. S. Dam, and J. Glückstad, “Parallel particle identification and separation for active optical sorting,” J. Opt. A, Pure Appl. Opt.11, 034013 (2009).

J. Glückstad, D. Palima, J. S. Dam, and I. Perch-Nielsen, “Dynamically reconfigurable multiple beam illumination based on optical correlation,” J. Opt. A, Pure Appl. Opt.11, 034012 (2009).

Perch-Nielsen, I. R.

H. Ulriksen, J. Thogersen, S. Keiding, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc.-Rapid3, 08034 (2008).

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik (Stuttg.)35, 237 (1972).

Shaw, A. J.

Smith, P. J.

Stapelfeldt, H.

H. Ulriksen, J. Thogersen, S. Keiding, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc.-Rapid3, 08034 (2008).

Tauro, S.

Taylor, C. M.

Thogersen, J.

H. Ulriksen, J. Thogersen, S. Keiding, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc.-Rapid3, 08034 (2008).

Ulriksen, H.

H. Ulriksen, J. Thogersen, S. Keiding, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc.-Rapid3, 08034 (2008).

Vizsnyiczai, G.

Yatagai, T.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev.6(1), 24–27 (1999).
[CrossRef]

Yin, S.

Yu, F. T. S.

Zhang, J.

Appl. Opt. (2)

J. Eur. Opt. Soc.-Rapid (1)

H. Ulriksen, J. Thogersen, S. Keiding, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc.-Rapid3, 08034 (2008).

J. Opt. A, Pure Appl. Opt. (2)

I. Perch-Nielsen, D. Palima, J. S. Dam, and J. Glückstad, “Parallel particle identification and separation for active optical sorting,” J. Opt. A, Pure Appl. Opt.11, 034013 (2009).

J. Glückstad, D. Palima, J. S. Dam, and I. Perch-Nielsen, “Dynamically reconfigurable multiple beam illumination based on optical correlation,” J. Opt. A, Pure Appl. Opt.11, 034012 (2009).

Nat. Methods (1)

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods7(10), 848–854 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4(6), 388–394 (2010).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Opt. Rev. (1)

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev.6(1), 24–27 (1999).
[CrossRef]

Optik (Stuttg.) (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik (Stuttg.)35, 237 (1972).

Proc. SPIE (1)

A. Bañas, D. Palima, F. Pedersen, and J. Glückstad, “Development of a compact Bio-Optofluidic Cell Sorter,” Proc. SPIE8274, 1–6 (2012).

Other (2)

M. Go, C. Stricker, S. Redman, H. Bachor, and V. Daria, “Simultaneous multi-site two-photon photostimulation in three dimensions,” J. Biophotonics (2012) doi:10.1002/jbio.201100101.
[CrossRef]

J. Glückstad and D. Palima, Generalized Phase Contrast: Applications in Optics and Photonics, Vol. 146, (Springer Series in Optical Sciences, 2009), 310.

Supplementary Material (1)

» Media 1: MOV (891 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

GPC, (a), and phase-only correlation, (b) setups, which, when combined in tandem, form an mGPC setup, (c). Since the phase contrast filter of GPC is effectively 4f imaged onto the phase correlation filter, they can be combined into one single phase filter. The resulting mGPC setup, (c), maps phase disks at the input into narrow intensity spots at the output.

Fig. 2
Fig. 2

The correlation part of mGPC works by applying phase shifts that will rectify the Fourier transform (b) of an input top hat, created by GPC (a). As the rectified Fourier transform (c) possesses a plane wave-like phase, a Fourier lens will focus it into a strong spike (d).

Fig. 3
Fig. 3

Experimental setup. The LCoS is illuminated with a 45° polarized green laser to effectively operate as a binary-only phase SLM. Lens 1 focuses light into the matched phase filter near the back focal plane of the objective which in turn forms the mGPC output spots. A 4f microscope images the results on the CCD. For optional sample illumination, an LED provides light which enters the system via the dichroic mirror.

Fig. 4
Fig. 4

Brightfield microscope image of the fabricated matched phase filter with an easily recognizable Fourier transform pattern diffracted from a binary input grating (a). Spot arrays generated via mGPC showing a periodic lattice also useful for programmable array microscopy (Media 1) (b), dotted letters forming “PPO” (c).

Fig. 5
Fig. 5

A top hat phase with simulated phase aberrations in the background (a) and its corresponding phase-only matched filter (b). Corresponding mGPC output with and without input phase aberrations (c). The dashed line indicate the applied top hat input phase.

Fig. 6
Fig. 6

Example method for creating phase distributions for an arbitrary line pattern. The desired line intensity pattern (a) is traced by the circular target pattern designed for the matched filter (b). Hence, the resulting binary phase input pattern (c) is a thickened version of the desired output intensity pattern.

Fig. 7
Fig. 7

Generation of line patterns from letters forming “DTU” and “PPO”. Binary phase patterns encoded at the pico projector LCoS SLM, (a) and (d), are shown with corresponding numerically calculated output intensities, (b) and (e), and experimentally reconstructed intensity patterns (c) and (f).

Metrics