Abstract

A transparent, fully integrated electrically modulated projection technique is presented based on light guiding through a thin liquid crystal layer covering sub-wavelength gratings. The reported device operates at 10 V with response times of 4.5 ms. Analysis of the liquid crystal alignment shows that director-reorientation occurs over timescales on the order of 90 µs close to the grating surface. The technology is suitable for next generation heads-up-displays and reconfigurable multilayer photonic integrated circuits.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Wager, “Applied physics. Transparent electronics,” Science300(5623), 1245–1246 (2003).
    [CrossRef] [PubMed]
  2. Y. Yang, S. Jeong, L. Hu, H. Wu, S. W. Lee, and Y. Cui, “Transparent lithium-ion batteries,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13013–13018 (2011).
    [CrossRef] [PubMed]
  3. L. Xiao, Z. Chen, C. Feng, L. Liu, Z.-Q. Bai, Y. Wang, L. Qian, Y. Zhang, Q. Li, K. Jiang, and S. Fan, “Flexible, stretchable, transparent carbon nanotube thin film loudspeakers,” Nano Lett.8(12), 4539–4545 (2008).
    [CrossRef] [PubMed]
  4. F. Giraud, M. Amberg, B. Lemaire-Semail, and G. Casiez, “Design of a transparent tactile stimulator,” in 2012 IEEE Haptics Symposium (HAPTICS) (IEEE, 2012), pp. 485–489.
  5. T. S. Kim, J. S. Park, K. S. Son, J. S. Jung, K.-H. Lee, W. J. Maeng, H.-S. Kim, J.-Y. Kwon, B. Koo, and S. Lee, “Transparent AMOLED display driven by hafnium-indium-zinc oxide thin film transistor array,” Curr. Appl. Phys.11(5), 1253–1256 (2011).
    [CrossRef]
  6. Y.-H. Cheng and G.-D. J. Su, “Waveguide display using polymer-dispersed liquid crystal,” Proc. SPIE8114, 811414, 811414-8 (2011).
    [CrossRef]
  7. L. Eisen, M. Meyklyar, M. Golub, A. A. Friesem, I. Gurwich, and V. Weiss, “Planar configuration for image projection,” Appl. Opt.45(17), 4005–4011 (2006).
    [CrossRef] [PubMed]
  8. Z. Yan, W. Li, Y. Zhou, M. Kang, and Z. Zheng, “Virtual display design using waveguide hologram in conical mounting configuration,” Opt. Eng.50(9), 094001 (2011).
    [CrossRef]
  9. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron.33(11), 2038–2059 (1997).
    [CrossRef]
  10. T. Buß, C. L. C. Smith, M. Brøkner Christiansen, R. Marie, and A. Kristensen, “Sub-wavelength surface gratings for light redirection in transparent substrates,” Appl. Phys. Lett.101(4), 043109 (2012).
    [CrossRef]
  11. W. Schenck, D.-H. Ko, and E. Samulski, “Liquid crystal alignment on polymer line gratings,” J. Appl. Phys.109(6), 064301 (2011).
    [CrossRef]
  12. D.-R. Chiou, L.-J. Chen, and C.-D. Lee, “Pretilt angle of liquid crystals and liquid-crystal alignment on microgrooved polyimide surfaces fabricated by soft embossing method,” Langmuir22(22), 9403–9408 (2006).
    [CrossRef] [PubMed]
  13. R. Lin and J. A. Rogers, “Molecular-scale soft imprint lithography for alignment layers in liquid crystal devices,” Nano Lett.7(6), 1613–1621 (2007).
    [CrossRef] [PubMed]
  14. D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett.28(26), 1683–1686 (1972).
    [CrossRef]
  15. T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. (Berl.)14(3), 235–254 (1977).
    [CrossRef]
  16. L. J. Guo, “Nanoimprint lithography: Methods and material requirements,” Adv. Mater. (Deerfield Beach Fla.)19(4), 495–513 (2007).
    [CrossRef]
  17. J. P. F. Lagerwall and G. Scalia, “A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology,” Curr. Appl. Phys.12(6), 1387–1412 (2012).
    [CrossRef]
  18. K. Miyoshi, S. Yamada, S. Miyahara, M. Yamashita, Y. Hashimoto, T. Yukinari, and K. Ishiguro, “Conoscopic study of liquid crystal after application and removal of the external electric field,” Jpn. J. Appl. Phys.22(Part 1, No. 12), 1754–1765 (1983).
    [CrossRef]
  19. M. Jiao, Z. Ge, Q. Song, and S.-T. Wu, “Alignment layer effects on thin liquid crystal cells,” Appl. Phys. Lett.92(6), 061102 (2008).
    [CrossRef]
  20. Y. Q. Lin, S. M. Feng, and T. Chen, “Temperature effect on threshold voltage and optical property of twisted nematic liquid crystal with applied different voltages,” Optik (Stuttg.)121(18), 1693–1697 (2010).
    [CrossRef]
  21. S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett.99(2), 023307 (2011).
    [CrossRef]
  22. T.-H. Chao, T. T. Lu, S. R. Davis, S. D. Rommel, G. Farca, B. Luey, A. Martin, and M. H. Anderson, “Compact liquid crystal waveguide based Fourier transform spectrometer for in-situ and remote gas and chemical sensing,” Proc. SPIE6977, 69770P, 69770P-11 (2008).
    [CrossRef]
  23. K. Kato, T. Hisaki, and M. Date, “In-plane operation of alignment-controlled holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys.38(Part 1, No. 3A), 1466–1469 (1999).
    [CrossRef]
  24. A. K. Pitilakis, D. C. Zografopoulos, and E. E. Kriezis, “In-line polarization controller based on liquid-crystal photonic crystal fibers,” J. Lightwave Technol.29(17), 2560–2569 (2011).
    [CrossRef]
  25. T. F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Status Solidi A197(3), 688–702 (2003).
    [CrossRef]
  26. D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonic. Tech. L.24(11), 876–878 (2012).
    [CrossRef]
  27. M. Aljada, K. E. Alameh, Y.-T. Lee, and I.-S. Chung, “High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors,” Opt. Express14(15), 6823–6836 (2006).
    [CrossRef] [PubMed]
  28. X. Wei and S. M. Weiss, “Guided mode biosensor based on grating coupled porous silicon waveguide,” Opt. Express19(12), 11330–11339 (2011).
    [CrossRef] [PubMed]
  29. S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip11(8), 1484–1490 (2011).
    [CrossRef] [PubMed]
  30. B. Landenberger, H. Höfemann, S. Wadle, and A. Rohrbach, “Microfluidic sorting of arbitrary cells with dynamic optical tweezers,” Lab Chip12(17), 3177–3183 (2012).
    [CrossRef] [PubMed]
  31. A. R. Faustov, M. R. Webb, and D. R. Walt, “Note: Toward multiple addressable optical trapping,” Rev. Sci. Instrum.81(2), 026109 (2010).
    [CrossRef] [PubMed]

2012 (4)

T. Buß, C. L. C. Smith, M. Brøkner Christiansen, R. Marie, and A. Kristensen, “Sub-wavelength surface gratings for light redirection in transparent substrates,” Appl. Phys. Lett.101(4), 043109 (2012).
[CrossRef]

J. P. F. Lagerwall and G. Scalia, “A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology,” Curr. Appl. Phys.12(6), 1387–1412 (2012).
[CrossRef]

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonic. Tech. L.24(11), 876–878 (2012).
[CrossRef]

B. Landenberger, H. Höfemann, S. Wadle, and A. Rohrbach, “Microfluidic sorting of arbitrary cells with dynamic optical tweezers,” Lab Chip12(17), 3177–3183 (2012).
[CrossRef] [PubMed]

2011 (9)

X. Wei and S. M. Weiss, “Guided mode biosensor based on grating coupled porous silicon waveguide,” Opt. Express19(12), 11330–11339 (2011).
[CrossRef] [PubMed]

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip11(8), 1484–1490 (2011).
[CrossRef] [PubMed]

S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett.99(2), 023307 (2011).
[CrossRef]

A. K. Pitilakis, D. C. Zografopoulos, and E. E. Kriezis, “In-line polarization controller based on liquid-crystal photonic crystal fibers,” J. Lightwave Technol.29(17), 2560–2569 (2011).
[CrossRef]

W. Schenck, D.-H. Ko, and E. Samulski, “Liquid crystal alignment on polymer line gratings,” J. Appl. Phys.109(6), 064301 (2011).
[CrossRef]

Z. Yan, W. Li, Y. Zhou, M. Kang, and Z. Zheng, “Virtual display design using waveguide hologram in conical mounting configuration,” Opt. Eng.50(9), 094001 (2011).
[CrossRef]

Y. Yang, S. Jeong, L. Hu, H. Wu, S. W. Lee, and Y. Cui, “Transparent lithium-ion batteries,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13013–13018 (2011).
[CrossRef] [PubMed]

T. S. Kim, J. S. Park, K. S. Son, J. S. Jung, K.-H. Lee, W. J. Maeng, H.-S. Kim, J.-Y. Kwon, B. Koo, and S. Lee, “Transparent AMOLED display driven by hafnium-indium-zinc oxide thin film transistor array,” Curr. Appl. Phys.11(5), 1253–1256 (2011).
[CrossRef]

Y.-H. Cheng and G.-D. J. Su, “Waveguide display using polymer-dispersed liquid crystal,” Proc. SPIE8114, 811414, 811414-8 (2011).
[CrossRef]

2010 (2)

A. R. Faustov, M. R. Webb, and D. R. Walt, “Note: Toward multiple addressable optical trapping,” Rev. Sci. Instrum.81(2), 026109 (2010).
[CrossRef] [PubMed]

Y. Q. Lin, S. M. Feng, and T. Chen, “Temperature effect on threshold voltage and optical property of twisted nematic liquid crystal with applied different voltages,” Optik (Stuttg.)121(18), 1693–1697 (2010).
[CrossRef]

2008 (3)

T.-H. Chao, T. T. Lu, S. R. Davis, S. D. Rommel, G. Farca, B. Luey, A. Martin, and M. H. Anderson, “Compact liquid crystal waveguide based Fourier transform spectrometer for in-situ and remote gas and chemical sensing,” Proc. SPIE6977, 69770P, 69770P-11 (2008).
[CrossRef]

L. Xiao, Z. Chen, C. Feng, L. Liu, Z.-Q. Bai, Y. Wang, L. Qian, Y. Zhang, Q. Li, K. Jiang, and S. Fan, “Flexible, stretchable, transparent carbon nanotube thin film loudspeakers,” Nano Lett.8(12), 4539–4545 (2008).
[CrossRef] [PubMed]

M. Jiao, Z. Ge, Q. Song, and S.-T. Wu, “Alignment layer effects on thin liquid crystal cells,” Appl. Phys. Lett.92(6), 061102 (2008).
[CrossRef]

2007 (2)

L. J. Guo, “Nanoimprint lithography: Methods and material requirements,” Adv. Mater. (Deerfield Beach Fla.)19(4), 495–513 (2007).
[CrossRef]

R. Lin and J. A. Rogers, “Molecular-scale soft imprint lithography for alignment layers in liquid crystal devices,” Nano Lett.7(6), 1613–1621 (2007).
[CrossRef] [PubMed]

2006 (3)

2003 (2)

T. F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Status Solidi A197(3), 688–702 (2003).
[CrossRef]

J. F. Wager, “Applied physics. Transparent electronics,” Science300(5623), 1245–1246 (2003).
[CrossRef] [PubMed]

1999 (1)

K. Kato, T. Hisaki, and M. Date, “In-plane operation of alignment-controlled holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys.38(Part 1, No. 3A), 1466–1469 (1999).
[CrossRef]

1997 (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron.33(11), 2038–2059 (1997).
[CrossRef]

1983 (1)

K. Miyoshi, S. Yamada, S. Miyahara, M. Yamashita, Y. Hashimoto, T. Yukinari, and K. Ishiguro, “Conoscopic study of liquid crystal after application and removal of the external electric field,” Jpn. J. Appl. Phys.22(Part 1, No. 12), 1754–1765 (1983).
[CrossRef]

1977 (1)

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. (Berl.)14(3), 235–254 (1977).
[CrossRef]

1972 (1)

D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett.28(26), 1683–1686 (1972).
[CrossRef]

Alameh, K. E.

Albert, J.

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip11(8), 1484–1490 (2011).
[CrossRef] [PubMed]

Aljada, M.

Anderson, M. H.

T.-H. Chao, T. T. Lu, S. R. Davis, S. D. Rommel, G. Farca, B. Luey, A. Martin, and M. H. Anderson, “Compact liquid crystal waveguide based Fourier transform spectrometer for in-situ and remote gas and chemical sensing,” Proc. SPIE6977, 69770P, 69770P-11 (2008).
[CrossRef]

Bai, Z.-Q.

L. Xiao, Z. Chen, C. Feng, L. Liu, Z.-Q. Bai, Y. Wang, L. Qian, Y. Zhang, Q. Li, K. Jiang, and S. Fan, “Flexible, stretchable, transparent carbon nanotube thin film loudspeakers,” Nano Lett.8(12), 4539–4545 (2008).
[CrossRef] [PubMed]

Barton, J. S.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonic. Tech. L.24(11), 876–878 (2012).
[CrossRef]

Bauters, J. F.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonic. Tech. L.24(11), 876–878 (2012).
[CrossRef]

Berreman, D. W.

D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett.28(26), 1683–1686 (1972).
[CrossRef]

Blumenthal, D. J.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonic. Tech. L.24(11), 876–878 (2012).
[CrossRef]

Bocklitz, T.

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip11(8), 1484–1490 (2011).
[CrossRef] [PubMed]

Bocksrocker, T.

S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett.99(2), 023307 (2011).
[CrossRef]

Bowers, J. E.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonic. Tech. L.24(11), 876–878 (2012).
[CrossRef]

Brøkner Christiansen, M.

T. Buß, C. L. C. Smith, M. Brøkner Christiansen, R. Marie, and A. Kristensen, “Sub-wavelength surface gratings for light redirection in transparent substrates,” Appl. Phys. Lett.101(4), 043109 (2012).
[CrossRef]

Buß, T.

T. Buß, C. L. C. Smith, M. Brøkner Christiansen, R. Marie, and A. Kristensen, “Sub-wavelength surface gratings for light redirection in transparent substrates,” Appl. Phys. Lett.101(4), 043109 (2012).
[CrossRef]

Chao, T.-H.

T.-H. Chao, T. T. Lu, S. R. Davis, S. D. Rommel, G. Farca, B. Luey, A. Martin, and M. H. Anderson, “Compact liquid crystal waveguide based Fourier transform spectrometer for in-situ and remote gas and chemical sensing,” Proc. SPIE6977, 69770P, 69770P-11 (2008).
[CrossRef]

Chen, L.-J.

D.-R. Chiou, L.-J. Chen, and C.-D. Lee, “Pretilt angle of liquid crystals and liquid-crystal alignment on microgrooved polyimide surfaces fabricated by soft embossing method,” Langmuir22(22), 9403–9408 (2006).
[CrossRef] [PubMed]

Chen, T.

Y. Q. Lin, S. M. Feng, and T. Chen, “Temperature effect on threshold voltage and optical property of twisted nematic liquid crystal with applied different voltages,” Optik (Stuttg.)121(18), 1693–1697 (2010).
[CrossRef]

Chen, Z.

L. Xiao, Z. Chen, C. Feng, L. Liu, Z.-Q. Bai, Y. Wang, L. Qian, Y. Zhang, Q. Li, K. Jiang, and S. Fan, “Flexible, stretchable, transparent carbon nanotube thin film loudspeakers,” Nano Lett.8(12), 4539–4545 (2008).
[CrossRef] [PubMed]

Cheng, Y.-H.

Y.-H. Cheng and G.-D. J. Su, “Waveguide display using polymer-dispersed liquid crystal,” Proc. SPIE8114, 811414, 811414-8 (2011).
[CrossRef]

Chiou, D.-R.

D.-R. Chiou, L.-J. Chen, and C.-D. Lee, “Pretilt angle of liquid crystals and liquid-crystal alignment on microgrooved polyimide surfaces fabricated by soft embossing method,” Langmuir22(22), 9403–9408 (2006).
[CrossRef] [PubMed]

Chung, I.-S.

Cui, Y.

Y. Yang, S. Jeong, L. Hu, H. Wu, S. W. Lee, and Y. Cui, “Transparent lithium-ion batteries,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13013–13018 (2011).
[CrossRef] [PubMed]

Date, M.

K. Kato, T. Hisaki, and M. Date, “In-plane operation of alignment-controlled holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys.38(Part 1, No. 3A), 1466–1469 (1999).
[CrossRef]

Davis, S. R.

T.-H. Chao, T. T. Lu, S. R. Davis, S. D. Rommel, G. Farca, B. Luey, A. Martin, and M. H. Anderson, “Compact liquid crystal waveguide based Fourier transform spectrometer for in-situ and remote gas and chemical sensing,” Proc. SPIE6977, 69770P, 69770P-11 (2008).
[CrossRef]

Dochow, S.

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip11(8), 1484–1490 (2011).
[CrossRef] [PubMed]

Eisen, L.

Fan, S.

L. Xiao, Z. Chen, C. Feng, L. Liu, Z.-Q. Bai, Y. Wang, L. Qian, Y. Zhang, Q. Li, K. Jiang, and S. Fan, “Flexible, stretchable, transparent carbon nanotube thin film loudspeakers,” Nano Lett.8(12), 4539–4545 (2008).
[CrossRef] [PubMed]

Farca, G.

T.-H. Chao, T. T. Lu, S. R. Davis, S. D. Rommel, G. Farca, B. Luey, A. Martin, and M. H. Anderson, “Compact liquid crystal waveguide based Fourier transform spectrometer for in-situ and remote gas and chemical sensing,” Proc. SPIE6977, 69770P, 69770P-11 (2008).
[CrossRef]

Faustov, A. R.

A. R. Faustov, M. R. Webb, and D. R. Walt, “Note: Toward multiple addressable optical trapping,” Rev. Sci. Instrum.81(2), 026109 (2010).
[CrossRef] [PubMed]

Feng, C.

L. Xiao, Z. Chen, C. Feng, L. Liu, Z.-Q. Bai, Y. Wang, L. Qian, Y. Zhang, Q. Li, K. Jiang, and S. Fan, “Flexible, stretchable, transparent carbon nanotube thin film loudspeakers,” Nano Lett.8(12), 4539–4545 (2008).
[CrossRef] [PubMed]

Feng, S. M.

Y. Q. Lin, S. M. Feng, and T. Chen, “Temperature effect on threshold voltage and optical property of twisted nematic liquid crystal with applied different voltages,” Optik (Stuttg.)121(18), 1693–1697 (2010).
[CrossRef]

Friesem, A. A.

L. Eisen, M. Meyklyar, M. Golub, A. A. Friesem, I. Gurwich, and V. Weiss, “Planar configuration for image projection,” Appl. Opt.45(17), 4005–4011 (2006).
[CrossRef] [PubMed]

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron.33(11), 2038–2059 (1997).
[CrossRef]

Ge, Z.

M. Jiao, Z. Ge, Q. Song, and S.-T. Wu, “Alignment layer effects on thin liquid crystal cells,” Appl. Phys. Lett.92(6), 061102 (2008).
[CrossRef]

Geislhöringer, F.

S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett.99(2), 023307 (2011).
[CrossRef]

Golub, M.

Guo, L. J.

L. J. Guo, “Nanoimprint lithography: Methods and material requirements,” Adv. Mater. (Deerfield Beach Fla.)19(4), 495–513 (2007).
[CrossRef]

Gurwich, I.

Hashimoto, Y.

K. Miyoshi, S. Yamada, S. Miyahara, M. Yamashita, Y. Hashimoto, T. Yukinari, and K. Ishiguro, “Conoscopic study of liquid crystal after application and removal of the external electric field,” Jpn. J. Appl. Phys.22(Part 1, No. 12), 1754–1765 (1983).
[CrossRef]

Heck, M. J. R.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonic. Tech. L.24(11), 876–878 (2012).
[CrossRef]

Henkel, T.

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip11(8), 1484–1490 (2011).
[CrossRef] [PubMed]

Heussner, N.

S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett.99(2), 023307 (2011).
[CrossRef]

Hisaki, T.

K. Kato, T. Hisaki, and M. Date, “In-plane operation of alignment-controlled holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys.38(Part 1, No. 3A), 1466–1469 (1999).
[CrossRef]

Höfemann, H.

B. Landenberger, H. Höfemann, S. Wadle, and A. Rohrbach, “Microfluidic sorting of arbitrary cells with dynamic optical tweezers,” Lab Chip12(17), 3177–3183 (2012).
[CrossRef] [PubMed]

Hu, L.

Y. Yang, S. Jeong, L. Hu, H. Wu, S. W. Lee, and Y. Cui, “Transparent lithium-ion batteries,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13013–13018 (2011).
[CrossRef] [PubMed]

Huska, K.

S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett.99(2), 023307 (2011).
[CrossRef]

Ishiguro, K.

K. Miyoshi, S. Yamada, S. Miyahara, M. Yamashita, Y. Hashimoto, T. Yukinari, and K. Ishiguro, “Conoscopic study of liquid crystal after application and removal of the external electric field,” Jpn. J. Appl. Phys.22(Part 1, No. 12), 1754–1765 (1983).
[CrossRef]

Jeong, S.

Y. Yang, S. Jeong, L. Hu, H. Wu, S. W. Lee, and Y. Cui, “Transparent lithium-ion batteries,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13013–13018 (2011).
[CrossRef] [PubMed]

Jiang, K.

L. Xiao, Z. Chen, C. Feng, L. Liu, Z.-Q. Bai, Y. Wang, L. Qian, Y. Zhang, Q. Li, K. Jiang, and S. Fan, “Flexible, stretchable, transparent carbon nanotube thin film loudspeakers,” Nano Lett.8(12), 4539–4545 (2008).
[CrossRef] [PubMed]

Jiao, M.

M. Jiao, Z. Ge, Q. Song, and S.-T. Wu, “Alignment layer effects on thin liquid crystal cells,” Appl. Phys. Lett.92(6), 061102 (2008).
[CrossRef]

John, D. D.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonic. Tech. L.24(11), 876–878 (2012).
[CrossRef]

Jung, J. S.

T. S. Kim, J. S. Park, K. S. Son, J. S. Jung, K.-H. Lee, W. J. Maeng, H.-S. Kim, J.-Y. Kwon, B. Koo, and S. Lee, “Transparent AMOLED display driven by hafnium-indium-zinc oxide thin film transistor array,” Curr. Appl. Phys.11(5), 1253–1256 (2011).
[CrossRef]

Kang, M.

Z. Yan, W. Li, Y. Zhou, M. Kang, and Z. Zheng, “Virtual display design using waveguide hologram in conical mounting configuration,” Opt. Eng.50(9), 094001 (2011).
[CrossRef]

Kato, K.

K. Kato, T. Hisaki, and M. Date, “In-plane operation of alignment-controlled holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys.38(Part 1, No. 3A), 1466–1469 (1999).
[CrossRef]

Kim, H.-S.

T. S. Kim, J. S. Park, K. S. Son, J. S. Jung, K.-H. Lee, W. J. Maeng, H.-S. Kim, J.-Y. Kwon, B. Koo, and S. Lee, “Transparent AMOLED display driven by hafnium-indium-zinc oxide thin film transistor array,” Curr. Appl. Phys.11(5), 1253–1256 (2011).
[CrossRef]

Kim, T. S.

T. S. Kim, J. S. Park, K. S. Son, J. S. Jung, K.-H. Lee, W. J. Maeng, H.-S. Kim, J.-Y. Kwon, B. Koo, and S. Lee, “Transparent AMOLED display driven by hafnium-indium-zinc oxide thin film transistor array,” Curr. Appl. Phys.11(5), 1253–1256 (2011).
[CrossRef]

Klinkhammer, S.

S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett.99(2), 023307 (2011).
[CrossRef]

Ko, D.-H.

W. Schenck, D.-H. Ko, and E. Samulski, “Liquid crystal alignment on polymer line gratings,” J. Appl. Phys.109(6), 064301 (2011).
[CrossRef]

Koo, B.

T. S. Kim, J. S. Park, K. S. Son, J. S. Jung, K.-H. Lee, W. J. Maeng, H.-S. Kim, J.-Y. Kwon, B. Koo, and S. Lee, “Transparent AMOLED display driven by hafnium-indium-zinc oxide thin film transistor array,” Curr. Appl. Phys.11(5), 1253–1256 (2011).
[CrossRef]

Krafft, C.

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip11(8), 1484–1490 (2011).
[CrossRef] [PubMed]

Krauss, T. F.

T. F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Status Solidi A197(3), 688–702 (2003).
[CrossRef]

Kriezis, E. E.

Kristensen, A.

T. Buß, C. L. C. Smith, M. Brøkner Christiansen, R. Marie, and A. Kristensen, “Sub-wavelength surface gratings for light redirection in transparent substrates,” Appl. Phys. Lett.101(4), 043109 (2012).
[CrossRef]

Kwon, J.-Y.

T. S. Kim, J. S. Park, K. S. Son, J. S. Jung, K.-H. Lee, W. J. Maeng, H.-S. Kim, J.-Y. Kwon, B. Koo, and S. Lee, “Transparent AMOLED display driven by hafnium-indium-zinc oxide thin film transistor array,” Curr. Appl. Phys.11(5), 1253–1256 (2011).
[CrossRef]

Lagerwall, J. P. F.

J. P. F. Lagerwall and G. Scalia, “A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology,” Curr. Appl. Phys.12(6), 1387–1412 (2012).
[CrossRef]

Landenberger, B.

B. Landenberger, H. Höfemann, S. Wadle, and A. Rohrbach, “Microfluidic sorting of arbitrary cells with dynamic optical tweezers,” Lab Chip12(17), 3177–3183 (2012).
[CrossRef] [PubMed]

Lee, C.-D.

D.-R. Chiou, L.-J. Chen, and C.-D. Lee, “Pretilt angle of liquid crystals and liquid-crystal alignment on microgrooved polyimide surfaces fabricated by soft embossing method,” Langmuir22(22), 9403–9408 (2006).
[CrossRef] [PubMed]

Lee, K.-H.

T. S. Kim, J. S. Park, K. S. Son, J. S. Jung, K.-H. Lee, W. J. Maeng, H.-S. Kim, J.-Y. Kwon, B. Koo, and S. Lee, “Transparent AMOLED display driven by hafnium-indium-zinc oxide thin film transistor array,” Curr. Appl. Phys.11(5), 1253–1256 (2011).
[CrossRef]

Lee, S.

T. S. Kim, J. S. Park, K. S. Son, J. S. Jung, K.-H. Lee, W. J. Maeng, H.-S. Kim, J.-Y. Kwon, B. Koo, and S. Lee, “Transparent AMOLED display driven by hafnium-indium-zinc oxide thin film transistor array,” Curr. Appl. Phys.11(5), 1253–1256 (2011).
[CrossRef]

Lee, S. W.

Y. Yang, S. Jeong, L. Hu, H. Wu, S. W. Lee, and Y. Cui, “Transparent lithium-ion batteries,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13013–13018 (2011).
[CrossRef] [PubMed]

Lee, Y.-T.

Lemmer, U.

S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett.99(2), 023307 (2011).
[CrossRef]

Li, Q.

L. Xiao, Z. Chen, C. Feng, L. Liu, Z.-Q. Bai, Y. Wang, L. Qian, Y. Zhang, Q. Li, K. Jiang, and S. Fan, “Flexible, stretchable, transparent carbon nanotube thin film loudspeakers,” Nano Lett.8(12), 4539–4545 (2008).
[CrossRef] [PubMed]

Li, W.

Z. Yan, W. Li, Y. Zhou, M. Kang, and Z. Zheng, “Virtual display design using waveguide hologram in conical mounting configuration,” Opt. Eng.50(9), 094001 (2011).
[CrossRef]

Lin, R.

R. Lin and J. A. Rogers, “Molecular-scale soft imprint lithography for alignment layers in liquid crystal devices,” Nano Lett.7(6), 1613–1621 (2007).
[CrossRef] [PubMed]

Lin, Y. Q.

Y. Q. Lin, S. M. Feng, and T. Chen, “Temperature effect on threshold voltage and optical property of twisted nematic liquid crystal with applied different voltages,” Optik (Stuttg.)121(18), 1693–1697 (2010).
[CrossRef]

Liu, L.

L. Xiao, Z. Chen, C. Feng, L. Liu, Z.-Q. Bai, Y. Wang, L. Qian, Y. Zhang, Q. Li, K. Jiang, and S. Fan, “Flexible, stretchable, transparent carbon nanotube thin film loudspeakers,” Nano Lett.8(12), 4539–4545 (2008).
[CrossRef] [PubMed]

Lu, T. T.

T.-H. Chao, T. T. Lu, S. R. Davis, S. D. Rommel, G. Farca, B. Luey, A. Martin, and M. H. Anderson, “Compact liquid crystal waveguide based Fourier transform spectrometer for in-situ and remote gas and chemical sensing,” Proc. SPIE6977, 69770P, 69770P-11 (2008).
[CrossRef]

Luey, B.

T.-H. Chao, T. T. Lu, S. R. Davis, S. D. Rommel, G. Farca, B. Luey, A. Martin, and M. H. Anderson, “Compact liquid crystal waveguide based Fourier transform spectrometer for in-situ and remote gas and chemical sensing,” Proc. SPIE6977, 69770P, 69770P-11 (2008).
[CrossRef]

Maeng, W. J.

T. S. Kim, J. S. Park, K. S. Son, J. S. Jung, K.-H. Lee, W. J. Maeng, H.-S. Kim, J.-Y. Kwon, B. Koo, and S. Lee, “Transparent AMOLED display driven by hafnium-indium-zinc oxide thin film transistor array,” Curr. Appl. Phys.11(5), 1253–1256 (2011).
[CrossRef]

Mappes, T.

S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett.99(2), 023307 (2011).
[CrossRef]

Marie, R.

T. Buß, C. L. C. Smith, M. Brøkner Christiansen, R. Marie, and A. Kristensen, “Sub-wavelength surface gratings for light redirection in transparent substrates,” Appl. Phys. Lett.101(4), 043109 (2012).
[CrossRef]

Martin, A.

T.-H. Chao, T. T. Lu, S. R. Davis, S. D. Rommel, G. Farca, B. Luey, A. Martin, and M. H. Anderson, “Compact liquid crystal waveguide based Fourier transform spectrometer for in-situ and remote gas and chemical sensing,” Proc. SPIE6977, 69770P, 69770P-11 (2008).
[CrossRef]

Mayer, G.

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip11(8), 1484–1490 (2011).
[CrossRef] [PubMed]

Meyklyar, M.

Miyahara, S.

K. Miyoshi, S. Yamada, S. Miyahara, M. Yamashita, Y. Hashimoto, T. Yukinari, and K. Ishiguro, “Conoscopic study of liquid crystal after application and removal of the external electric field,” Jpn. J. Appl. Phys.22(Part 1, No. 12), 1754–1765 (1983).
[CrossRef]

Miyoshi, K.

K. Miyoshi, S. Yamada, S. Miyahara, M. Yamashita, Y. Hashimoto, T. Yukinari, and K. Ishiguro, “Conoscopic study of liquid crystal after application and removal of the external electric field,” Jpn. J. Appl. Phys.22(Part 1, No. 12), 1754–1765 (1983).
[CrossRef]

Moreira, R.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonic. Tech. L.24(11), 876–878 (2012).
[CrossRef]

Neugebauer, U.

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip11(8), 1484–1490 (2011).
[CrossRef] [PubMed]

Park, J. S.

T. S. Kim, J. S. Park, K. S. Son, J. S. Jung, K.-H. Lee, W. J. Maeng, H.-S. Kim, J.-Y. Kwon, B. Koo, and S. Lee, “Transparent AMOLED display driven by hafnium-indium-zinc oxide thin film transistor array,” Curr. Appl. Phys.11(5), 1253–1256 (2011).
[CrossRef]

Peng, S. T.

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. (Berl.)14(3), 235–254 (1977).
[CrossRef]

Pitilakis, A. K.

Popp, J.

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip11(8), 1484–1490 (2011).
[CrossRef] [PubMed]

Qian, L.

L. Xiao, Z. Chen, C. Feng, L. Liu, Z.-Q. Bai, Y. Wang, L. Qian, Y. Zhang, Q. Li, K. Jiang, and S. Fan, “Flexible, stretchable, transparent carbon nanotube thin film loudspeakers,” Nano Lett.8(12), 4539–4545 (2008).
[CrossRef] [PubMed]

Rogers, J. A.

R. Lin and J. A. Rogers, “Molecular-scale soft imprint lithography for alignment layers in liquid crystal devices,” Nano Lett.7(6), 1613–1621 (2007).
[CrossRef] [PubMed]

Rohrbach, A.

B. Landenberger, H. Höfemann, S. Wadle, and A. Rohrbach, “Microfluidic sorting of arbitrary cells with dynamic optical tweezers,” Lab Chip12(17), 3177–3183 (2012).
[CrossRef] [PubMed]

Rommel, S. D.

T.-H. Chao, T. T. Lu, S. R. Davis, S. D. Rommel, G. Farca, B. Luey, A. Martin, and M. H. Anderson, “Compact liquid crystal waveguide based Fourier transform spectrometer for in-situ and remote gas and chemical sensing,” Proc. SPIE6977, 69770P, 69770P-11 (2008).
[CrossRef]

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron.33(11), 2038–2059 (1997).
[CrossRef]

Samulski, E.

W. Schenck, D.-H. Ko, and E. Samulski, “Liquid crystal alignment on polymer line gratings,” J. Appl. Phys.109(6), 064301 (2011).
[CrossRef]

Scalia, G.

J. P. F. Lagerwall and G. Scalia, “A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology,” Curr. Appl. Phys.12(6), 1387–1412 (2012).
[CrossRef]

Schenck, W.

W. Schenck, D.-H. Ko, and E. Samulski, “Liquid crystal alignment on polymer line gratings,” J. Appl. Phys.109(6), 064301 (2011).
[CrossRef]

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron.33(11), 2038–2059 (1997).
[CrossRef]

Smith, C. L. C.

T. Buß, C. L. C. Smith, M. Brøkner Christiansen, R. Marie, and A. Kristensen, “Sub-wavelength surface gratings for light redirection in transparent substrates,” Appl. Phys. Lett.101(4), 043109 (2012).
[CrossRef]

Son, K. S.

T. S. Kim, J. S. Park, K. S. Son, J. S. Jung, K.-H. Lee, W. J. Maeng, H.-S. Kim, J.-Y. Kwon, B. Koo, and S. Lee, “Transparent AMOLED display driven by hafnium-indium-zinc oxide thin film transistor array,” Curr. Appl. Phys.11(5), 1253–1256 (2011).
[CrossRef]

Song, Q.

M. Jiao, Z. Ge, Q. Song, and S.-T. Wu, “Alignment layer effects on thin liquid crystal cells,” Appl. Phys. Lett.92(6), 061102 (2008).
[CrossRef]

Su, G.-D. J.

Y.-H. Cheng and G.-D. J. Su, “Waveguide display using polymer-dispersed liquid crystal,” Proc. SPIE8114, 811414, 811414-8 (2011).
[CrossRef]

Tamir, T.

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. (Berl.)14(3), 235–254 (1977).
[CrossRef]

Vannahme, C.

S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett.99(2), 023307 (2011).
[CrossRef]

Wadle, S.

B. Landenberger, H. Höfemann, S. Wadle, and A. Rohrbach, “Microfluidic sorting of arbitrary cells with dynamic optical tweezers,” Lab Chip12(17), 3177–3183 (2012).
[CrossRef] [PubMed]

Wager, J. F.

J. F. Wager, “Applied physics. Transparent electronics,” Science300(5623), 1245–1246 (2003).
[CrossRef] [PubMed]

Walt, D. R.

A. R. Faustov, M. R. Webb, and D. R. Walt, “Note: Toward multiple addressable optical trapping,” Rev. Sci. Instrum.81(2), 026109 (2010).
[CrossRef] [PubMed]

Wang, Y.

L. Xiao, Z. Chen, C. Feng, L. Liu, Z.-Q. Bai, Y. Wang, L. Qian, Y. Zhang, Q. Li, K. Jiang, and S. Fan, “Flexible, stretchable, transparent carbon nanotube thin film loudspeakers,” Nano Lett.8(12), 4539–4545 (2008).
[CrossRef] [PubMed]

Webb, M. R.

A. R. Faustov, M. R. Webb, and D. R. Walt, “Note: Toward multiple addressable optical trapping,” Rev. Sci. Instrum.81(2), 026109 (2010).
[CrossRef] [PubMed]

Wei, X.

Weiss, S. M.

Weiss, V.

Wu, H.

Y. Yang, S. Jeong, L. Hu, H. Wu, S. W. Lee, and Y. Cui, “Transparent lithium-ion batteries,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13013–13018 (2011).
[CrossRef] [PubMed]

Wu, S.-T.

M. Jiao, Z. Ge, Q. Song, and S.-T. Wu, “Alignment layer effects on thin liquid crystal cells,” Appl. Phys. Lett.92(6), 061102 (2008).
[CrossRef]

Xiao, L.

L. Xiao, Z. Chen, C. Feng, L. Liu, Z.-Q. Bai, Y. Wang, L. Qian, Y. Zhang, Q. Li, K. Jiang, and S. Fan, “Flexible, stretchable, transparent carbon nanotube thin film loudspeakers,” Nano Lett.8(12), 4539–4545 (2008).
[CrossRef] [PubMed]

Yamada, S.

K. Miyoshi, S. Yamada, S. Miyahara, M. Yamashita, Y. Hashimoto, T. Yukinari, and K. Ishiguro, “Conoscopic study of liquid crystal after application and removal of the external electric field,” Jpn. J. Appl. Phys.22(Part 1, No. 12), 1754–1765 (1983).
[CrossRef]

Yamashita, M.

K. Miyoshi, S. Yamada, S. Miyahara, M. Yamashita, Y. Hashimoto, T. Yukinari, and K. Ishiguro, “Conoscopic study of liquid crystal after application and removal of the external electric field,” Jpn. J. Appl. Phys.22(Part 1, No. 12), 1754–1765 (1983).
[CrossRef]

Yan, Z.

Z. Yan, W. Li, Y. Zhou, M. Kang, and Z. Zheng, “Virtual display design using waveguide hologram in conical mounting configuration,” Opt. Eng.50(9), 094001 (2011).
[CrossRef]

Yang, Y.

Y. Yang, S. Jeong, L. Hu, H. Wu, S. W. Lee, and Y. Cui, “Transparent lithium-ion batteries,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13013–13018 (2011).
[CrossRef] [PubMed]

Yukinari, T.

K. Miyoshi, S. Yamada, S. Miyahara, M. Yamashita, Y. Hashimoto, T. Yukinari, and K. Ishiguro, “Conoscopic study of liquid crystal after application and removal of the external electric field,” Jpn. J. Appl. Phys.22(Part 1, No. 12), 1754–1765 (1983).
[CrossRef]

Zhang, Y.

L. Xiao, Z. Chen, C. Feng, L. Liu, Z.-Q. Bai, Y. Wang, L. Qian, Y. Zhang, Q. Li, K. Jiang, and S. Fan, “Flexible, stretchable, transparent carbon nanotube thin film loudspeakers,” Nano Lett.8(12), 4539–4545 (2008).
[CrossRef] [PubMed]

Zheng, Z.

Z. Yan, W. Li, Y. Zhou, M. Kang, and Z. Zheng, “Virtual display design using waveguide hologram in conical mounting configuration,” Opt. Eng.50(9), 094001 (2011).
[CrossRef]

Zhou, Y.

Z. Yan, W. Li, Y. Zhou, M. Kang, and Z. Zheng, “Virtual display design using waveguide hologram in conical mounting configuration,” Opt. Eng.50(9), 094001 (2011).
[CrossRef]

Zografopoulos, D. C.

Adv. Mater. (Deerfield Beach Fla.) (1)

L. J. Guo, “Nanoimprint lithography: Methods and material requirements,” Adv. Mater. (Deerfield Beach Fla.)19(4), 495–513 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. (Berl.) (1)

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. (Berl.)14(3), 235–254 (1977).
[CrossRef]

Appl. Phys. Lett. (3)

T. Buß, C. L. C. Smith, M. Brøkner Christiansen, R. Marie, and A. Kristensen, “Sub-wavelength surface gratings for light redirection in transparent substrates,” Appl. Phys. Lett.101(4), 043109 (2012).
[CrossRef]

M. Jiao, Z. Ge, Q. Song, and S.-T. Wu, “Alignment layer effects on thin liquid crystal cells,” Appl. Phys. Lett.92(6), 061102 (2008).
[CrossRef]

S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett.99(2), 023307 (2011).
[CrossRef]

Curr. Appl. Phys. (2)

J. P. F. Lagerwall and G. Scalia, “A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology,” Curr. Appl. Phys.12(6), 1387–1412 (2012).
[CrossRef]

T. S. Kim, J. S. Park, K. S. Son, J. S. Jung, K.-H. Lee, W. J. Maeng, H.-S. Kim, J.-Y. Kwon, B. Koo, and S. Lee, “Transparent AMOLED display driven by hafnium-indium-zinc oxide thin film transistor array,” Curr. Appl. Phys.11(5), 1253–1256 (2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron.33(11), 2038–2059 (1997).
[CrossRef]

IEEE Photonic. Tech. L. (1)

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonic. Tech. L.24(11), 876–878 (2012).
[CrossRef]

J. Appl. Phys. (1)

W. Schenck, D.-H. Ko, and E. Samulski, “Liquid crystal alignment on polymer line gratings,” J. Appl. Phys.109(6), 064301 (2011).
[CrossRef]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (2)

K. Kato, T. Hisaki, and M. Date, “In-plane operation of alignment-controlled holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys.38(Part 1, No. 3A), 1466–1469 (1999).
[CrossRef]

K. Miyoshi, S. Yamada, S. Miyahara, M. Yamashita, Y. Hashimoto, T. Yukinari, and K. Ishiguro, “Conoscopic study of liquid crystal after application and removal of the external electric field,” Jpn. J. Appl. Phys.22(Part 1, No. 12), 1754–1765 (1983).
[CrossRef]

Lab Chip (2)

S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip11(8), 1484–1490 (2011).
[CrossRef] [PubMed]

B. Landenberger, H. Höfemann, S. Wadle, and A. Rohrbach, “Microfluidic sorting of arbitrary cells with dynamic optical tweezers,” Lab Chip12(17), 3177–3183 (2012).
[CrossRef] [PubMed]

Langmuir (1)

D.-R. Chiou, L.-J. Chen, and C.-D. Lee, “Pretilt angle of liquid crystals and liquid-crystal alignment on microgrooved polyimide surfaces fabricated by soft embossing method,” Langmuir22(22), 9403–9408 (2006).
[CrossRef] [PubMed]

Nano Lett. (2)

R. Lin and J. A. Rogers, “Molecular-scale soft imprint lithography for alignment layers in liquid crystal devices,” Nano Lett.7(6), 1613–1621 (2007).
[CrossRef] [PubMed]

L. Xiao, Z. Chen, C. Feng, L. Liu, Z.-Q. Bai, Y. Wang, L. Qian, Y. Zhang, Q. Li, K. Jiang, and S. Fan, “Flexible, stretchable, transparent carbon nanotube thin film loudspeakers,” Nano Lett.8(12), 4539–4545 (2008).
[CrossRef] [PubMed]

Opt. Eng. (1)

Z. Yan, W. Li, Y. Zhou, M. Kang, and Z. Zheng, “Virtual display design using waveguide hologram in conical mounting configuration,” Opt. Eng.50(9), 094001 (2011).
[CrossRef]

Opt. Express (2)

Optik (Stuttg.) (1)

Y. Q. Lin, S. M. Feng, and T. Chen, “Temperature effect on threshold voltage and optical property of twisted nematic liquid crystal with applied different voltages,” Optik (Stuttg.)121(18), 1693–1697 (2010).
[CrossRef]

Phys. Rev. Lett. (1)

D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett.28(26), 1683–1686 (1972).
[CrossRef]

Phys. Status Solidi A (1)

T. F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Status Solidi A197(3), 688–702 (2003).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. Yang, S. Jeong, L. Hu, H. Wu, S. W. Lee, and Y. Cui, “Transparent lithium-ion batteries,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13013–13018 (2011).
[CrossRef] [PubMed]

Proc. SPIE (2)

Y.-H. Cheng and G.-D. J. Su, “Waveguide display using polymer-dispersed liquid crystal,” Proc. SPIE8114, 811414, 811414-8 (2011).
[CrossRef]

T.-H. Chao, T. T. Lu, S. R. Davis, S. D. Rommel, G. Farca, B. Luey, A. Martin, and M. H. Anderson, “Compact liquid crystal waveguide based Fourier transform spectrometer for in-situ and remote gas and chemical sensing,” Proc. SPIE6977, 69770P, 69770P-11 (2008).
[CrossRef]

Rev. Sci. Instrum. (1)

A. R. Faustov, M. R. Webb, and D. R. Walt, “Note: Toward multiple addressable optical trapping,” Rev. Sci. Instrum.81(2), 026109 (2010).
[CrossRef] [PubMed]

Science (1)

J. F. Wager, “Applied physics. Transparent electronics,” Science300(5623), 1245–1246 (2003).
[CrossRef] [PubMed]

Other (1)

F. Giraud, M. Amberg, B. Lemaire-Semail, and G. Casiez, “Design of a transparent tactile stimulator,” in 2012 IEEE Haptics Symposium (HAPTICS) (IEEE, 2012), pp. 485–489.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Principle of operation for the projection display. Light enters from the side and is controllably out-coupled perpendicular to the device plane at specific locations. (b) Detailed side view drawing of the light propagating inside the device and out-coupled by a grating. The liquid crystal layer enables electrical modulation of individual pixels.

Fig. 2
Fig. 2

(a) Optical microscope image of gratings with periods optimized for red, green and blue light redirection, illuminated with white light from the side. The grating redirects a narrow part of the spectrum upwards through the microscope such that the gratings appear close to the designed color. (b) Photograph of an assembled device, filled with liquid crystals. The device is essentially transparent, except for the aluminum spacers, which provide electrical connection between lid and substrate. (c) Scanning electron microscope (SEM) image of the imprinted gratings, covered with an ITO electrode.

Fig. 3
Fig. 3

(a) Three-color operation of the transparent projection display, light is focused onto the sample by the microscope objective from the right side and projected onto a screen at 10 cm distance. The device shown here consists of three replications stacked on top of each other and glued onto a microscope slide. For each color the objective is translated to focus light onto the corresponding plane. For this basic demonstration, LC and lid are omitted and a logo is placed behind the sample just below the out-coupled beam in order to display the transparency. The input laser power is 20 mW and the power emitted by each pixel is approximately 2.8 µW, clearly visible in ambient light. Note that only a small fraction of the laser light is incident on the pixels, thus the diffraction efficiency of a single grating is not measured. (b) Drawing of the stacked device, consisting of three samples with different grating periods. (c) CCD camera image of the diffracted light (532 nm).

Fig. 4
Fig. 4

(a) Characterization of the sample in a transmission optical microscope with crossed polarizers. For the case of zero applied voltage, the grating appears darker than the surrounding but not completely opaque due to topographical LC orientation with the grating. With an applied voltage, the LC molecules align parallel to the E-field throughout the cell such that the crossed polarizers block all of the light and the grating area appears completely black. (b) Measurement of the redirected light. The right-most pixel of three is switched between the off-state (left) and the on-state (right) when the applied voltage induces a change in the refractive index of the LC, covering the grating. The temporal response is shown below both (a) and (b).

Fig. 5
Fig. 5

(a) Time-resolved measurement of out-coupled light intensity for TE and TM polarized light. With increasing voltage, the molecules tilt from parallel to perpendicular alignment and depending on the polarization, different refractive indices are perceived by the light. This results in the opposite voltage-intensity relation for TE/TM polarization. (b) Measurement of the response times for TM polarized light as a function of the applied voltage. (c) Measurement of the voltage threshold for TE and TM polarization.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n LC 2π λ sin( θ in )+m 2π Λ = n SU8 2π λ sin( θ out ),

Metrics