Abstract

The hind wings of males of the damselfly Matronoides cyaneipennis exhibit iridescence that is blue dorsally and green ventrally. These structures are used semiotically in agonistic and courtship display. Transmission electron microscopy reveals these colours are due to two near-identical 5-layer distributed Bragg reflectors, one placed either side of the wing membrane. Interestingly the thicknesses of corresponding layers in each distributed Bragg reflector are very similar for all but the second layer from each outer surface. This one key difference creates the significant disparity between the reflected spectra from the distributed Bragg reflectors and the observed colours of either side of the wing. Modelling indicates that modifications to the thickness of this layer alone create a greater change in the peak reflected wavelength than is observed for similar modifications to the thickness of any other layer. This results in an optimised and highly effective pair of semiotic reflector systems, based on extremely comparable design parameters, with relatively low material and biomechanical costs.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. F. Land, “The physics and biology of animal reflectors,” Prog. Biophys. Mol. Biol.24, 75–106 (1972).
    [CrossRef] [PubMed]
  2. D. L. Fox, Animal Biochromes and Structural Colours (University of California Press, 1976).
  3. P. Vukusic and J. R. Sambles, “Photonic structures in Biology,” Nature424(6950), 852–855 (2003).
    [CrossRef] [PubMed]
  4. J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(1), 011906 (2005).
    [CrossRef] [PubMed]
  5. B. J. Glover and H. M. Whitney, “Structural colour and iridescence in plants: the poorly studied relations of pigment colour,” Ann. Bot. (Lond.)105(4), 505–511 (2010).
    [CrossRef] [PubMed]
  6. E. Denton, “Reflectors in fishes,” Sci. Am.224(1), 64–72 (1971).
    [CrossRef]
  7. J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A.100(22), 12576–12578 (2003).
    [CrossRef] [PubMed]
  8. T. Trzeciak and P. Vukusic, “Photonic crystal fiber in the polychaete work Pherusa sp,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.80(6), 061908 (2009).
    [CrossRef]
  9. D. G. Stavenga, H. L. Leertouwer, N. J. Marshall, and D. Osorio, “Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules,” Proc. Biol. Sci.278(1715), 2098–2104 (2011).
    [CrossRef] [PubMed]
  10. J. A. Noyes, P. Vukusic, and I. R. Hooper, “Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle,” Opt. Express15(7), 4351–4358 (2007).
    [CrossRef] [PubMed]
  11. A. E. Seago, P. Brady, J. P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface6(Suppl 2), S165–S184 (2009).
    [CrossRef] [PubMed]
  12. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci.266(1427), 1403–1411 (1999).
    [CrossRef]
  13. S. Yoshioka and S. Kinoshita, “Single-scale spectroscopy of structurally colored butterflies: measurements of quantified reflectance and transmittance,” J. Opt. Soc. Am. A23(1), 134–141 (2006).
    [CrossRef] [PubMed]
  14. J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.77(5), 050904 (2008).
    [CrossRef] [PubMed]
  15. C. Pouya, D. G. Stavenga, and P. Vukusic, “Discovery of ordered and quasi-ordered photonic crystal structures in the scales of the beetle Eupholus magnificus,” Opt. Express19(12), 11355–11364 (2011).
    [CrossRef] [PubMed]
  16. B. D. Wilts, K. Michielsen, J. Kuipers, H. De Raedt, and D. G. Stavenga, “Brilliant camouflage: photonic crystals in the diamond weevil, Entimus imperialis,” Proc. Biol. Sci.279(1738), 2524–2530 (2012).
    [CrossRef] [PubMed]
  17. K. Michielsen and D. G. Stavenga, “Gyroid cuticular structures in butterfly wing scales: biological photonic crystals,” J. R. Soc. Interface5(18), 85–94 (2008).
    [CrossRef] [PubMed]
  18. L. Poladian, S. Wickham, K. Lee, and M. C. J. Large, “Iridescence from photonic crystals and its suppression in butterfly scales,” J. R. Soc. Interface6(Suppl 2), S233–S242 (2009).
    [CrossRef] [PubMed]
  19. P. Vukusic, R. J. Wootton, and J. R. Sambles, “Remarkable iridescence in the hindwings of the damselfly Neurobasis chinensis chinensis (Linnaeus) (Zygoptera: Calopterygidae),” Proc. Biol. Sci.271(1539), 595–601 (2004).
    [CrossRef] [PubMed]
  20. R. O. Prum, J. A. Cole, and R. H. Torres, “Blue integumentary structural colours in dragonflies (Odonata) are not produced by incoherent Tyndall scattering,” J. Exp. Biol.207(22), 3999–4009 (2004).
    [CrossRef] [PubMed]
  21. T. Hariyama, M. Hironaka, and D. G. Stavenga, “The Leaf Beetle, the Jewel Beetle and the Damselfly; Insects with a Multilayered Show Case,” In Structural colour in biological systems - principles and applications, S. Kinoshita and S. Yoshioka eds. (Osaka University Press, Osaka, Japan, 2005).
  22. J.-H. Dirks and D. Taylor, “Veins Improve Fracture Toughness of Insect Wings,” PLoS ONE7(8), e43411 (2012).
    [CrossRef] [PubMed]
  23. S. N. Gorb, A. Kesel, and J. Berger, “Microsculpture of the wing surface in Odonata: evidence for cuticular wax covering,” Arthropod Struct. Dev.29(2), 129–135 (2000).
    [CrossRef] [PubMed]
  24. I. R. Hooper, P. Vukusic, and R. J. Wootton, “Detailed optical study of the transparent wing membranes of the dragonfly Aeshna cyanea,” Opt. Express14(11), 4891–4897 (2006).
    [CrossRef] [PubMed]
  25. R. J. Wootton, “Functional morphology of insect wings,” Annu. Rev. Entomol.37(1), 113–1140 (1992).
    [CrossRef]
  26. A.G. Orr and M. Hämäläinen, The metalwing demoiselles of the eastern tropics: their identification and biology, (Natural History Publications, Borneo, 2007).
  27. P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc. Interface6(Suppl 2), S133–S148 (2009).
    [CrossRef] [PubMed]
  28. P. Vukusic, R. Sambles, C. R. Lawrence, and G. Wakely, “Sculpted-multilayer optical effects in two species of Papilio butterfly,” Appl. Opt.40(7), 1116–1125 (2001).
    [CrossRef] [PubMed]
  29. P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structurally assisted blackness in butterfly scales,” Proc. Biol. Sci.271(Suppl 4), S237–S239 (2004).
    [CrossRef] [PubMed]
  30. D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multi-layered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. London, Ser. B366(1565), 709–723 (2011).
    [CrossRef]
  31. D. G. Stavenga, H. L. Leertouwer, T. Hariyama, H. A. De Raedt, and B. D. Wilts, “Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins,” PLoS ONE7(11), e49743 (2012).
    [CrossRef] [PubMed]
  32. H. L. Leertouwer, B. D. Wilts, and D. G. Stavenga, “Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy,” Opt. Express19(24), 24061–24066 (2011).
    [CrossRef] [PubMed]
  33. S. Yoshioka and S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.83(5), 051917 (2011).
    [CrossRef] [PubMed]
  34. H. J. Dumont, J. R. Vanfleteren, J. F. De Jonckheere, and P. H. H Weekers, “Phylogenetic relationships, divergence time estimation, and global biogeographic patterns of calopterygoid damselflies (Odonata, Zygoptera) inferred from ribosomal DNA sequences,” Syst. Biol.54(3), 347–362 (2005).
    [CrossRef] [PubMed]
  35. A. Günther, “Reproductive behavior of Neurobasis kaupi (Odonata: Calopterygidae),” Int. J. Odonat.9(2), 151–164 (2006).
    [CrossRef]
  36. A. G. Orr, “Territorial and courtship displays in Bornean Chlorocyphidae (Zygotptera),” Odonatologica25, 119–141 (1996).

2012 (3)

B. D. Wilts, K. Michielsen, J. Kuipers, H. De Raedt, and D. G. Stavenga, “Brilliant camouflage: photonic crystals in the diamond weevil, Entimus imperialis,” Proc. Biol. Sci.279(1738), 2524–2530 (2012).
[CrossRef] [PubMed]

J.-H. Dirks and D. Taylor, “Veins Improve Fracture Toughness of Insect Wings,” PLoS ONE7(8), e43411 (2012).
[CrossRef] [PubMed]

D. G. Stavenga, H. L. Leertouwer, T. Hariyama, H. A. De Raedt, and B. D. Wilts, “Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins,” PLoS ONE7(11), e49743 (2012).
[CrossRef] [PubMed]

2011 (5)

S. Yoshioka and S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.83(5), 051917 (2011).
[CrossRef] [PubMed]

D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multi-layered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. London, Ser. B366(1565), 709–723 (2011).
[CrossRef]

C. Pouya, D. G. Stavenga, and P. Vukusic, “Discovery of ordered and quasi-ordered photonic crystal structures in the scales of the beetle Eupholus magnificus,” Opt. Express19(12), 11355–11364 (2011).
[CrossRef] [PubMed]

H. L. Leertouwer, B. D. Wilts, and D. G. Stavenga, “Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy,” Opt. Express19(24), 24061–24066 (2011).
[CrossRef] [PubMed]

D. G. Stavenga, H. L. Leertouwer, N. J. Marshall, and D. Osorio, “Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules,” Proc. Biol. Sci.278(1715), 2098–2104 (2011).
[CrossRef] [PubMed]

2010 (1)

B. J. Glover and H. M. Whitney, “Structural colour and iridescence in plants: the poorly studied relations of pigment colour,” Ann. Bot. (Lond.)105(4), 505–511 (2010).
[CrossRef] [PubMed]

2009 (4)

T. Trzeciak and P. Vukusic, “Photonic crystal fiber in the polychaete work Pherusa sp,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.80(6), 061908 (2009).
[CrossRef]

A. E. Seago, P. Brady, J. P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface6(Suppl 2), S165–S184 (2009).
[CrossRef] [PubMed]

L. Poladian, S. Wickham, K. Lee, and M. C. J. Large, “Iridescence from photonic crystals and its suppression in butterfly scales,” J. R. Soc. Interface6(Suppl 2), S233–S242 (2009).
[CrossRef] [PubMed]

P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc. Interface6(Suppl 2), S133–S148 (2009).
[CrossRef] [PubMed]

2008 (2)

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.77(5), 050904 (2008).
[CrossRef] [PubMed]

K. Michielsen and D. G. Stavenga, “Gyroid cuticular structures in butterfly wing scales: biological photonic crystals,” J. R. Soc. Interface5(18), 85–94 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (3)

2005 (2)

H. J. Dumont, J. R. Vanfleteren, J. F. De Jonckheere, and P. H. H Weekers, “Phylogenetic relationships, divergence time estimation, and global biogeographic patterns of calopterygoid damselflies (Odonata, Zygoptera) inferred from ribosomal DNA sequences,” Syst. Biol.54(3), 347–362 (2005).
[CrossRef] [PubMed]

J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(1), 011906 (2005).
[CrossRef] [PubMed]

2004 (3)

P. Vukusic, R. J. Wootton, and J. R. Sambles, “Remarkable iridescence in the hindwings of the damselfly Neurobasis chinensis chinensis (Linnaeus) (Zygoptera: Calopterygidae),” Proc. Biol. Sci.271(1539), 595–601 (2004).
[CrossRef] [PubMed]

R. O. Prum, J. A. Cole, and R. H. Torres, “Blue integumentary structural colours in dragonflies (Odonata) are not produced by incoherent Tyndall scattering,” J. Exp. Biol.207(22), 3999–4009 (2004).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structurally assisted blackness in butterfly scales,” Proc. Biol. Sci.271(Suppl 4), S237–S239 (2004).
[CrossRef] [PubMed]

2003 (2)

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A.100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

P. Vukusic and J. R. Sambles, “Photonic structures in Biology,” Nature424(6950), 852–855 (2003).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

S. N. Gorb, A. Kesel, and J. Berger, “Microsculpture of the wing surface in Odonata: evidence for cuticular wax covering,” Arthropod Struct. Dev.29(2), 129–135 (2000).
[CrossRef] [PubMed]

1999 (1)

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci.266(1427), 1403–1411 (1999).
[CrossRef]

1996 (1)

A. G. Orr, “Territorial and courtship displays in Bornean Chlorocyphidae (Zygotptera),” Odonatologica25, 119–141 (1996).

1992 (1)

R. J. Wootton, “Functional morphology of insect wings,” Annu. Rev. Entomol.37(1), 113–1140 (1992).
[CrossRef]

1972 (1)

M. F. Land, “The physics and biology of animal reflectors,” Prog. Biophys. Mol. Biol.24, 75–106 (1972).
[CrossRef] [PubMed]

1971 (1)

E. Denton, “Reflectors in fishes,” Sci. Am.224(1), 64–72 (1971).
[CrossRef]

Bartl, M. H.

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.77(5), 050904 (2008).
[CrossRef] [PubMed]

Berger, J.

S. N. Gorb, A. Kesel, and J. Berger, “Microsculpture of the wing surface in Odonata: evidence for cuticular wax covering,” Arthropod Struct. Dev.29(2), 129–135 (2000).
[CrossRef] [PubMed]

Biró, L. P.

J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(1), 011906 (2005).
[CrossRef] [PubMed]

Brady, P.

A. E. Seago, P. Brady, J. P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface6(Suppl 2), S165–S184 (2009).
[CrossRef] [PubMed]

Cha, J. N.

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.77(5), 050904 (2008).
[CrossRef] [PubMed]

Cole, J. A.

R. O. Prum, J. A. Cole, and R. H. Torres, “Blue integumentary structural colours in dragonflies (Odonata) are not produced by incoherent Tyndall scattering,” J. Exp. Biol.207(22), 3999–4009 (2004).
[CrossRef] [PubMed]

De Jonckheere, J. F.

H. J. Dumont, J. R. Vanfleteren, J. F. De Jonckheere, and P. H. H Weekers, “Phylogenetic relationships, divergence time estimation, and global biogeographic patterns of calopterygoid damselflies (Odonata, Zygoptera) inferred from ribosomal DNA sequences,” Syst. Biol.54(3), 347–362 (2005).
[CrossRef] [PubMed]

De Raedt, H.

B. D. Wilts, K. Michielsen, J. Kuipers, H. De Raedt, and D. G. Stavenga, “Brilliant camouflage: photonic crystals in the diamond weevil, Entimus imperialis,” Proc. Biol. Sci.279(1738), 2524–2530 (2012).
[CrossRef] [PubMed]

De Raedt, H. A.

D. G. Stavenga, H. L. Leertouwer, T. Hariyama, H. A. De Raedt, and B. D. Wilts, “Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins,” PLoS ONE7(11), e49743 (2012).
[CrossRef] [PubMed]

Denton, E.

E. Denton, “Reflectors in fishes,” Sci. Am.224(1), 64–72 (1971).
[CrossRef]

Dirks, J.-H.

J.-H. Dirks and D. Taylor, “Veins Improve Fracture Toughness of Insect Wings,” PLoS ONE7(8), e43411 (2012).
[CrossRef] [PubMed]

Dumont, H. J.

H. J. Dumont, J. R. Vanfleteren, J. F. De Jonckheere, and P. H. H Weekers, “Phylogenetic relationships, divergence time estimation, and global biogeographic patterns of calopterygoid damselflies (Odonata, Zygoptera) inferred from ribosomal DNA sequences,” Syst. Biol.54(3), 347–362 (2005).
[CrossRef] [PubMed]

Ertz, D.

J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(1), 011906 (2005).
[CrossRef] [PubMed]

Fu, R.

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A.100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Galusha, J. W.

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.77(5), 050904 (2008).
[CrossRef] [PubMed]

Gardner, J. S.

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.77(5), 050904 (2008).
[CrossRef] [PubMed]

Glover, B. J.

B. J. Glover and H. M. Whitney, “Structural colour and iridescence in plants: the poorly studied relations of pigment colour,” Ann. Bot. (Lond.)105(4), 505–511 (2010).
[CrossRef] [PubMed]

Gorb, S. N.

S. N. Gorb, A. Kesel, and J. Berger, “Microsculpture of the wing surface in Odonata: evidence for cuticular wax covering,” Arthropod Struct. Dev.29(2), 129–135 (2000).
[CrossRef] [PubMed]

Günther, A.

A. Günther, “Reproductive behavior of Neurobasis kaupi (Odonata: Calopterygidae),” Int. J. Odonat.9(2), 151–164 (2006).
[CrossRef]

H Weekers, P. H.

H. J. Dumont, J. R. Vanfleteren, J. F. De Jonckheere, and P. H. H Weekers, “Phylogenetic relationships, divergence time estimation, and global biogeographic patterns of calopterygoid damselflies (Odonata, Zygoptera) inferred from ribosomal DNA sequences,” Syst. Biol.54(3), 347–362 (2005).
[CrossRef] [PubMed]

Hariyama, T.

D. G. Stavenga, H. L. Leertouwer, T. Hariyama, H. A. De Raedt, and B. D. Wilts, “Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins,” PLoS ONE7(11), e49743 (2012).
[CrossRef] [PubMed]

D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multi-layered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. London, Ser. B366(1565), 709–723 (2011).
[CrossRef]

Hooper, I. R.

Hu, X.

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A.100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Kertész, K.

J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(1), 011906 (2005).
[CrossRef] [PubMed]

Kesel, A.

S. N. Gorb, A. Kesel, and J. Berger, “Microsculpture of the wing surface in Odonata: evidence for cuticular wax covering,” Arthropod Struct. Dev.29(2), 129–135 (2000).
[CrossRef] [PubMed]

Kinoshita, S.

S. Yoshioka and S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.83(5), 051917 (2011).
[CrossRef] [PubMed]

S. Yoshioka and S. Kinoshita, “Single-scale spectroscopy of structurally colored butterflies: measurements of quantified reflectance and transmittance,” J. Opt. Soc. Am. A23(1), 134–141 (2006).
[CrossRef] [PubMed]

Kuipers, J.

B. D. Wilts, K. Michielsen, J. Kuipers, H. De Raedt, and D. G. Stavenga, “Brilliant camouflage: photonic crystals in the diamond weevil, Entimus imperialis,” Proc. Biol. Sci.279(1738), 2524–2530 (2012).
[CrossRef] [PubMed]

Land, M. F.

M. F. Land, “The physics and biology of animal reflectors,” Prog. Biophys. Mol. Biol.24, 75–106 (1972).
[CrossRef] [PubMed]

Large, M. C. J.

L. Poladian, S. Wickham, K. Lee, and M. C. J. Large, “Iridescence from photonic crystals and its suppression in butterfly scales,” J. R. Soc. Interface6(Suppl 2), S233–S242 (2009).
[CrossRef] [PubMed]

Lawrence, C. R.

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structurally assisted blackness in butterfly scales,” Proc. Biol. Sci.271(Suppl 4), S237–S239 (2004).
[CrossRef] [PubMed]

P. Vukusic, R. Sambles, C. R. Lawrence, and G. Wakely, “Sculpted-multilayer optical effects in two species of Papilio butterfly,” Appl. Opt.40(7), 1116–1125 (2001).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci.266(1427), 1403–1411 (1999).
[CrossRef]

Lee, K.

L. Poladian, S. Wickham, K. Lee, and M. C. J. Large, “Iridescence from photonic crystals and its suppression in butterfly scales,” J. R. Soc. Interface6(Suppl 2), S233–S242 (2009).
[CrossRef] [PubMed]

Leertouwer, H. L.

D. G. Stavenga, H. L. Leertouwer, T. Hariyama, H. A. De Raedt, and B. D. Wilts, “Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins,” PLoS ONE7(11), e49743 (2012).
[CrossRef] [PubMed]

H. L. Leertouwer, B. D. Wilts, and D. G. Stavenga, “Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy,” Opt. Express19(24), 24061–24066 (2011).
[CrossRef] [PubMed]

D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multi-layered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. London, Ser. B366(1565), 709–723 (2011).
[CrossRef]

D. G. Stavenga, H. L. Leertouwer, N. J. Marshall, and D. Osorio, “Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules,” Proc. Biol. Sci.278(1715), 2098–2104 (2011).
[CrossRef] [PubMed]

Li, Y.

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A.100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Liu, X.

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A.100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Lousse, V.

J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(1), 011906 (2005).
[CrossRef] [PubMed]

Marshall, N. J.

D. G. Stavenga, H. L. Leertouwer, N. J. Marshall, and D. Osorio, “Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules,” Proc. Biol. Sci.278(1715), 2098–2104 (2011).
[CrossRef] [PubMed]

Michielsen, K.

B. D. Wilts, K. Michielsen, J. Kuipers, H. De Raedt, and D. G. Stavenga, “Brilliant camouflage: photonic crystals in the diamond weevil, Entimus imperialis,” Proc. Biol. Sci.279(1738), 2524–2530 (2012).
[CrossRef] [PubMed]

K. Michielsen and D. G. Stavenga, “Gyroid cuticular structures in butterfly wing scales: biological photonic crystals,” J. R. Soc. Interface5(18), 85–94 (2008).
[CrossRef] [PubMed]

Noyes, J. A.

Orr, A. G.

A. G. Orr, “Territorial and courtship displays in Bornean Chlorocyphidae (Zygotptera),” Odonatologica25, 119–141 (1996).

Osorio, D.

D. G. Stavenga, H. L. Leertouwer, N. J. Marshall, and D. Osorio, “Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules,” Proc. Biol. Sci.278(1715), 2098–2104 (2011).
[CrossRef] [PubMed]

Poladian, L.

L. Poladian, S. Wickham, K. Lee, and M. C. J. Large, “Iridescence from photonic crystals and its suppression in butterfly scales,” J. R. Soc. Interface6(Suppl 2), S233–S242 (2009).
[CrossRef] [PubMed]

Pouya, C.

Prum, R. O.

R. O. Prum, J. A. Cole, and R. H. Torres, “Blue integumentary structural colours in dragonflies (Odonata) are not produced by incoherent Tyndall scattering,” J. Exp. Biol.207(22), 3999–4009 (2004).
[CrossRef] [PubMed]

Rassart, M.

J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(1), 011906 (2005).
[CrossRef] [PubMed]

Richey, L. R.

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.77(5), 050904 (2008).
[CrossRef] [PubMed]

Sambles, J. R.

P. Vukusic, R. J. Wootton, and J. R. Sambles, “Remarkable iridescence in the hindwings of the damselfly Neurobasis chinensis chinensis (Linnaeus) (Zygoptera: Calopterygidae),” Proc. Biol. Sci.271(1539), 595–601 (2004).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structurally assisted blackness in butterfly scales,” Proc. Biol. Sci.271(Suppl 4), S237–S239 (2004).
[CrossRef] [PubMed]

P. Vukusic and J. R. Sambles, “Photonic structures in Biology,” Nature424(6950), 852–855 (2003).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci.266(1427), 1403–1411 (1999).
[CrossRef]

Sambles, R.

Sarrazin, M.

J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(1), 011906 (2005).
[CrossRef] [PubMed]

Schultz, T. D.

A. E. Seago, P. Brady, J. P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface6(Suppl 2), S165–S184 (2009).
[CrossRef] [PubMed]

Seago, A. E.

A. E. Seago, P. Brady, J. P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface6(Suppl 2), S165–S184 (2009).
[CrossRef] [PubMed]

Stavenga, D. G.

D. G. Stavenga, H. L. Leertouwer, T. Hariyama, H. A. De Raedt, and B. D. Wilts, “Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins,” PLoS ONE7(11), e49743 (2012).
[CrossRef] [PubMed]

B. D. Wilts, K. Michielsen, J. Kuipers, H. De Raedt, and D. G. Stavenga, “Brilliant camouflage: photonic crystals in the diamond weevil, Entimus imperialis,” Proc. Biol. Sci.279(1738), 2524–2530 (2012).
[CrossRef] [PubMed]

C. Pouya, D. G. Stavenga, and P. Vukusic, “Discovery of ordered and quasi-ordered photonic crystal structures in the scales of the beetle Eupholus magnificus,” Opt. Express19(12), 11355–11364 (2011).
[CrossRef] [PubMed]

H. L. Leertouwer, B. D. Wilts, and D. G. Stavenga, “Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy,” Opt. Express19(24), 24061–24066 (2011).
[CrossRef] [PubMed]

D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multi-layered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. London, Ser. B366(1565), 709–723 (2011).
[CrossRef]

D. G. Stavenga, H. L. Leertouwer, N. J. Marshall, and D. Osorio, “Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules,” Proc. Biol. Sci.278(1715), 2098–2104 (2011).
[CrossRef] [PubMed]

P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc. Interface6(Suppl 2), S133–S148 (2009).
[CrossRef] [PubMed]

K. Michielsen and D. G. Stavenga, “Gyroid cuticular structures in butterfly wing scales: biological photonic crystals,” J. R. Soc. Interface5(18), 85–94 (2008).
[CrossRef] [PubMed]

Taylor, D.

J.-H. Dirks and D. Taylor, “Veins Improve Fracture Toughness of Insect Wings,” PLoS ONE7(8), e43411 (2012).
[CrossRef] [PubMed]

Torres, R. H.

R. O. Prum, J. A. Cole, and R. H. Torres, “Blue integumentary structural colours in dragonflies (Odonata) are not produced by incoherent Tyndall scattering,” J. Exp. Biol.207(22), 3999–4009 (2004).
[CrossRef] [PubMed]

Trzeciak, T.

T. Trzeciak and P. Vukusic, “Photonic crystal fiber in the polychaete work Pherusa sp,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.80(6), 061908 (2009).
[CrossRef]

Vanfleteren, J. R.

H. J. Dumont, J. R. Vanfleteren, J. F. De Jonckheere, and P. H. H Weekers, “Phylogenetic relationships, divergence time estimation, and global biogeographic patterns of calopterygoid damselflies (Odonata, Zygoptera) inferred from ribosomal DNA sequences,” Syst. Biol.54(3), 347–362 (2005).
[CrossRef] [PubMed]

Vértesy, Z.

J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(1), 011906 (2005).
[CrossRef] [PubMed]

Vigneron, J. P.

A. E. Seago, P. Brady, J. P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface6(Suppl 2), S165–S184 (2009).
[CrossRef] [PubMed]

J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(1), 011906 (2005).
[CrossRef] [PubMed]

Vukusic, P.

C. Pouya, D. G. Stavenga, and P. Vukusic, “Discovery of ordered and quasi-ordered photonic crystal structures in the scales of the beetle Eupholus magnificus,” Opt. Express19(12), 11355–11364 (2011).
[CrossRef] [PubMed]

P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc. Interface6(Suppl 2), S133–S148 (2009).
[CrossRef] [PubMed]

T. Trzeciak and P. Vukusic, “Photonic crystal fiber in the polychaete work Pherusa sp,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.80(6), 061908 (2009).
[CrossRef]

J. A. Noyes, P. Vukusic, and I. R. Hooper, “Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle,” Opt. Express15(7), 4351–4358 (2007).
[CrossRef] [PubMed]

I. R. Hooper, P. Vukusic, and R. J. Wootton, “Detailed optical study of the transparent wing membranes of the dragonfly Aeshna cyanea,” Opt. Express14(11), 4891–4897 (2006).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structurally assisted blackness in butterfly scales,” Proc. Biol. Sci.271(Suppl 4), S237–S239 (2004).
[CrossRef] [PubMed]

P. Vukusic, R. J. Wootton, and J. R. Sambles, “Remarkable iridescence in the hindwings of the damselfly Neurobasis chinensis chinensis (Linnaeus) (Zygoptera: Calopterygidae),” Proc. Biol. Sci.271(1539), 595–601 (2004).
[CrossRef] [PubMed]

P. Vukusic and J. R. Sambles, “Photonic structures in Biology,” Nature424(6950), 852–855 (2003).
[CrossRef] [PubMed]

P. Vukusic, R. Sambles, C. R. Lawrence, and G. Wakely, “Sculpted-multilayer optical effects in two species of Papilio butterfly,” Appl. Opt.40(7), 1116–1125 (2001).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci.266(1427), 1403–1411 (1999).
[CrossRef]

Wakely, G.

Wang, X.

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A.100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Whitney, H. M.

B. J. Glover and H. M. Whitney, “Structural colour and iridescence in plants: the poorly studied relations of pigment colour,” Ann. Bot. (Lond.)105(4), 505–511 (2010).
[CrossRef] [PubMed]

Wickham, S.

L. Poladian, S. Wickham, K. Lee, and M. C. J. Large, “Iridescence from photonic crystals and its suppression in butterfly scales,” J. R. Soc. Interface6(Suppl 2), S233–S242 (2009).
[CrossRef] [PubMed]

Wilts, B. D.

D. G. Stavenga, H. L. Leertouwer, T. Hariyama, H. A. De Raedt, and B. D. Wilts, “Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins,” PLoS ONE7(11), e49743 (2012).
[CrossRef] [PubMed]

B. D. Wilts, K. Michielsen, J. Kuipers, H. De Raedt, and D. G. Stavenga, “Brilliant camouflage: photonic crystals in the diamond weevil, Entimus imperialis,” Proc. Biol. Sci.279(1738), 2524–2530 (2012).
[CrossRef] [PubMed]

H. L. Leertouwer, B. D. Wilts, and D. G. Stavenga, “Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy,” Opt. Express19(24), 24061–24066 (2011).
[CrossRef] [PubMed]

D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multi-layered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. London, Ser. B366(1565), 709–723 (2011).
[CrossRef]

Wootton, R. J.

I. R. Hooper, P. Vukusic, and R. J. Wootton, “Detailed optical study of the transparent wing membranes of the dragonfly Aeshna cyanea,” Opt. Express14(11), 4891–4897 (2006).
[CrossRef] [PubMed]

P. Vukusic, R. J. Wootton, and J. R. Sambles, “Remarkable iridescence in the hindwings of the damselfly Neurobasis chinensis chinensis (Linnaeus) (Zygoptera: Calopterygidae),” Proc. Biol. Sci.271(1539), 595–601 (2004).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci.266(1427), 1403–1411 (1999).
[CrossRef]

R. J. Wootton, “Functional morphology of insect wings,” Annu. Rev. Entomol.37(1), 113–1140 (1992).
[CrossRef]

Xu, C.

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A.100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Yoshioka, S.

S. Yoshioka and S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.83(5), 051917 (2011).
[CrossRef] [PubMed]

S. Yoshioka and S. Kinoshita, “Single-scale spectroscopy of structurally colored butterflies: measurements of quantified reflectance and transmittance,” J. Opt. Soc. Am. A23(1), 134–141 (2006).
[CrossRef] [PubMed]

Yu, X.

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A.100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Zi, J.

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A.100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Ann. Bot. (Lond.) (1)

B. J. Glover and H. M. Whitney, “Structural colour and iridescence in plants: the poorly studied relations of pigment colour,” Ann. Bot. (Lond.)105(4), 505–511 (2010).
[CrossRef] [PubMed]

Annu. Rev. Entomol. (1)

R. J. Wootton, “Functional morphology of insect wings,” Annu. Rev. Entomol.37(1), 113–1140 (1992).
[CrossRef]

Appl. Opt. (1)

Arthropod Struct. Dev. (1)

S. N. Gorb, A. Kesel, and J. Berger, “Microsculpture of the wing surface in Odonata: evidence for cuticular wax covering,” Arthropod Struct. Dev.29(2), 129–135 (2000).
[CrossRef] [PubMed]

Int. J. Odonat. (1)

A. Günther, “Reproductive behavior of Neurobasis kaupi (Odonata: Calopterygidae),” Int. J. Odonat.9(2), 151–164 (2006).
[CrossRef]

J. Exp. Biol. (1)

R. O. Prum, J. A. Cole, and R. H. Torres, “Blue integumentary structural colours in dragonflies (Odonata) are not produced by incoherent Tyndall scattering,” J. Exp. Biol.207(22), 3999–4009 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. R. Soc. Interface (4)

P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc. Interface6(Suppl 2), S133–S148 (2009).
[CrossRef] [PubMed]

K. Michielsen and D. G. Stavenga, “Gyroid cuticular structures in butterfly wing scales: biological photonic crystals,” J. R. Soc. Interface5(18), 85–94 (2008).
[CrossRef] [PubMed]

L. Poladian, S. Wickham, K. Lee, and M. C. J. Large, “Iridescence from photonic crystals and its suppression in butterfly scales,” J. R. Soc. Interface6(Suppl 2), S233–S242 (2009).
[CrossRef] [PubMed]

A. E. Seago, P. Brady, J. P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface6(Suppl 2), S165–S184 (2009).
[CrossRef] [PubMed]

Nature (1)

P. Vukusic and J. R. Sambles, “Photonic structures in Biology,” Nature424(6950), 852–855 (2003).
[CrossRef] [PubMed]

Odonatologica (1)

A. G. Orr, “Territorial and courtship displays in Bornean Chlorocyphidae (Zygotptera),” Odonatologica25, 119–141 (1996).

Opt. Express (4)

Philos. Trans. R. Soc. London, Ser. B (1)

D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multi-layered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. London, Ser. B366(1565), 709–723 (2011).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (4)

S. Yoshioka and S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.83(5), 051917 (2011).
[CrossRef] [PubMed]

J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.77(5), 050904 (2008).
[CrossRef] [PubMed]

J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(1), 011906 (2005).
[CrossRef] [PubMed]

T. Trzeciak and P. Vukusic, “Photonic crystal fiber in the polychaete work Pherusa sp,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.80(6), 061908 (2009).
[CrossRef]

PLoS ONE (2)

J.-H. Dirks and D. Taylor, “Veins Improve Fracture Toughness of Insect Wings,” PLoS ONE7(8), e43411 (2012).
[CrossRef] [PubMed]

D. G. Stavenga, H. L. Leertouwer, T. Hariyama, H. A. De Raedt, and B. D. Wilts, “Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins,” PLoS ONE7(11), e49743 (2012).
[CrossRef] [PubMed]

Proc. Biol. Sci. (5)

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structurally assisted blackness in butterfly scales,” Proc. Biol. Sci.271(Suppl 4), S237–S239 (2004).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci.266(1427), 1403–1411 (1999).
[CrossRef]

P. Vukusic, R. J. Wootton, and J. R. Sambles, “Remarkable iridescence in the hindwings of the damselfly Neurobasis chinensis chinensis (Linnaeus) (Zygoptera: Calopterygidae),” Proc. Biol. Sci.271(1539), 595–601 (2004).
[CrossRef] [PubMed]

D. G. Stavenga, H. L. Leertouwer, N. J. Marshall, and D. Osorio, “Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules,” Proc. Biol. Sci.278(1715), 2098–2104 (2011).
[CrossRef] [PubMed]

B. D. Wilts, K. Michielsen, J. Kuipers, H. De Raedt, and D. G. Stavenga, “Brilliant camouflage: photonic crystals in the diamond weevil, Entimus imperialis,” Proc. Biol. Sci.279(1738), 2524–2530 (2012).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A.100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Prog. Biophys. Mol. Biol. (1)

M. F. Land, “The physics and biology of animal reflectors,” Prog. Biophys. Mol. Biol.24, 75–106 (1972).
[CrossRef] [PubMed]

Sci. Am. (1)

E. Denton, “Reflectors in fishes,” Sci. Am.224(1), 64–72 (1971).
[CrossRef]

Syst. Biol. (1)

H. J. Dumont, J. R. Vanfleteren, J. F. De Jonckheere, and P. H. H Weekers, “Phylogenetic relationships, divergence time estimation, and global biogeographic patterns of calopterygoid damselflies (Odonata, Zygoptera) inferred from ribosomal DNA sequences,” Syst. Biol.54(3), 347–362 (2005).
[CrossRef] [PubMed]

Other (3)

A.G. Orr and M. Hämäläinen, The metalwing demoiselles of the eastern tropics: their identification and biology, (Natural History Publications, Borneo, 2007).

D. L. Fox, Animal Biochromes and Structural Colours (University of California Press, 1976).

T. Hariyama, M. Hironaka, and D. G. Stavenga, “The Leaf Beetle, the Jewel Beetle and the Damselfly; Insects with a Multilayered Show Case,” In Structural colour in biological systems - principles and applications, S. Kinoshita and S. Yoshioka eds. (Osaka University Press, Osaka, Japan, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical microscope images of the surfaces of the hind wings of M. cyaneipennis. (A) Low-magnification image of the dorsal side of the wing, (B) low-mag image of the ventral side of the wing, (C) close-up taken from image in (A), (D) high-magnification image of a dorsal cell, (E) high-mag image of a ventral cell. Scale bars are 10mm (A and B), 2mm (C), 100 μm (D) and 200 μm (E).

Fig. 2
Fig. 2

Measured reflections from (A) the dorsal side and (B) the ventral side of the wing membrane at a range of incident angles; 20 degrees (red), 30 degrees (orange), 40 degrees (green) and 50 degrees (blue). Near-normal incidence reflectance, measured using MSP is represented by the black-dashed data. (Near-normal incidence data and 20 degree incidence data are both normalised to 100% reflectance; other data scales correctly relative to the 20 degree data).

Fig. 3
Fig. 3

(A) SEM image showing a fractured edge of wing cell membrane from M. cyaneipennis. (B) SEM image showing several cells on the wing membrane. (C) TEM image showing a cross-section of the structurally coloured cell membrane from the hindwing of M. cyaneipennis revealing the layered structures present on either side of the central thick dark-contrasted layer that form the dorsal and ventral DBRs. (D) Side-by side comparison of magnified sections of the TEM image shown in (C). The positions of the regions highlighted by the blue and green coloured boxes in (D) are indicated by the blue and green arrows in (C). Specifically, however, the blue and green arrow tips point along the second layer in each DBR. [Scale bars 1 µm (A), 75 µm (B), 1 µm (C)].

Fig. 4
Fig. 4

(A) Measured refractive index profile (from a strip of width 100 nm) across a TEM of M. cyaneipennis’ cross-sectional structure (the TEM from which the intensity profile is taken is shown in the insert). The intensity profile shown is the pixel-intensity average across the 100 nm width of the TEM. (B) Theoretically modelled reflectance of the M. cyaneipennis system using the refractive index profile shown in (A).

Fig. 5
Fig. 5

(A) Assigned refractive index profiles across two different TEM images, both taken from the same intra-cell wing-membrane region, taken using the pixel-intensity profile method. Blue and green dashed lines represent refractive index profiles across each TEM (TEM strip width = 100 nm); black solid line represents the average of the two individual TEM profiles. (B) Theoretical data showing the contrasting reflectance spectra of the two intra-cell membrane regions, that correspond to the refractive index profiles shown in (A).

Fig. 6
Fig. 6

Graph showing the DBR’s sensitivity to change (i.e. the shift in its peak reflected wavelength) due to modifications to individual layer thickness for M. cyaneipennis’ dorsal DBR. The original, unaltered DBR (the control) is represented by the Δlayer thickness = 0% position. Insert shows the same for M. cyaneipennis’ ventral DBR.

Tables (1)

Tables Icon

Table 1 Three layer types are discernable in the TEMs taken from the damselfly’s wing membrane; one type exhibits dark greyscale contrast, another type exhibits light greyscale contrast. There are two surface layers exhibiting intermediate greyscale contrast. This table details the parameters associated with the non-dispersive real (n) and imaginary (k) refractive index values that were determined from fitting experimental reflectance data to multilayer theory.

Metrics