Abstract

Recently, diffuse speckle contrast analysis (DSCA) was introduced as a competent modality for deep tissue blood flow measurement, where the speckle contrast is calculated over spatial domain on the CCD image of diffuse reflectance. In this paper, we introduce time-domain DSCA where temporal statistics are used for speckle contrast calculation and results in the same deep tissue flow measurement. This new modality is especially suitable for multi-channel real-time flowmetry, and we demonstrate its performance on human arm during cuff occlusion test. Independent component analysis (ICA) study on multi-channel data shows promising results about underlying physiology.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Bi, J. Dong, and K. Lee, “Deep tissue flowmetry based on diffuse speckle contrast analysis,” Opt. Lett.38(9), 1401–1403 (2013).
    [CrossRef] [PubMed]
  2. G. Q. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res.11(9), 3543–3552 (2005).
    [CrossRef] [PubMed]
  3. Y. Shang, Y. Q. Zhao, R. Cheng, L. X. Dong, D. Irwin, and G. Q. Yu, “Portable optical tissue flow oximeter based on diffuse correlation spectroscopy,” Opt. Lett.34(22), 3556–3558 (2009).
    [CrossRef] [PubMed]
  4. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
    [CrossRef]
  5. R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos Trans A Math Phys Eng Sci369(1955), 4390–4406 (2011).
    [CrossRef] [PubMed]
  6. J. Dong, R. Bi, J. H. Ho, P. S. P. Thong, K.-C. Soo, and K. Lee, “Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator,” J. Biomed. Opt.17(9), 097004 (2012).
    [CrossRef] [PubMed]
  7. L. Gagnon, M. Desjardins, J. Jehanne-Lacasse, L. Bherer, and F. Lesage, “Investigation of diffuse correlation spectroscopy in multi-layered media including the human head,” Opt. Express16(20), 15514–15530 (2008).
    [CrossRef] [PubMed]
  8. C. Zhou, G. Q. Yu, D. Furuya, J. H. Greenberg, A. G. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Opt. Express14(3), 1125–1144 (2006).
    [CrossRef] [PubMed]
  9. N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates,” Neuroimage, (2013) Epub 28 Jan 2013 ahead of print.
  10. E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express17(15), 12571–12581 (2009).
    [CrossRef] [PubMed]
  11. T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express17(5), 3884–3902 (2009).
    [CrossRef] [PubMed]
  12. E. M. Buckley, M. Y. Naim, J. M. Lynch, D. A. Goff, P. J. Schwab, L. K. Diaz, S. C. Nicolson, L. M. Montenegro, N. A. Lavin, T. Durduran, T. L. Spray, J. W. Gaynor, M. E. Putt, A. G. Yodh, M. A. Fogel, and D. J. Licht, “Sodium bicarbonate causes dose-dependent increases in cerebral blood flow in infants and children with single-ventricle physiology,” Pediatr. Res.73(5), 668–673 (2013).
    [CrossRef] [PubMed]
  13. A. Devor, S. Sakadžić, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab.32(7), 1259–1276 (2012).
    [CrossRef] [PubMed]
  14. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
    [CrossRef] [PubMed]
  15. T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
    [CrossRef] [PubMed]
  16. P. Zakharov, A. C. Völker, M. T. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, “Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express17(16), 13904–13917 (2009).
    [CrossRef] [PubMed]
  17. H. Y. Cheng, Y. M. Yan, and T. Q. Duong, “Temporal statistical analysis of laser speckle images and its application to retinal blood-flow imaging,” Opt. Express16(14), 10214–10219 (2008).
    [CrossRef] [PubMed]
  18. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010).
    [CrossRef] [PubMed]
  19. B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res.68(2), 143–146 (2004).
    [CrossRef] [PubMed]
  20. G. Mahé, P. Rousseau, S. Durand, S. Bricq, G. Leftheriotis, and P. Abraham, “Laser speckle contrast imaging accurately measures blood flow over moving skin surfaces,” Microvasc. Res.81(2), 183–188 (2011).
    [CrossRef] [PubMed]
  21. O. Yang and B. Choi, “Laser speckle imaging using a consumer-grade color camera,” Opt. Lett.37(19), 3957–3959 (2012).
    [CrossRef] [PubMed]
  22. A. Mazhar, T. B. Rice, D. J. Cuccia, B. Choi, A. J. Durkin, D. A. Boas, and B. J. Tromberg, “Laser speckle imaging in the spatial frequency domain,” (Optical Society of America, 2010), p. BWA7.
  23. T. B. Rice, S. D. Konecky, C. Owen, B. Choi, and B. J. Tromberg, “Determination of the effect of source intensity profile on speckle contrast using coherent spatial frequency domain imaging,” Biomed. Opt. Express3(6), 1340–1349 (2012).
    [CrossRef] [PubMed]
  24. P. C. Li, S. L. Ni, L. Zhang, S. Q. Zeng, and Q. M. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Opt. Lett.31(12), 1824–1826 (2006).
    [CrossRef] [PubMed]
  25. R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76(9), 093110–093121 (2005).
    [CrossRef]
  26. J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt.1(2), 174–179 (1996).
    [CrossRef] [PubMed]
  27. A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37(5), 326–330 (1981).
    [CrossRef]
  28. S. A. Carp, G. P. Dai, D. A. Boas, M. A. Franceschini, and Y. R. Kim, “Validation of diffuse correlation spectroscopy measurements of rodent cerebral blood flow with simultaneous arterial spin labeling MRI; towards MRI-optical continuous cerebral metabolic monitoring,” Biomed. Opt. Express1(2), 553–565 (2010).
    [CrossRef] [PubMed]
  29. G. Q. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. J. Wang, J. A. Detre, and A. G. Yodh, “Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion MRI,” Opt. Express15(3), 1064–1075 (2007).
    [CrossRef] [PubMed]
  30. E. M. Buckley, D. Hance, T. Pawlowski, J. Lynch, F. B. Wilson, R. C. Mesquita, T. Durduran, L. K. Diaz, M. E. Putt, D. J. Licht, M. A. Fogel, and A. G. Yodh, “Validation of diffuse correlation spectroscopic measurement of cerebral blood flow using phase-encoded velocity mapping magnetic resonance imaging,” J. Biomed. Opt.17(3), 037007 (2012).
    [CrossRef] [PubMed]
  31. S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt.44(10), 1823–1830 (2005).
    [CrossRef] [PubMed]
  32. R. Cheng, Y. Shang, D. Hayes, S. P. Saha, and G. Q. Yu, “Noninvasive optical evaluation of spontaneous low frequency oscillations in cerebral hemodynamics,” Neuroimage62(3), 1445–1454 (2012).
    [CrossRef] [PubMed]
  33. P. Kvandal, S. A. Landsverk, A. Bernjak, A. Stefanovska, H. D. Kvernmo, and K. A. Kirkebøen, “Low-frequency oscillations of the laser Doppler perfusion signal in human skin,” Microvasc. Res.72(3), 120–127 (2006).
    [CrossRef] [PubMed]

2013 (3)

R. Bi, J. Dong, and K. Lee, “Deep tissue flowmetry based on diffuse speckle contrast analysis,” Opt. Lett.38(9), 1401–1403 (2013).
[CrossRef] [PubMed]

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates,” Neuroimage, (2013) Epub 28 Jan 2013 ahead of print.

E. M. Buckley, M. Y. Naim, J. M. Lynch, D. A. Goff, P. J. Schwab, L. K. Diaz, S. C. Nicolson, L. M. Montenegro, N. A. Lavin, T. Durduran, T. L. Spray, J. W. Gaynor, M. E. Putt, A. G. Yodh, M. A. Fogel, and D. J. Licht, “Sodium bicarbonate causes dose-dependent increases in cerebral blood flow in infants and children with single-ventricle physiology,” Pediatr. Res.73(5), 668–673 (2013).
[CrossRef] [PubMed]

2012 (6)

A. Devor, S. Sakadžić, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab.32(7), 1259–1276 (2012).
[CrossRef] [PubMed]

J. Dong, R. Bi, J. H. Ho, P. S. P. Thong, K.-C. Soo, and K. Lee, “Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator,” J. Biomed. Opt.17(9), 097004 (2012).
[CrossRef] [PubMed]

O. Yang and B. Choi, “Laser speckle imaging using a consumer-grade color camera,” Opt. Lett.37(19), 3957–3959 (2012).
[CrossRef] [PubMed]

T. B. Rice, S. D. Konecky, C. Owen, B. Choi, and B. J. Tromberg, “Determination of the effect of source intensity profile on speckle contrast using coherent spatial frequency domain imaging,” Biomed. Opt. Express3(6), 1340–1349 (2012).
[CrossRef] [PubMed]

E. M. Buckley, D. Hance, T. Pawlowski, J. Lynch, F. B. Wilson, R. C. Mesquita, T. Durduran, L. K. Diaz, M. E. Putt, D. J. Licht, M. A. Fogel, and A. G. Yodh, “Validation of diffuse correlation spectroscopic measurement of cerebral blood flow using phase-encoded velocity mapping magnetic resonance imaging,” J. Biomed. Opt.17(3), 037007 (2012).
[CrossRef] [PubMed]

R. Cheng, Y. Shang, D. Hayes, S. P. Saha, and G. Q. Yu, “Noninvasive optical evaluation of spontaneous low frequency oscillations in cerebral hemodynamics,” Neuroimage62(3), 1445–1454 (2012).
[CrossRef] [PubMed]

2011 (2)

G. Mahé, P. Rousseau, S. Durand, S. Bricq, G. Leftheriotis, and P. Abraham, “Laser speckle contrast imaging accurately measures blood flow over moving skin surfaces,” Microvasc. Res.81(2), 183–188 (2011).
[CrossRef] [PubMed]

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos Trans A Math Phys Eng Sci369(1955), 4390–4406 (2011).
[CrossRef] [PubMed]

2010 (3)

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010).
[CrossRef] [PubMed]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

S. A. Carp, G. P. Dai, D. A. Boas, M. A. Franceschini, and Y. R. Kim, “Validation of diffuse correlation spectroscopy measurements of rodent cerebral blood flow with simultaneous arterial spin labeling MRI; towards MRI-optical continuous cerebral metabolic monitoring,” Biomed. Opt. Express1(2), 553–565 (2010).
[CrossRef] [PubMed]

2009 (4)

2008 (2)

2007 (1)

2006 (3)

2005 (3)

G. Q. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res.11(9), 3543–3552 (2005).
[CrossRef] [PubMed]

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76(9), 093110–093121 (2005).
[CrossRef]

S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt.44(10), 1823–1830 (2005).
[CrossRef] [PubMed]

2004 (2)

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res.68(2), 143–146 (2004).
[CrossRef] [PubMed]

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
[CrossRef] [PubMed]

2001 (1)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
[CrossRef] [PubMed]

1996 (1)

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt.1(2), 174–179 (1996).
[CrossRef] [PubMed]

1981 (1)

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37(5), 326–330 (1981).
[CrossRef]

Abraham, P.

G. Mahé, P. Rousseau, S. Durand, S. Bricq, G. Leftheriotis, and P. Abraham, “Laser speckle contrast imaging accurately measures blood flow over moving skin surfaces,” Microvasc. Res.81(2), 183–188 (2011).
[CrossRef] [PubMed]

Arger, P. H.

Baker, W. B.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

Bandyopadhyay, R.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76(9), 093110–093121 (2005).
[CrossRef]

Bernjak, A.

P. Kvandal, S. A. Landsverk, A. Bernjak, A. Stefanovska, H. D. Kvernmo, and K. A. Kirkebøen, “Low-frequency oscillations of the laser Doppler perfusion signal in human skin,” Microvasc. Res.72(3), 120–127 (2006).
[CrossRef] [PubMed]

Bherer, L.

Bi, R.

R. Bi, J. Dong, and K. Lee, “Deep tissue flowmetry based on diffuse speckle contrast analysis,” Opt. Lett.38(9), 1401–1403 (2013).
[CrossRef] [PubMed]

J. Dong, R. Bi, J. H. Ho, P. S. P. Thong, K.-C. Soo, and K. Lee, “Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator,” J. Biomed. Opt.17(9), 097004 (2012).
[CrossRef] [PubMed]

Boas, D. A.

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates,” Neuroimage, (2013) Epub 28 Jan 2013 ahead of print.

A. Devor, S. Sakadžić, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab.32(7), 1259–1276 (2012).
[CrossRef] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010).
[CrossRef] [PubMed]

S. A. Carp, G. P. Dai, D. A. Boas, M. A. Franceschini, and Y. R. Kim, “Validation of diffuse correlation spectroscopy measurements of rodent cerebral blood flow with simultaneous arterial spin labeling MRI; towards MRI-optical continuous cerebral metabolic monitoring,” Biomed. Opt. Express1(2), 553–565 (2010).
[CrossRef] [PubMed]

S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt.44(10), 1823–1830 (2005).
[CrossRef] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
[CrossRef] [PubMed]

Bolay, H.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
[CrossRef] [PubMed]

Bricq, S.

G. Mahé, P. Rousseau, S. Durand, S. Bricq, G. Leftheriotis, and P. Abraham, “Laser speckle contrast imaging accurately measures blood flow over moving skin surfaces,” Microvasc. Res.81(2), 183–188 (2011).
[CrossRef] [PubMed]

Briers, J. D.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt.1(2), 174–179 (1996).
[CrossRef] [PubMed]

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37(5), 326–330 (1981).
[CrossRef]

Buck, A.

Buckley, E. M.

E. M. Buckley, M. Y. Naim, J. M. Lynch, D. A. Goff, P. J. Schwab, L. K. Diaz, S. C. Nicolson, L. M. Montenegro, N. A. Lavin, T. Durduran, T. L. Spray, J. W. Gaynor, M. E. Putt, A. G. Yodh, M. A. Fogel, and D. J. Licht, “Sodium bicarbonate causes dose-dependent increases in cerebral blood flow in infants and children with single-ventricle physiology,” Pediatr. Res.73(5), 668–673 (2013).
[CrossRef] [PubMed]

E. M. Buckley, D. Hance, T. Pawlowski, J. Lynch, F. B. Wilson, R. C. Mesquita, T. Durduran, L. K. Diaz, M. E. Putt, D. J. Licht, M. A. Fogel, and A. G. Yodh, “Validation of diffuse correlation spectroscopic measurement of cerebral blood flow using phase-encoded velocity mapping magnetic resonance imaging,” J. Biomed. Opt.17(3), 037007 (2012).
[CrossRef] [PubMed]

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos Trans A Math Phys Eng Sci369(1955), 4390–4406 (2011).
[CrossRef] [PubMed]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express17(15), 12571–12581 (2009).
[CrossRef] [PubMed]

Burnett, M. G.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
[CrossRef] [PubMed]

Busch, T. M.

G. Q. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res.11(9), 3543–3552 (2005).
[CrossRef] [PubMed]

Calcinaghi, N.

Carp, S. A.

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates,” Neuroimage, (2013) Epub 28 Jan 2013 ahead of print.

S. A. Carp, G. P. Dai, D. A. Boas, M. A. Franceschini, and Y. R. Kim, “Validation of diffuse correlation spectroscopy measurements of rodent cerebral blood flow with simultaneous arterial spin labeling MRI; towards MRI-optical continuous cerebral metabolic monitoring,” Biomed. Opt. Express1(2), 553–565 (2010).
[CrossRef] [PubMed]

Cheng, H. Y.

Cheng, R.

R. Cheng, Y. Shang, D. Hayes, S. P. Saha, and G. Q. Yu, “Noninvasive optical evaluation of spontaneous low frequency oscillations in cerebral hemodynamics,” Neuroimage62(3), 1445–1454 (2012).
[CrossRef] [PubMed]

Y. Shang, Y. Q. Zhao, R. Cheng, L. X. Dong, D. Irwin, and G. Q. Yu, “Portable optical tissue flow oximeter based on diffuse correlation spectroscopy,” Opt. Lett.34(22), 3556–3558 (2009).
[CrossRef] [PubMed]

Choe, R.

Choi, B.

Cook, N. M.

Cucchiara, B. L.

Dai, G. P.

Dale, A. M.

A. Devor, S. Sakadžić, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab.32(7), 1259–1276 (2012).
[CrossRef] [PubMed]

Desjardins, M.

Detre, J. A.

Devor, A.

A. Devor, S. Sakadžić, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab.32(7), 1259–1276 (2012).
[CrossRef] [PubMed]

S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt.44(10), 1823–1830 (2005).
[CrossRef] [PubMed]

Diaz, L. K.

E. M. Buckley, M. Y. Naim, J. M. Lynch, D. A. Goff, P. J. Schwab, L. K. Diaz, S. C. Nicolson, L. M. Montenegro, N. A. Lavin, T. Durduran, T. L. Spray, J. W. Gaynor, M. E. Putt, A. G. Yodh, M. A. Fogel, and D. J. Licht, “Sodium bicarbonate causes dose-dependent increases in cerebral blood flow in infants and children with single-ventricle physiology,” Pediatr. Res.73(5), 668–673 (2013).
[CrossRef] [PubMed]

E. M. Buckley, D. Hance, T. Pawlowski, J. Lynch, F. B. Wilson, R. C. Mesquita, T. Durduran, L. K. Diaz, M. E. Putt, D. J. Licht, M. A. Fogel, and A. G. Yodh, “Validation of diffuse correlation spectroscopic measurement of cerebral blood flow using phase-encoded velocity mapping magnetic resonance imaging,” J. Biomed. Opt.17(3), 037007 (2012).
[CrossRef] [PubMed]

Dixon, P. K.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76(9), 093110–093121 (2005).
[CrossRef]

Dong, J.

R. Bi, J. Dong, and K. Lee, “Deep tissue flowmetry based on diffuse speckle contrast analysis,” Opt. Lett.38(9), 1401–1403 (2013).
[CrossRef] [PubMed]

J. Dong, R. Bi, J. H. Ho, P. S. P. Thong, K.-C. Soo, and K. Lee, “Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator,” J. Biomed. Opt.17(9), 097004 (2012).
[CrossRef] [PubMed]

Dong, L. X.

Dubb, J.

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates,” Neuroimage, (2013) Epub 28 Jan 2013 ahead of print.

Dunn, A. K.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010).
[CrossRef] [PubMed]

S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt.44(10), 1823–1830 (2005).
[CrossRef] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
[CrossRef] [PubMed]

Duong, T. Q.

Durand, S.

G. Mahé, P. Rousseau, S. Durand, S. Bricq, G. Leftheriotis, and P. Abraham, “Laser speckle contrast imaging accurately measures blood flow over moving skin surfaces,” Microvasc. Res.81(2), 183–188 (2011).
[CrossRef] [PubMed]

Durduran, T.

E. M. Buckley, M. Y. Naim, J. M. Lynch, D. A. Goff, P. J. Schwab, L. K. Diaz, S. C. Nicolson, L. M. Montenegro, N. A. Lavin, T. Durduran, T. L. Spray, J. W. Gaynor, M. E. Putt, A. G. Yodh, M. A. Fogel, and D. J. Licht, “Sodium bicarbonate causes dose-dependent increases in cerebral blood flow in infants and children with single-ventricle physiology,” Pediatr. Res.73(5), 668–673 (2013).
[CrossRef] [PubMed]

E. M. Buckley, D. Hance, T. Pawlowski, J. Lynch, F. B. Wilson, R. C. Mesquita, T. Durduran, L. K. Diaz, M. E. Putt, D. J. Licht, M. A. Fogel, and A. G. Yodh, “Validation of diffuse correlation spectroscopic measurement of cerebral blood flow using phase-encoded velocity mapping magnetic resonance imaging,” J. Biomed. Opt.17(3), 037007 (2012).
[CrossRef] [PubMed]

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos Trans A Math Phys Eng Sci369(1955), 4390–4406 (2011).
[CrossRef] [PubMed]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express17(5), 3884–3902 (2009).
[CrossRef] [PubMed]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express17(15), 12571–12581 (2009).
[CrossRef] [PubMed]

G. Q. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. J. Wang, J. A. Detre, and A. G. Yodh, “Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion MRI,” Opt. Express15(3), 1064–1075 (2007).
[CrossRef] [PubMed]

C. Zhou, G. Q. Yu, D. Furuya, J. H. Greenberg, A. G. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Opt. Express14(3), 1125–1144 (2006).
[CrossRef] [PubMed]

G. Q. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res.11(9), 3543–3552 (2005).
[CrossRef] [PubMed]

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
[CrossRef] [PubMed]

Durian, D. J.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76(9), 093110–093121 (2005).
[CrossRef]

Edlow, B. L.

Fenoglio, A.

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates,” Neuroimage, (2013) Epub 28 Jan 2013 ahead of print.

Fercher, A. F.

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37(5), 326–330 (1981).
[CrossRef]

Floyd, T. F.

Fogel, M. A.

E. M. Buckley, M. Y. Naim, J. M. Lynch, D. A. Goff, P. J. Schwab, L. K. Diaz, S. C. Nicolson, L. M. Montenegro, N. A. Lavin, T. Durduran, T. L. Spray, J. W. Gaynor, M. E. Putt, A. G. Yodh, M. A. Fogel, and D. J. Licht, “Sodium bicarbonate causes dose-dependent increases in cerebral blood flow in infants and children with single-ventricle physiology,” Pediatr. Res.73(5), 668–673 (2013).
[CrossRef] [PubMed]

E. M. Buckley, D. Hance, T. Pawlowski, J. Lynch, F. B. Wilson, R. C. Mesquita, T. Durduran, L. K. Diaz, M. E. Putt, D. J. Licht, M. A. Fogel, and A. G. Yodh, “Validation of diffuse correlation spectroscopic measurement of cerebral blood flow using phase-encoded velocity mapping magnetic resonance imaging,” J. Biomed. Opt.17(3), 037007 (2012).
[CrossRef] [PubMed]

Franceschini, M. A.

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates,” Neuroimage, (2013) Epub 28 Jan 2013 ahead of print.

A. Devor, S. Sakadžić, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab.32(7), 1259–1276 (2012).
[CrossRef] [PubMed]

S. A. Carp, G. P. Dai, D. A. Boas, M. A. Franceschini, and Y. R. Kim, “Validation of diffuse correlation spectroscopy measurements of rodent cerebral blood flow with simultaneous arterial spin labeling MRI; towards MRI-optical continuous cerebral metabolic monitoring,” Biomed. Opt. Express1(2), 553–565 (2010).
[CrossRef] [PubMed]

Furuya, D.

C. Zhou, G. Q. Yu, D. Furuya, J. H. Greenberg, A. G. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Opt. Express14(3), 1125–1144 (2006).
[CrossRef] [PubMed]

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
[CrossRef] [PubMed]

Gagnon, L.

Gaynor, J. W.

E. M. Buckley, M. Y. Naim, J. M. Lynch, D. A. Goff, P. J. Schwab, L. K. Diaz, S. C. Nicolson, L. M. Montenegro, N. A. Lavin, T. Durduran, T. L. Spray, J. W. Gaynor, M. E. Putt, A. G. Yodh, M. A. Fogel, and D. J. Licht, “Sodium bicarbonate causes dose-dependent increases in cerebral blood flow in infants and children with single-ventricle physiology,” Pediatr. Res.73(5), 668–673 (2013).
[CrossRef] [PubMed]

Gittings, A. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76(9), 093110–093121 (2005).
[CrossRef]

Glatstein, E.

G. Q. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res.11(9), 3543–3552 (2005).
[CrossRef] [PubMed]

Goff, D. A.

E. M. Buckley, M. Y. Naim, J. M. Lynch, D. A. Goff, P. J. Schwab, L. K. Diaz, S. C. Nicolson, L. M. Montenegro, N. A. Lavin, T. Durduran, T. L. Spray, J. W. Gaynor, M. E. Putt, A. G. Yodh, M. A. Fogel, and D. J. Licht, “Sodium bicarbonate causes dose-dependent increases in cerebral blood flow in infants and children with single-ventricle physiology,” Pediatr. Res.73(5), 668–673 (2013).
[CrossRef] [PubMed]

Grant, P. E.

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates,” Neuroimage, (2013) Epub 28 Jan 2013 ahead of print.

Greenberg, J. H.

Haiss, F.

Hance, D.

E. M. Buckley, D. Hance, T. Pawlowski, J. Lynch, F. B. Wilson, R. C. Mesquita, T. Durduran, L. K. Diaz, M. E. Putt, D. J. Licht, M. A. Fogel, and A. G. Yodh, “Validation of diffuse correlation spectroscopic measurement of cerebral blood flow using phase-encoded velocity mapping magnetic resonance imaging,” J. Biomed. Opt.17(3), 037007 (2012).
[CrossRef] [PubMed]

Hayes, D.

R. Cheng, Y. Shang, D. Hayes, S. P. Saha, and G. Q. Yu, “Noninvasive optical evaluation of spontaneous low frequency oscillations in cerebral hemodynamics,” Neuroimage62(3), 1445–1454 (2012).
[CrossRef] [PubMed]

Ho, J. H.

J. Dong, R. Bi, J. H. Ho, P. S. P. Thong, K.-C. Soo, and K. Lee, “Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator,” J. Biomed. Opt.17(9), 097004 (2012).
[CrossRef] [PubMed]

Hurt, H. H.

Irwin, D.

Jehanne-Lacasse, J.

Kang, N. M.

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res.68(2), 143–146 (2004).
[CrossRef] [PubMed]

Kasner, S. E.

Kim, M. N.

Kim, Y. R.

Kirkebøen, K. A.

P. Kvandal, S. A. Landsverk, A. Bernjak, A. Stefanovska, H. D. Kvernmo, and K. A. Kirkebøen, “Low-frequency oscillations of the laser Doppler perfusion signal in human skin,” Microvasc. Res.72(3), 120–127 (2006).
[CrossRef] [PubMed]

Kocienski-Filip, M.

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates,” Neuroimage, (2013) Epub 28 Jan 2013 ahead of print.

Konecky, S. D.

Kvandal, P.

P. Kvandal, S. A. Landsverk, A. Bernjak, A. Stefanovska, H. D. Kvernmo, and K. A. Kirkebøen, “Low-frequency oscillations of the laser Doppler perfusion signal in human skin,” Microvasc. Res.72(3), 120–127 (2006).
[CrossRef] [PubMed]

Kvernmo, H. D.

P. Kvandal, S. A. Landsverk, A. Bernjak, A. Stefanovska, H. D. Kvernmo, and K. A. Kirkebøen, “Low-frequency oscillations of the laser Doppler perfusion signal in human skin,” Microvasc. Res.72(3), 120–127 (2006).
[CrossRef] [PubMed]

Landsverk, S. A.

P. Kvandal, S. A. Landsverk, A. Bernjak, A. Stefanovska, H. D. Kvernmo, and K. A. Kirkebøen, “Low-frequency oscillations of the laser Doppler perfusion signal in human skin,” Microvasc. Res.72(3), 120–127 (2006).
[CrossRef] [PubMed]

Lavin, N. A.

E. M. Buckley, M. Y. Naim, J. M. Lynch, D. A. Goff, P. J. Schwab, L. K. Diaz, S. C. Nicolson, L. M. Montenegro, N. A. Lavin, T. Durduran, T. L. Spray, J. W. Gaynor, M. E. Putt, A. G. Yodh, M. A. Fogel, and D. J. Licht, “Sodium bicarbonate causes dose-dependent increases in cerebral blood flow in infants and children with single-ventricle physiology,” Pediatr. Res.73(5), 668–673 (2013).
[CrossRef] [PubMed]

Lee, K.

R. Bi, J. Dong, and K. Lee, “Deep tissue flowmetry based on diffuse speckle contrast analysis,” Opt. Lett.38(9), 1401–1403 (2013).
[CrossRef] [PubMed]

J. Dong, R. Bi, J. H. Ho, P. S. P. Thong, K.-C. Soo, and K. Lee, “Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator,” J. Biomed. Opt.17(9), 097004 (2012).
[CrossRef] [PubMed]

Leftheriotis, G.

G. Mahé, P. Rousseau, S. Durand, S. Bricq, G. Leftheriotis, and P. Abraham, “Laser speckle contrast imaging accurately measures blood flow over moving skin surfaces,” Microvasc. Res.81(2), 183–188 (2011).
[CrossRef] [PubMed]

Lesage, F.

Li, P. C.

Licht, D. J.

E. M. Buckley, M. Y. Naim, J. M. Lynch, D. A. Goff, P. J. Schwab, L. K. Diaz, S. C. Nicolson, L. M. Montenegro, N. A. Lavin, T. Durduran, T. L. Spray, J. W. Gaynor, M. E. Putt, A. G. Yodh, M. A. Fogel, and D. J. Licht, “Sodium bicarbonate causes dose-dependent increases in cerebral blood flow in infants and children with single-ventricle physiology,” Pediatr. Res.73(5), 668–673 (2013).
[CrossRef] [PubMed]

E. M. Buckley, D. Hance, T. Pawlowski, J. Lynch, F. B. Wilson, R. C. Mesquita, T. Durduran, L. K. Diaz, M. E. Putt, D. J. Licht, M. A. Fogel, and A. G. Yodh, “Validation of diffuse correlation spectroscopic measurement of cerebral blood flow using phase-encoded velocity mapping magnetic resonance imaging,” J. Biomed. Opt.17(3), 037007 (2012).
[CrossRef] [PubMed]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express17(15), 12571–12581 (2009).
[CrossRef] [PubMed]

Luo, Q. M.

Lynch, J.

E. M. Buckley, D. Hance, T. Pawlowski, J. Lynch, F. B. Wilson, R. C. Mesquita, T. Durduran, L. K. Diaz, M. E. Putt, D. J. Licht, M. A. Fogel, and A. G. Yodh, “Validation of diffuse correlation spectroscopic measurement of cerebral blood flow using phase-encoded velocity mapping magnetic resonance imaging,” J. Biomed. Opt.17(3), 037007 (2012).
[CrossRef] [PubMed]

Lynch, J. M.

E. M. Buckley, M. Y. Naim, J. M. Lynch, D. A. Goff, P. J. Schwab, L. K. Diaz, S. C. Nicolson, L. M. Montenegro, N. A. Lavin, T. Durduran, T. L. Spray, J. W. Gaynor, M. E. Putt, A. G. Yodh, M. A. Fogel, and D. J. Licht, “Sodium bicarbonate causes dose-dependent increases in cerebral blood flow in infants and children with single-ventricle physiology,” Pediatr. Res.73(5), 668–673 (2013).
[CrossRef] [PubMed]

Mahé, G.

G. Mahé, P. Rousseau, S. Durand, S. Bricq, G. Leftheriotis, and P. Abraham, “Laser speckle contrast imaging accurately measures blood flow over moving skin surfaces,” Microvasc. Res.81(2), 183–188 (2011).
[CrossRef] [PubMed]

Mesquita, R. C.

E. M. Buckley, D. Hance, T. Pawlowski, J. Lynch, F. B. Wilson, R. C. Mesquita, T. Durduran, L. K. Diaz, M. E. Putt, D. J. Licht, M. A. Fogel, and A. G. Yodh, “Validation of diffuse correlation spectroscopic measurement of cerebral blood flow using phase-encoded velocity mapping magnetic resonance imaging,” J. Biomed. Opt.17(3), 037007 (2012).
[CrossRef] [PubMed]

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos Trans A Math Phys Eng Sci369(1955), 4390–4406 (2011).
[CrossRef] [PubMed]

Montenegro, L. M.

E. M. Buckley, M. Y. Naim, J. M. Lynch, D. A. Goff, P. J. Schwab, L. K. Diaz, S. C. Nicolson, L. M. Montenegro, N. A. Lavin, T. Durduran, T. L. Spray, J. W. Gaynor, M. E. Putt, A. G. Yodh, M. A. Fogel, and D. J. Licht, “Sodium bicarbonate causes dose-dependent increases in cerebral blood flow in infants and children with single-ventricle physiology,” Pediatr. Res.73(5), 668–673 (2013).
[CrossRef] [PubMed]

Moskowitz, M. A.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
[CrossRef] [PubMed]

Naim, M. Y.

E. M. Buckley, M. Y. Naim, J. M. Lynch, D. A. Goff, P. J. Schwab, L. K. Diaz, S. C. Nicolson, L. M. Montenegro, N. A. Lavin, T. Durduran, T. L. Spray, J. W. Gaynor, M. E. Putt, A. G. Yodh, M. A. Fogel, and D. J. Licht, “Sodium bicarbonate causes dose-dependent increases in cerebral blood flow in infants and children with single-ventricle physiology,” Pediatr. Res.73(5), 668–673 (2013).
[CrossRef] [PubMed]

Nelson, J. S.

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res.68(2), 143–146 (2004).
[CrossRef] [PubMed]

Ni, S. L.

Nicolson, S. C.

E. M. Buckley, M. Y. Naim, J. M. Lynch, D. A. Goff, P. J. Schwab, L. K. Diaz, S. C. Nicolson, L. M. Montenegro, N. A. Lavin, T. Durduran, T. L. Spray, J. W. Gaynor, M. E. Putt, A. G. Yodh, M. A. Fogel, and D. J. Licht, “Sodium bicarbonate causes dose-dependent increases in cerebral blood flow in infants and children with single-ventricle physiology,” Pediatr. Res.73(5), 668–673 (2013).
[CrossRef] [PubMed]

Nizar, K.

A. Devor, S. Sakadžić, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab.32(7), 1259–1276 (2012).
[CrossRef] [PubMed]

Owen, C.

Pawlowski, T.

E. M. Buckley, D. Hance, T. Pawlowski, J. Lynch, F. B. Wilson, R. C. Mesquita, T. Durduran, L. K. Diaz, M. E. Putt, D. J. Licht, M. A. Fogel, and A. G. Yodh, “Validation of diffuse correlation spectroscopic measurement of cerebral blood flow using phase-encoded velocity mapping magnetic resonance imaging,” J. Biomed. Opt.17(3), 037007 (2012).
[CrossRef] [PubMed]

Putt, M. E.

E. M. Buckley, M. Y. Naim, J. M. Lynch, D. A. Goff, P. J. Schwab, L. K. Diaz, S. C. Nicolson, L. M. Montenegro, N. A. Lavin, T. Durduran, T. L. Spray, J. W. Gaynor, M. E. Putt, A. G. Yodh, M. A. Fogel, and D. J. Licht, “Sodium bicarbonate causes dose-dependent increases in cerebral blood flow in infants and children with single-ventricle physiology,” Pediatr. Res.73(5), 668–673 (2013).
[CrossRef] [PubMed]

E. M. Buckley, D. Hance, T. Pawlowski, J. Lynch, F. B. Wilson, R. C. Mesquita, T. Durduran, L. K. Diaz, M. E. Putt, D. J. Licht, M. A. Fogel, and A. G. Yodh, “Validation of diffuse correlation spectroscopic measurement of cerebral blood flow using phase-encoded velocity mapping magnetic resonance imaging,” J. Biomed. Opt.17(3), 037007 (2012).
[CrossRef] [PubMed]

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express17(5), 3884–3902 (2009).
[CrossRef] [PubMed]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express17(15), 12571–12581 (2009).
[CrossRef] [PubMed]

G. Q. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res.11(9), 3543–3552 (2005).
[CrossRef] [PubMed]

Radhakrishnan, H.

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates,” Neuroimage, (2013) Epub 28 Jan 2013 ahead of print.

Rice, T. B.

Roche-Labarbe, N.

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates,” Neuroimage, (2013) Epub 28 Jan 2013 ahead of print.

Rousseau, P.

G. Mahé, P. Rousseau, S. Durand, S. Bricq, G. Leftheriotis, and P. Abraham, “Laser speckle contrast imaging accurately measures blood flow over moving skin surfaces,” Microvasc. Res.81(2), 183–188 (2011).
[CrossRef] [PubMed]

Saha, S. P.

R. Cheng, Y. Shang, D. Hayes, S. P. Saha, and G. Q. Yu, “Noninvasive optical evaluation of spontaneous low frequency oscillations in cerebral hemodynamics,” Neuroimage62(3), 1445–1454 (2012).
[CrossRef] [PubMed]

Saisan, P. A.

A. Devor, S. Sakadžić, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab.32(7), 1259–1276 (2012).
[CrossRef] [PubMed]

Sakadžic, S.

A. Devor, S. Sakadžić, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab.32(7), 1259–1276 (2012).
[CrossRef] [PubMed]

Saunders, H. M.

G. Q. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res.11(9), 3543–3552 (2005).
[CrossRef] [PubMed]

Scheffold, F.

Schultz, S.

Schwab, P. J.

E. M. Buckley, M. Y. Naim, J. M. Lynch, D. A. Goff, P. J. Schwab, L. K. Diaz, S. C. Nicolson, L. M. Montenegro, N. A. Lavin, T. Durduran, T. L. Spray, J. W. Gaynor, M. E. Putt, A. G. Yodh, M. A. Fogel, and D. J. Licht, “Sodium bicarbonate causes dose-dependent increases in cerebral blood flow in infants and children with single-ventricle physiology,” Pediatr. Res.73(5), 668–673 (2013).
[CrossRef] [PubMed]

Sehgal, C. M.

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express17(15), 12571–12581 (2009).
[CrossRef] [PubMed]

G. Q. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res.11(9), 3543–3552 (2005).
[CrossRef] [PubMed]

Shah, Q.

Shang, Y.

R. Cheng, Y. Shang, D. Hayes, S. P. Saha, and G. Q. Yu, “Noninvasive optical evaluation of spontaneous low frequency oscillations in cerebral hemodynamics,” Neuroimage62(3), 1445–1454 (2012).
[CrossRef] [PubMed]

Y. Shang, Y. Q. Zhao, R. Cheng, L. X. Dong, D. Irwin, and G. Q. Yu, “Portable optical tissue flow oximeter based on diffuse correlation spectroscopy,” Opt. Lett.34(22), 3556–3558 (2009).
[CrossRef] [PubMed]

Soo, K.-C.

J. Dong, R. Bi, J. H. Ho, P. S. P. Thong, K.-C. Soo, and K. Lee, “Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator,” J. Biomed. Opt.17(9), 097004 (2012).
[CrossRef] [PubMed]

Spray, T. L.

E. M. Buckley, M. Y. Naim, J. M. Lynch, D. A. Goff, P. J. Schwab, L. K. Diaz, S. C. Nicolson, L. M. Montenegro, N. A. Lavin, T. Durduran, T. L. Spray, J. W. Gaynor, M. E. Putt, A. G. Yodh, M. A. Fogel, and D. J. Licht, “Sodium bicarbonate causes dose-dependent increases in cerebral blood flow in infants and children with single-ventricle physiology,” Pediatr. Res.73(5), 668–673 (2013).
[CrossRef] [PubMed]

Srinivasan, V. J.

A. Devor, S. Sakadžić, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab.32(7), 1259–1276 (2012).
[CrossRef] [PubMed]

Stefanovska, A.

P. Kvandal, S. A. Landsverk, A. Bernjak, A. Stefanovska, H. D. Kvernmo, and K. A. Kirkebøen, “Low-frequency oscillations of the laser Doppler perfusion signal in human skin,” Microvasc. Res.72(3), 120–127 (2006).
[CrossRef] [PubMed]

Suh, S. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76(9), 093110–093121 (2005).
[CrossRef]

Sunar, U.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos Trans A Math Phys Eng Sci369(1955), 4390–4406 (2011).
[CrossRef] [PubMed]

Thong, P. S. P.

J. Dong, R. Bi, J. H. Ho, P. S. P. Thong, K.-C. Soo, and K. Lee, “Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator,” J. Biomed. Opt.17(9), 097004 (2012).
[CrossRef] [PubMed]

Tian, P.

A. Devor, S. Sakadžić, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab.32(7), 1259–1276 (2012).
[CrossRef] [PubMed]

Tromberg, B. J.

Vinogradov, S. A.

A. Devor, S. Sakadžić, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab.32(7), 1259–1276 (2012).
[CrossRef] [PubMed]

Völker, A. C.

Wang, H. W.

G. Q. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res.11(9), 3543–3552 (2005).
[CrossRef] [PubMed]

Wang, J. J.

Weber, B.

Webster, S.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt.1(2), 174–179 (1996).
[CrossRef] [PubMed]

Wilson, F. B.

E. M. Buckley, D. Hance, T. Pawlowski, J. Lynch, F. B. Wilson, R. C. Mesquita, T. Durduran, L. K. Diaz, M. E. Putt, D. J. Licht, M. A. Fogel, and A. G. Yodh, “Validation of diffuse correlation spectroscopic measurement of cerebral blood flow using phase-encoded velocity mapping magnetic resonance imaging,” J. Biomed. Opt.17(3), 037007 (2012).
[CrossRef] [PubMed]

Wyss, M. T.

Yan, Y. M.

Yang, O.

Yaseen, M. A.

A. Devor, S. Sakadžić, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab.32(7), 1259–1276 (2012).
[CrossRef] [PubMed]

Yodh, A. G.

E. M. Buckley, M. Y. Naim, J. M. Lynch, D. A. Goff, P. J. Schwab, L. K. Diaz, S. C. Nicolson, L. M. Montenegro, N. A. Lavin, T. Durduran, T. L. Spray, J. W. Gaynor, M. E. Putt, A. G. Yodh, M. A. Fogel, and D. J. Licht, “Sodium bicarbonate causes dose-dependent increases in cerebral blood flow in infants and children with single-ventricle physiology,” Pediatr. Res.73(5), 668–673 (2013).
[CrossRef] [PubMed]

E. M. Buckley, D. Hance, T. Pawlowski, J. Lynch, F. B. Wilson, R. C. Mesquita, T. Durduran, L. K. Diaz, M. E. Putt, D. J. Licht, M. A. Fogel, and A. G. Yodh, “Validation of diffuse correlation spectroscopic measurement of cerebral blood flow using phase-encoded velocity mapping magnetic resonance imaging,” J. Biomed. Opt.17(3), 037007 (2012).
[CrossRef] [PubMed]

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos Trans A Math Phys Eng Sci369(1955), 4390–4406 (2011).
[CrossRef] [PubMed]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express17(15), 12571–12581 (2009).
[CrossRef] [PubMed]

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express17(5), 3884–3902 (2009).
[CrossRef] [PubMed]

G. Q. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. J. Wang, J. A. Detre, and A. G. Yodh, “Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion MRI,” Opt. Express15(3), 1064–1075 (2007).
[CrossRef] [PubMed]

C. Zhou, G. Q. Yu, D. Furuya, J. H. Greenberg, A. G. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Opt. Express14(3), 1125–1144 (2006).
[CrossRef] [PubMed]

G. Q. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res.11(9), 3543–3552 (2005).
[CrossRef] [PubMed]

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
[CrossRef] [PubMed]

Yu, G.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos Trans A Math Phys Eng Sci369(1955), 4390–4406 (2011).
[CrossRef] [PubMed]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express17(15), 12571–12581 (2009).
[CrossRef] [PubMed]

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express17(5), 3884–3902 (2009).
[CrossRef] [PubMed]

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
[CrossRef] [PubMed]

Yu, G. Q.

R. Cheng, Y. Shang, D. Hayes, S. P. Saha, and G. Q. Yu, “Noninvasive optical evaluation of spontaneous low frequency oscillations in cerebral hemodynamics,” Neuroimage62(3), 1445–1454 (2012).
[CrossRef] [PubMed]

Y. Shang, Y. Q. Zhao, R. Cheng, L. X. Dong, D. Irwin, and G. Q. Yu, “Portable optical tissue flow oximeter based on diffuse correlation spectroscopy,” Opt. Lett.34(22), 3556–3558 (2009).
[CrossRef] [PubMed]

G. Q. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. J. Wang, J. A. Detre, and A. G. Yodh, “Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion MRI,” Opt. Express15(3), 1064–1075 (2007).
[CrossRef] [PubMed]

C. Zhou, G. Q. Yu, D. Furuya, J. H. Greenberg, A. G. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Opt. Express14(3), 1125–1144 (2006).
[CrossRef] [PubMed]

G. Q. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res.11(9), 3543–3552 (2005).
[CrossRef] [PubMed]

Yuan, S.

Zakharov, P.

Zeng, S. Q.

Zhang, L.

Zhao, Y. Q.

Zhou, C.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos Trans A Math Phys Eng Sci369(1955), 4390–4406 (2011).
[CrossRef] [PubMed]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express17(15), 12571–12581 (2009).
[CrossRef] [PubMed]

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express17(5), 3884–3902 (2009).
[CrossRef] [PubMed]

G. Q. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. J. Wang, J. A. Detre, and A. G. Yodh, “Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion MRI,” Opt. Express15(3), 1064–1075 (2007).
[CrossRef] [PubMed]

C. Zhou, G. Q. Yu, D. Furuya, J. H. Greenberg, A. G. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Opt. Express14(3), 1125–1144 (2006).
[CrossRef] [PubMed]

G. Q. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res.11(9), 3543–3552 (2005).
[CrossRef] [PubMed]

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
[CrossRef] [PubMed]

Zunzunegui, C.

Appl. Opt. (1)

Biomed. Opt. Express (2)

Clin. Cancer Res. (1)

G. Q. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin. Cancer Res.11(9), 3543–3552 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (4)

J. Dong, R. Bi, J. H. Ho, P. S. P. Thong, K.-C. Soo, and K. Lee, “Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator,” J. Biomed. Opt.17(9), 097004 (2012).
[CrossRef] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010).
[CrossRef] [PubMed]

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt.1(2), 174–179 (1996).
[CrossRef] [PubMed]

E. M. Buckley, D. Hance, T. Pawlowski, J. Lynch, F. B. Wilson, R. C. Mesquita, T. Durduran, L. K. Diaz, M. E. Putt, D. J. Licht, M. A. Fogel, and A. G. Yodh, “Validation of diffuse correlation spectroscopic measurement of cerebral blood flow using phase-encoded velocity mapping magnetic resonance imaging,” J. Biomed. Opt.17(3), 037007 (2012).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (3)

A. Devor, S. Sakadžić, V. J. Srinivasan, M. A. Yaseen, K. Nizar, P. A. Saisan, P. Tian, A. M. Dale, S. A. Vinogradov, M. A. Franceschini, and D. A. Boas, “Frontiers in optical imaging of cerebral blood flow and metabolism,” J. Cereb. Blood Flow Metab.32(7), 1259–1276 (2012).
[CrossRef] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
[CrossRef] [PubMed]

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004).
[CrossRef] [PubMed]

Microvasc. Res. (3)

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res.68(2), 143–146 (2004).
[CrossRef] [PubMed]

G. Mahé, P. Rousseau, S. Durand, S. Bricq, G. Leftheriotis, and P. Abraham, “Laser speckle contrast imaging accurately measures blood flow over moving skin surfaces,” Microvasc. Res.81(2), 183–188 (2011).
[CrossRef] [PubMed]

P. Kvandal, S. A. Landsverk, A. Bernjak, A. Stefanovska, H. D. Kvernmo, and K. A. Kirkebøen, “Low-frequency oscillations of the laser Doppler perfusion signal in human skin,” Microvasc. Res.72(3), 120–127 (2006).
[CrossRef] [PubMed]

Neuroimage (1)

R. Cheng, Y. Shang, D. Hayes, S. P. Saha, and G. Q. Yu, “Noninvasive optical evaluation of spontaneous low frequency oscillations in cerebral hemodynamics,” Neuroimage62(3), 1445–1454 (2012).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37(5), 326–330 (1981).
[CrossRef]

Opt. Express (7)

G. Q. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. J. Wang, J. A. Detre, and A. G. Yodh, “Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion MRI,” Opt. Express15(3), 1064–1075 (2007).
[CrossRef] [PubMed]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express17(15), 12571–12581 (2009).
[CrossRef] [PubMed]

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express17(5), 3884–3902 (2009).
[CrossRef] [PubMed]

P. Zakharov, A. C. Völker, M. T. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, “Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express17(16), 13904–13917 (2009).
[CrossRef] [PubMed]

H. Y. Cheng, Y. M. Yan, and T. Q. Duong, “Temporal statistical analysis of laser speckle images and its application to retinal blood-flow imaging,” Opt. Express16(14), 10214–10219 (2008).
[CrossRef] [PubMed]

L. Gagnon, M. Desjardins, J. Jehanne-Lacasse, L. Bherer, and F. Lesage, “Investigation of diffuse correlation spectroscopy in multi-layered media including the human head,” Opt. Express16(20), 15514–15530 (2008).
[CrossRef] [PubMed]

C. Zhou, G. Q. Yu, D. Furuya, J. H. Greenberg, A. G. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Opt. Express14(3), 1125–1144 (2006).
[CrossRef] [PubMed]

Opt. Lett. (4)

Pediatr. Res. (1)

E. M. Buckley, M. Y. Naim, J. M. Lynch, D. A. Goff, P. J. Schwab, L. K. Diaz, S. C. Nicolson, L. M. Montenegro, N. A. Lavin, T. Durduran, T. L. Spray, J. W. Gaynor, M. E. Putt, A. G. Yodh, M. A. Fogel, and D. J. Licht, “Sodium bicarbonate causes dose-dependent increases in cerebral blood flow in infants and children with single-ventricle physiology,” Pediatr. Res.73(5), 668–673 (2013).
[CrossRef] [PubMed]

Philos Trans A Math Phys Eng Sci (1)

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos Trans A Math Phys Eng Sci369(1955), 4390–4406 (2011).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

Rev. Sci. Instrum. (1)

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76(9), 093110–093121 (2005).
[CrossRef]

Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates (1)

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates,” Neuroimage, (2013) Epub 28 Jan 2013 ahead of print.

Other (1)

A. Mazhar, T. B. Rice, D. J. Cuccia, B. Choi, A. J. Durkin, D. A. Boas, and B. J. Tromberg, “Laser speckle imaging in the spatial frequency domain,” (Optical Society of America, 2010), p. BWA7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Theoretical calculation of 1/K2 as a function of αDb over a broad range. Red box region, which is magnified in the inlet, refers to the region where αDb is in the physiological range. A good linearity is observed between 1/K2 and αDb within the physiologically relevant region. In this simulation, µs = 8 cm−1, µa = 0.03 cm−1, β = 0.5, and the exposure time of 0.2 ms was used.

Fig. 2
Fig. 2

Schematic of (a) tDSCA setup and (b) the phantom experiment. S1, S2 and S3 are 50:50 fiber splitters, PD is photon detector for power monitoring. Small glass beads are filled inside the hollow tube which is embedded in the solid phantom to provide randomized interstitial space for the flow.

Fig. 3
Fig. 3

(a) Relationship between αDb and flow rate measured by DCS on the flow phantom. (b) Dependence of 1/K2 on BFI, measured on three different tDSCA channels. Note the x-axis is αDb not flow rate, as we converted flow rate into αDb using the linear relationship shown in Fig. 3(a). The simulation result from Eqs. (2)-(3) is also plotted in (b) for comparison.

Fig. 4
Fig. 4

Results from 3-channel tDSCA system during in vivo experiment with arm-cuff protocol. The positions of the three probes are indicated by corresponding colors on the arm.

Fig. 5
Fig. 5

Example of independent component analysis (ICA) performed on the first 100s tDSCA data shown in Fig. 4. (a) Two independent components resulting from iterative ICA algorithm, displayed after centering and normalizing. (b) Original 3-channel data (in solid line) overlaid with common-mode removed data (in dotted line) See text for details.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

K s = σ s I
K 2 (T)=V(T)= 2β T 0 T (1τ/T) [ g 1 (τ) ] 2 dτ
G 1 (r,τ)= 3 μ s ' 4π [ exp( k D (τ) r 1 ) r 1 exp( k D (τ) r 2 ) r 2 ].
g 2 (τ)=1+β | g 1 (τ) | 2

Metrics