Abstract

We introduce tunable optofluidic microlasers based on active optical resonant cavities formed by optically stretched, dye-doped emulsion droplets confined in a dual-beam optical trap. To achieve tunable dye lasing, optically pumped droplets of oil dispersed in water are stretched by light in the dual-beam trap. Subsequently, resonant path lengths of whispering gallery modes (WGMs) propagating in the droplet are modified, leading to shifts in the microlaser emission wavelengths. Using this technique, we present all-optical, almost reversible spectral tuning of the lasing WGMs and show that the direction of tuning depends on the position of the pump beam focus on the droplet. In addition, we study the effects of temperature changes on the spectral position of lasing WGMs and demonstrate that droplet heating leads to red-tuning of the droplet lasing wavelength.

© 2013 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Observation of whispering gallery modes in elastic light scattering from microdroplets optically trapped in a microfluidic channel

S. Anand, M. Eryürek, Y. Karadag, A. Erten, A. Serpengüzel, A. Jonáš, and A. Kiraz
J. Opt. Soc. Am. B 33(7) 1349-1354 (2016)

Optofluidic compound microlenses made by emulsion techniques

Sergio Calixto, Martha Rosete-Aguilar, Francisco J. Sanchez-Marin, Virginia Marañon, Jose Luis Arauz-Lara, Diana Mendoza Olivares, Margarita Calixto-Solano, and E. Militza Martinez-Prado
Opt. Express 18(18) 18703-18711 (2010)

Theoretical analysis for the optical deformation of emulsion droplets

David Tapp, Jonathan M. Taylor, Alex S. Lubansky, Colin D. Bain, and Buddhapriya Chakrabarti
Opt. Express 22(4) 4523-4538 (2014)

References

  • View by:
  • |
  • |
  • |

  1. V. V. Datsyuk, “Optics of microdroplets,” J. Mol. Liq. 93, 159–175 (2001).
    [Crossref]
  2. G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: Fundamentals and applications,” Riv. Nuovo Cimento 34, 435–488 (2011).
  3. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [Crossref] [PubMed]
  4. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
    [Crossref] [PubMed]
  5. S.-X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: Highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
    [Crossref] [PubMed]
  6. J. B. Snow, S.-X. Qian, and R. K. Chang, “Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances,” Opt. Lett. 10, 37–39 (1985).
    [Crossref] [PubMed]
  7. A. Sennaroglu, A. Kiraz, M. A. Dündar, A. Kurt, and A. L. Demirel, “Raman lasing near 630 nm from stationary glycerol-water microdroplets on a superhydrophobic surface,” Opt. Lett. 32, 2197–2199 (2007).
    [Crossref] [PubMed]
  8. A. Kiraz, A. Kurt, M. A. Dündar, and A. L. Demirel, “Simple largely tunable optical microcavity,” Appl. Phys. Lett. 89, 081118 (2006).
    [Crossref]
  9. A. Kiraz, Y. Karadağ, and A. F. Coskun, “Spectral tuning of liquid microdroplets standing on a superhydrophobic surface using electrowetting,” Appl. Phys. Lett. 92, 191104 (2008).
    [Crossref]
  10. A. Kiraz, Y. Karadag, S. C. Yorulmaz, and M. Muradoglu, “Reversible photothermal tuning of a salty water microdroplet,” Phys. Chem. Chem. Phys. 11, 2597–2600 (2009).
    [Crossref] [PubMed]
  11. G. Chen, M. M. Mazumder, Y. R. Chemla, A. Serpengüzel, R. K. Chang, and S. C. Hill, “Wavelength variation of laser emission along the entire rim of slightly deformed microdroplets,” Opt. Lett. 18, 1993–1995 (1993).
    [Crossref] [PubMed]
  12. S. C. Yorulmaz, M. Mestre, M. Muradoglu, B. E. Alaca, and A. Kiraz, “Controlled observation of nondegenerate cavity modes in a microdroplet on a superhydrophobic surface,” Opt. Commun. 282, 3024–3027 (2009).
    [Crossref]
  13. M. Saito, H. Shimatani, and H. Naruhashi, “Tunable whispering gallery mode emission from a microdroplet in elastomer,” Opt. Express 16, 11915–11919 (2008).
    [Crossref] [PubMed]
  14. M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
    [Crossref]
  15. M. Tanyeri, R. Perron, and I. M. Kennedy, “Lasing droplets in a microfabricated channel,” Opt. Lett. 32, 2529–2531 (2007).
    [Crossref] [PubMed]
  16. M. Aas, A. Jonáš, and A. Kiraz, “Lasing in optically manipulated, dye-doped emulsion microdroplets,” Opt. Commun. 290, 183–187 (2013).
    [Crossref]
  17. S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
    [Crossref] [PubMed]
  18. S. K. Y. Tang, R. Derda, Q. Quan, M. Loncar, and G. M. Whitesides, “Continuously tunable microdroplet-laser in a microfluidic channel,” Opt. Express 19, 2204–2215 (2011).
    [Crossref] [PubMed]
  19. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
    [Crossref] [PubMed]
  20. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [Crossref]
  21. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiber-optical light-force trap,” Opt. Lett. 18, 1867–1869 (1993).
    [Crossref] [PubMed]
  22. T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
    [Crossref]
  23. P. C. F. Møller and L. B. Oddershede, “Quantification of droplet deformation by electromagnetic trapping,” EPL 88, 48005 (2009).
    [Crossref]
  24. A. D. Ward, M. G. Berry, C. D. Mellor, and C. D. Bain, “Optical sculpture: controlled deformation of emulsion droplets with ultralow interfacial tensions using optical tweezers,” Chem. Commun. 2006, 4515–4517 (2006).
    [Crossref]
  25. S. Holler, N. L. Goddard, and S. Arnold, “Spontaneous emission spectra from microdroplets,” J. Chem. Phys. 108, 6545–6547 (1998).
    [Crossref]
  26. J. Drelich, C. Fang, and C. L. White, The Encyclopedia of Surface and Colloid Science: Measurement of Interfacial Tension in Fluid/Fluid Systems(Marcel- Dekker, 2002).
  27. R. Aveyard, B. P. Binks, S. Clark, and J. Mead, “Interfacial tension minima in oil-water-surfactant systems. Behaviour of alkaneaqueous NaCl systems containing aerosol OT,” J. Chem. Soc., Faraday Trans. 1,  82, 125–142 (1986).
    [Crossref]
  28. H. Sosa-Martínez and J. C. Gutiérrez-Vega, “Optical forces on a Mie spheroidal particle arbitrarily oriented in a counterpropagating trap,” J. Opt. Soc. Am. B 26, 2109–2116 (2009).
    [Crossref]
  29. S. Ramanujan, Collected papers of Srinivasa Ramanujan (Cambridge University Press, 1927).
  30. S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15, 15493–15499 (2007).
    [Crossref] [PubMed]
  31. C. C. Lam, P. T. Leung, and K. Young, “Explicit asymptotic formulas for the positions, widths, and strengths of resonances in Mie scattering,” J. Opt. Soc. Am. B 9, 1585–1592 (1992).
    [Crossref]

2013 (1)

M. Aas, A. Jonáš, and A. Kiraz, “Lasing in optically manipulated, dye-doped emulsion microdroplets,” Opt. Commun. 290, 183–187 (2013).
[Crossref]

2011 (3)

T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
[Crossref]

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: Fundamentals and applications,” Riv. Nuovo Cimento 34, 435–488 (2011).

S. K. Y. Tang, R. Derda, Q. Quan, M. Loncar, and G. M. Whitesides, “Continuously tunable microdroplet-laser in a microfluidic channel,” Opt. Express 19, 2204–2215 (2011).
[Crossref] [PubMed]

2009 (6)

H. Sosa-Martínez and J. C. Gutiérrez-Vega, “Optical forces on a Mie spheroidal particle arbitrarily oriented in a counterpropagating trap,” J. Opt. Soc. Am. B 26, 2109–2116 (2009).
[Crossref]

A. Kiraz, Y. Karadag, S. C. Yorulmaz, and M. Muradoglu, “Reversible photothermal tuning of a salty water microdroplet,” Phys. Chem. Chem. Phys. 11, 2597–2600 (2009).
[Crossref] [PubMed]

S. C. Yorulmaz, M. Mestre, M. Muradoglu, B. E. Alaca, and A. Kiraz, “Controlled observation of nondegenerate cavity modes in a microdroplet on a superhydrophobic surface,” Opt. Commun. 282, 3024–3027 (2009).
[Crossref]

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]

P. C. F. Møller and L. B. Oddershede, “Quantification of droplet deformation by electromagnetic trapping,” EPL 88, 48005 (2009).
[Crossref]

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[Crossref] [PubMed]

2008 (2)

A. Kiraz, Y. Karadağ, and A. F. Coskun, “Spectral tuning of liquid microdroplets standing on a superhydrophobic surface using electrowetting,” Appl. Phys. Lett. 92, 191104 (2008).
[Crossref]

M. Saito, H. Shimatani, and H. Naruhashi, “Tunable whispering gallery mode emission from a microdroplet in elastomer,” Opt. Express 16, 11915–11919 (2008).
[Crossref] [PubMed]

2007 (3)

2006 (3)

A. D. Ward, M. G. Berry, C. D. Mellor, and C. D. Bain, “Optical sculpture: controlled deformation of emulsion droplets with ultralow interfacial tensions using optical tweezers,” Chem. Commun. 2006, 4515–4517 (2006).
[Crossref]

A. Kiraz, A. Kurt, M. A. Dündar, and A. L. Demirel, “Simple largely tunable optical microcavity,” Appl. Phys. Lett. 89, 081118 (2006).
[Crossref]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref] [PubMed]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref] [PubMed]

2001 (2)

V. V. Datsyuk, “Optics of microdroplets,” J. Mol. Liq. 93, 159–175 (2001).
[Crossref]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[Crossref] [PubMed]

1998 (1)

S. Holler, N. L. Goddard, and S. Arnold, “Spontaneous emission spectra from microdroplets,” J. Chem. Phys. 108, 6545–6547 (1998).
[Crossref]

1993 (2)

1992 (1)

1986 (2)

R. Aveyard, B. P. Binks, S. Clark, and J. Mead, “Interfacial tension minima in oil-water-surfactant systems. Behaviour of alkaneaqueous NaCl systems containing aerosol OT,” J. Chem. Soc., Faraday Trans. 1,  82, 125–142 (1986).
[Crossref]

S.-X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: Highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[Crossref] [PubMed]

1985 (1)

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Aas, M.

M. Aas, A. Jonáš, and A. Kiraz, “Lasing in optically manipulated, dye-doped emulsion microdroplets,” Opt. Commun. 290, 183–187 (2013).
[Crossref]

Abate, A. R.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[Crossref] [PubMed]

Agresti, J. J.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[Crossref] [PubMed]

Alaca, B. E.

S. C. Yorulmaz, M. Mestre, M. Muradoglu, B. E. Alaca, and A. Kiraz, “Controlled observation of nondegenerate cavity modes in a microdroplet on a superhydrophobic surface,” Opt. Commun. 282, 3024–3027 (2009).
[Crossref]

Ananthakrishnan, R.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[Crossref] [PubMed]

Arnold, S.

S. Holler, N. L. Goddard, and S. Arnold, “Spontaneous emission spectra from microdroplets,” J. Chem. Phys. 108, 6545–6547 (1998).
[Crossref]

Ashkin, A.

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Aveyard, R.

R. Aveyard, B. P. Binks, S. Clark, and J. Mead, “Interfacial tension minima in oil-water-surfactant systems. Behaviour of alkaneaqueous NaCl systems containing aerosol OT,” J. Chem. Soc., Faraday Trans. 1,  82, 125–142 (1986).
[Crossref]

Bain, C. D.

A. D. Ward, M. G. Berry, C. D. Mellor, and C. D. Bain, “Optical sculpture: controlled deformation of emulsion droplets with ultralow interfacial tensions using optical tweezers,” Chem. Commun. 2006, 4515–4517 (2006).
[Crossref]

Berry, M. G.

A. D. Ward, M. G. Berry, C. D. Mellor, and C. D. Bain, “Optical sculpture: controlled deformation of emulsion droplets with ultralow interfacial tensions using optical tweezers,” Chem. Commun. 2006, 4515–4517 (2006).
[Crossref]

Binks, B. P.

R. Aveyard, B. P. Binks, S. Clark, and J. Mead, “Interfacial tension minima in oil-water-surfactant systems. Behaviour of alkaneaqueous NaCl systems containing aerosol OT,” J. Chem. Soc., Faraday Trans. 1,  82, 125–142 (1986).
[Crossref]

Brzobohatý, O.

T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
[Crossref]

Chang, R. K.

Chemla, Y. R.

Chen, G.

Cižmár, T.

T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
[Crossref]

Clark, S.

R. Aveyard, B. P. Binks, S. Clark, and J. Mead, “Interfacial tension minima in oil-water-surfactant systems. Behaviour of alkaneaqueous NaCl systems containing aerosol OT,” J. Chem. Soc., Faraday Trans. 1,  82, 125–142 (1986).
[Crossref]

Constable, A.

Conti, G. N.

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: Fundamentals and applications,” Riv. Nuovo Cimento 34, 435–488 (2011).

Coskun, A. F.

A. Kiraz, Y. Karadağ, and A. F. Coskun, “Spectral tuning of liquid microdroplets standing on a superhydrophobic surface using electrowetting,” Appl. Phys. Lett. 92, 191104 (2008).
[Crossref]

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[Crossref] [PubMed]

Datsyuk, V. V.

V. V. Datsyuk, “Optics of microdroplets,” J. Mol. Liq. 93, 159–175 (2001).
[Crossref]

Demirel, A. L.

Derda, R.

Dholakia, K.

T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
[Crossref]

Drelich, J.

J. Drelich, C. Fang, and C. L. White, The Encyclopedia of Surface and Colloid Science: Measurement of Interfacial Tension in Fluid/Fluid Systems(Marcel- Dekker, 2002).

Dumeige, Y.

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: Fundamentals and applications,” Riv. Nuovo Cimento 34, 435–488 (2011).

Dündar, M. A.

Ebert, S.

Fang, C.

J. Drelich, C. Fang, and C. L. White, The Encyclopedia of Surface and Colloid Science: Measurement of Interfacial Tension in Fluid/Fluid Systems(Marcel- Dekker, 2002).

Feron, P.

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: Fundamentals and applications,” Riv. Nuovo Cimento 34, 435–488 (2011).

Ferrari, M.

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: Fundamentals and applications,” Riv. Nuovo Cimento 34, 435–488 (2011).

Goddard, N. L.

S. Holler, N. L. Goddard, and S. Arnold, “Spontaneous emission spectra from microdroplets,” J. Chem. Phys. 108, 6545–6547 (1998).
[Crossref]

Guck, J.

S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15, 15493–15499 (2007).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[Crossref] [PubMed]

Gutiérrez-Vega, J. C.

Hill, S. C.

Holler, S.

S. Holler, N. L. Goddard, and S. Arnold, “Spontaneous emission spectra from microdroplets,” J. Chem. Phys. 108, 6545–6547 (1998).
[Crossref]

Humar, M.

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]

Jonáš, A.

M. Aas, A. Jonáš, and A. Kiraz, “Lasing in optically manipulated, dye-doped emulsion microdroplets,” Opt. Commun. 290, 183–187 (2013).
[Crossref]

Karadag, Y.

A. Kiraz, Y. Karadag, S. C. Yorulmaz, and M. Muradoglu, “Reversible photothermal tuning of a salty water microdroplet,” Phys. Chem. Chem. Phys. 11, 2597–2600 (2009).
[Crossref] [PubMed]

A. Kiraz, Y. Karadağ, and A. F. Coskun, “Spectral tuning of liquid microdroplets standing on a superhydrophobic surface using electrowetting,” Appl. Phys. Lett. 92, 191104 (2008).
[Crossref]

Käs, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[Crossref] [PubMed]

Kennedy, I. M.

Kim, J.

Kiraz, A.

M. Aas, A. Jonáš, and A. Kiraz, “Lasing in optically manipulated, dye-doped emulsion microdroplets,” Opt. Commun. 290, 183–187 (2013).
[Crossref]

S. C. Yorulmaz, M. Mestre, M. Muradoglu, B. E. Alaca, and A. Kiraz, “Controlled observation of nondegenerate cavity modes in a microdroplet on a superhydrophobic surface,” Opt. Commun. 282, 3024–3027 (2009).
[Crossref]

A. Kiraz, Y. Karadag, S. C. Yorulmaz, and M. Muradoglu, “Reversible photothermal tuning of a salty water microdroplet,” Phys. Chem. Chem. Phys. 11, 2597–2600 (2009).
[Crossref] [PubMed]

A. Kiraz, Y. Karadağ, and A. F. Coskun, “Spectral tuning of liquid microdroplets standing on a superhydrophobic surface using electrowetting,” Appl. Phys. Lett. 92, 191104 (2008).
[Crossref]

A. Sennaroglu, A. Kiraz, M. A. Dündar, A. Kurt, and A. L. Demirel, “Raman lasing near 630 nm from stationary glycerol-water microdroplets on a superhydrophobic surface,” Opt. Lett. 32, 2197–2199 (2007).
[Crossref] [PubMed]

A. Kiraz, A. Kurt, M. A. Dündar, and A. L. Demirel, “Simple largely tunable optical microcavity,” Appl. Phys. Lett. 89, 081118 (2006).
[Crossref]

Kurt, A.

Lam, C. C.

Leung, P. T.

Li, Z.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[Crossref] [PubMed]

Lincoln, B.

Loncar, M.

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[Crossref] [PubMed]

Mazumder, M. M.

Mead, J.

R. Aveyard, B. P. Binks, S. Clark, and J. Mead, “Interfacial tension minima in oil-water-surfactant systems. Behaviour of alkaneaqueous NaCl systems containing aerosol OT,” J. Chem. Soc., Faraday Trans. 1,  82, 125–142 (1986).
[Crossref]

Mellor, C. D.

A. D. Ward, M. G. Berry, C. D. Mellor, and C. D. Bain, “Optical sculpture: controlled deformation of emulsion droplets with ultralow interfacial tensions using optical tweezers,” Chem. Commun. 2006, 4515–4517 (2006).
[Crossref]

Mervis, J.

Mestre, M.

S. C. Yorulmaz, M. Mestre, M. Muradoglu, B. E. Alaca, and A. Kiraz, “Controlled observation of nondegenerate cavity modes in a microdroplet on a superhydrophobic surface,” Opt. Commun. 282, 3024–3027 (2009).
[Crossref]

Møller, P. C. F.

P. C. F. Møller and L. B. Oddershede, “Quantification of droplet deformation by electromagnetic trapping,” EPL 88, 48005 (2009).
[Crossref]

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[Crossref] [PubMed]

Muradoglu, M.

S. C. Yorulmaz, M. Mestre, M. Muradoglu, B. E. Alaca, and A. Kiraz, “Controlled observation of nondegenerate cavity modes in a microdroplet on a superhydrophobic surface,” Opt. Commun. 282, 3024–3027 (2009).
[Crossref]

A. Kiraz, Y. Karadag, S. C. Yorulmaz, and M. Muradoglu, “Reversible photothermal tuning of a salty water microdroplet,” Phys. Chem. Chem. Phys. 11, 2597–2600 (2009).
[Crossref] [PubMed]

Muševic, I.

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]

Naruhashi, H.

Oddershede, L. B.

P. C. F. Møller and L. B. Oddershede, “Quantification of droplet deformation by electromagnetic trapping,” EPL 88, 48005 (2009).
[Crossref]

Pajk, S.

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]

Perron, R.

Prentiss, M.

Psaltis, D.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[Crossref] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref] [PubMed]

Qian, S.-X.

S.-X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: Highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[Crossref] [PubMed]

J. B. Snow, S.-X. Qian, and R. K. Chang, “Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances,” Opt. Lett. 10, 37–39 (1985).
[Crossref] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref] [PubMed]

Quan, Q.

Ramanujan, S.

S. Ramanujan, Collected papers of Srinivasa Ramanujan (Cambridge University Press, 1927).

Ravnik, M.

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]

Righini, G. C.

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: Fundamentals and applications,” Riv. Nuovo Cimento 34, 435–488 (2011).

Ristic, D.

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: Fundamentals and applications,” Riv. Nuovo Cimento 34, 435–488 (2011).

Saito, M.

Sennaroglu, A.

Serpengüzel, A.

Shimatani, H.

Snow, J. B.

S.-X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: Highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[Crossref] [PubMed]

J. B. Snow, S.-X. Qian, and R. K. Chang, “Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances,” Opt. Lett. 10, 37–39 (1985).
[Crossref] [PubMed]

Soria, S.

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: Fundamentals and applications,” Riv. Nuovo Cimento 34, 435–488 (2011).

Sosa-Martínez, H.

Tang, S. K. Y.

S. K. Y. Tang, R. Derda, Q. Quan, M. Loncar, and G. M. Whitesides, “Continuously tunable microdroplet-laser in a microfluidic channel,” Opt. Express 19, 2204–2215 (2011).
[Crossref] [PubMed]

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[Crossref] [PubMed]

Tanyeri, M.

Travis, K.

Tzeng, H. M.

S.-X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: Highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[Crossref] [PubMed]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref] [PubMed]

Ward, A. D.

A. D. Ward, M. G. Berry, C. D. Mellor, and C. D. Bain, “Optical sculpture: controlled deformation of emulsion droplets with ultralow interfacial tensions using optical tweezers,” Chem. Commun. 2006, 4515–4517 (2006).
[Crossref]

Weitz, D. A.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[Crossref] [PubMed]

White, C. L.

J. Drelich, C. Fang, and C. L. White, The Encyclopedia of Surface and Colloid Science: Measurement of Interfacial Tension in Fluid/Fluid Systems(Marcel- Dekker, 2002).

Whitesides, G. M.

S. K. Y. Tang, R. Derda, Q. Quan, M. Loncar, and G. M. Whitesides, “Continuously tunable microdroplet-laser in a microfluidic channel,” Opt. Express 19, 2204–2215 (2011).
[Crossref] [PubMed]

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[Crossref] [PubMed]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref] [PubMed]

Yorulmaz, S. C.

S. C. Yorulmaz, M. Mestre, M. Muradoglu, B. E. Alaca, and A. Kiraz, “Controlled observation of nondegenerate cavity modes in a microdroplet on a superhydrophobic surface,” Opt. Commun. 282, 3024–3027 (2009).
[Crossref]

A. Kiraz, Y. Karadag, S. C. Yorulmaz, and M. Muradoglu, “Reversible photothermal tuning of a salty water microdroplet,” Phys. Chem. Chem. Phys. 11, 2597–2600 (2009).
[Crossref] [PubMed]

Young, K.

Zarinetchi, F.

Zemánek, P.

T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
[Crossref]

Appl. Phys. Lett. (2)

A. Kiraz, A. Kurt, M. A. Dündar, and A. L. Demirel, “Simple largely tunable optical microcavity,” Appl. Phys. Lett. 89, 081118 (2006).
[Crossref]

A. Kiraz, Y. Karadağ, and A. F. Coskun, “Spectral tuning of liquid microdroplets standing on a superhydrophobic surface using electrowetting,” Appl. Phys. Lett. 92, 191104 (2008).
[Crossref]

Biophys. J. (1)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[Crossref] [PubMed]

Chem. Commun. (1)

A. D. Ward, M. G. Berry, C. D. Mellor, and C. D. Bain, “Optical sculpture: controlled deformation of emulsion droplets with ultralow interfacial tensions using optical tweezers,” Chem. Commun. 2006, 4515–4517 (2006).
[Crossref]

EPL (1)

P. C. F. Møller and L. B. Oddershede, “Quantification of droplet deformation by electromagnetic trapping,” EPL 88, 48005 (2009).
[Crossref]

J. Chem. Phys. (1)

S. Holler, N. L. Goddard, and S. Arnold, “Spontaneous emission spectra from microdroplets,” J. Chem. Phys. 108, 6545–6547 (1998).
[Crossref]

J. Chem. Soc., Faraday Trans. 1 (1)

R. Aveyard, B. P. Binks, S. Clark, and J. Mead, “Interfacial tension minima in oil-water-surfactant systems. Behaviour of alkaneaqueous NaCl systems containing aerosol OT,” J. Chem. Soc., Faraday Trans. 1,  82, 125–142 (1986).
[Crossref]

J. Mol. Liq. (1)

V. V. Datsyuk, “Optics of microdroplets,” J. Mol. Liq. 93, 159–175 (2001).
[Crossref]

J. Opt. Soc. Am. B (2)

Lab Chip (1)

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009).
[Crossref] [PubMed]

Laser Phys. Lett. (1)

T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
[Crossref]

Nat. Photonics (1)

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]

Nature (2)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref] [PubMed]

Opt. Commun. (2)

S. C. Yorulmaz, M. Mestre, M. Muradoglu, B. E. Alaca, and A. Kiraz, “Controlled observation of nondegenerate cavity modes in a microdroplet on a superhydrophobic surface,” Opt. Commun. 282, 3024–3027 (2009).
[Crossref]

M. Aas, A. Jonáš, and A. Kiraz, “Lasing in optically manipulated, dye-doped emulsion microdroplets,” Opt. Commun. 290, 183–187 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Phys. Chem. Chem. Phys. (1)

A. Kiraz, Y. Karadag, S. C. Yorulmaz, and M. Muradoglu, “Reversible photothermal tuning of a salty water microdroplet,” Phys. Chem. Chem. Phys. 11, 2597–2600 (2009).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Riv. Nuovo Cimento (1)

G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: Fundamentals and applications,” Riv. Nuovo Cimento 34, 435–488 (2011).

Science (1)

S.-X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: Highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986).
[Crossref] [PubMed]

Other (2)

S. Ramanujan, Collected papers of Srinivasa Ramanujan (Cambridge University Press, 1927).

J. Drelich, C. Fang, and C. L. White, The Encyclopedia of Surface and Colloid Science: Measurement of Interfacial Tension in Fluid/Fluid Systems(Marcel- Dekker, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Experimental setup schematics. The inset shows the geometry of the single- and dual-beam optical traps and the pump beam. (b) Droplet excitation geometry - view along z-axis, in the propagation direction of the pump beam. (c) A sample lasing spectrum of a 49 μm diameter droplet with stretching power of 100 mW.

Fig. 2
Fig. 2

(a) Schematic of a prolate spheroid resulting from optical stretching of an originally spherical droplet of identical volume indicated by the red circle. (b) Simulation results showing the tuning of equatorial- and polar-plane WGMs for a 50 μm diameter immersion oil droplet in water as a function of Pstretch.

Fig. 3
Fig. 3

(a) Spectral tuning of lasing WGMs of a 47 μm diameter droplet in off-axis excitation geometry (see Fig. 1(b)) in the presence of surfactant (droplet interfacial tension γ ≈ 1.5mN/m). The white vertical line indicates blue drift caused by droplet dissolution. (b) Dissolution-corrected WGM tuning for the central peak in (a) as a function of the stretching laser power, Pstretch. (c) Spectral tuning of lasing WGMs of a 49 μm diameter droplet in on-axis excitation geometry (see Fig. 1(b)) in the presence of surfactant (droplet interfacial tension γ ≈ 1.5mN/m). (d) Dissolution-corrected WGM tuning for the central peak in (c) as a function of the stretching laser power, Pstretch. Intensity values in arbitrary units increase from black to white in (a) and (c).

Fig. 4
Fig. 4

(a) Spectral tuning of lasing WGMs of a 44 μm diameter droplet in off-axis excitation geometry (see Fig. 1(b)) without surfactant (droplet interfacial tension γ ≈ 13.1mN/m). (b) Dissolution-corrected WGM tuning for the central peak in (a) as a function of the stretching laser power, Pstretch. (c) Spectral tuning of lasing WGMs of a 55 μm diameter droplet in on-axis excitation geometry (see Fig. 1(b)) without surfactant (droplet interfacial tension γ ≈ 13.1mN/m). (d) Dissolution-corrected WGM tuning for the central peak in (c) as a function of the stretching laser power, Pstretch. Intensity values in arbitrary units increase from black to white in (a) and (c).

Fig. 5
Fig. 5

(a) Frequency-splitting of WGMs of a 42 μm diameter droplet observed with on-center excitation geometry (see Fig. 1(b)). Light intensity in arbitrary units increases from black to white. (b) Dissolution-corrected spectral positions λB, λR, and λ0 for WGM1, WGM2 labeled in (a) during two consecutive droplet tuning cycles. (c) Details of changes of spectral position λ0 for WGM1, WGM2 labeled in (a) within a single droplet tuning cycle. (d) Changes of spectral position λ0 for WGM1, WGM2 labeled in (a) as a function of the stretching laser power Pstretch within a single droplet tuning cycle.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F surf = 3 π γ Δ a
C p = π [ 3 ( a + b ) 10 a b + 3 ( a 2 + b 2 ) ]
Δ λ Δ T = λ β 3 + λ δ 1 λ 2 2 π r 0 n 1 ( n 2 n 1 ) 2 ( δ 1 δ 2 ) × [ ( 1 ( n 2 n 1 ) 2 ) 3 2 + 2 1 3 α 1 ν 2 3 ( 1 ( n 2 n 1 ) 2 ) 5 2 ]

Metrics