Abstract

We report a first demonstration of two-photon endoscopic imaging with a lensless endoscope. The endoscope probe is a double-clad bundle of single-mode fibers; point excitation and scanning is achieved by coherent combining of femtosecond light pulses propagating in the single-mode fibers; and back-scattered two-photon signal is collected through the multi-mode inner cladding. We demonstrate the two-photon endoscope on a test sample of rhodamine 6G crystals.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. F. Elahi and T. D. Wang, “Future and advances in endoscopy,” J. Biomed. Opt.4, 471–481 (2011).
  2. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode fiber,” Biomed. Opt. Express6, 260–270 (2013).
    [CrossRef]
  3. T. Cizmar and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun.3, 1027 (2012).
    [CrossRef] [PubMed]
  4. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett.109, 203901 (2012).
    [CrossRef] [PubMed]
  5. C. LeFort, T. Mansuryan, F. Louradour, and A. Barthelemy, “Pulse compression and fiber delivery of 45 fs Fourier transform limited pulses at 830nm,” Opt. Lett.36, 292–294 (2011).
    [CrossRef] [PubMed]
  6. D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A.108, 17598–17603 (2011).
    [CrossRef] [PubMed]
  7. C. M. Brown, D. R. Rivera, I. Pavlova, D. G. Ouzonov, W. O. Williams, S. Mohanan, W. W. Webb, and C. Xu, “In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope,” J. Biomed. Opt.17, 040505 (2012).
    [CrossRef] [PubMed]
  8. Y. Wu, Y. Leng, J. Xi, and X. Li, “Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues,” Opt. Express17, 7907–7915 (2009).
    [CrossRef] [PubMed]
  9. S. Tang, W. G. Jung, D. McCormick, T. Q. Xie, J. P. Su, Y. C. Ahn, B. J. Tromberg, and Z. P. Chen, “Design an implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14, 34005 (2009).
    [CrossRef]
  10. H. Bao, A. Boussioutas, R. Jeremy, S. Russell, and M. Gu, “Second harmonic generation imaging via nonlinear endomicroscopy,” Opt. Express18, 1255–1260 (2010).
    [CrossRef] [PubMed]
  11. H. Bao, J. Allen, R. Pattie, R. Vance, and M. Gu, “Fast handheld two-photon fluorescence microendoscope with a 475 × 475 μ m field of view for in vivo imaging,” Opt. Lett.33, 1333–1335 (2008).
    [CrossRef] [PubMed]
  12. M. R. Myaing, D. J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett.31, 1076–1078 (2006).
    [CrossRef] [PubMed]
  13. L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, “Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror,” Opt. Express14, 1027–1032 (2006).
    [CrossRef] [PubMed]
  14. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods2, 941–950 (2005).
    [CrossRef] [PubMed]
  15. T. Y. Fan, “Laser beam combining for high-power, high radiance sources,” IEEE J. Sel. Top. Quantum Electron.11, 567–577 (2005).
    [CrossRef]
  16. C. Labaune, D. Hulin, A. Galvanauskas, and G. Mourou, “On the feasability of a fiber-based inertial fusion laser driver,” Opt. Commun.281, 4075–4080 (2008).
    [CrossRef]
  17. J. Bourderionnet, C. Bellanger, J. Primot, and A. Brignon, “Collective coherent phase combining of 64 fibers,” Opt. Express19, 17053–17058 (2011).
    [CrossRef] [PubMed]
  18. A. J. Thompson, C. Paterson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “Adaptive phase compensation for ultracompact laser scanning endomicroscopy,” Opt. Lett.36, 1707–1709 (2011).
    [CrossRef] [PubMed]
  19. E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle,” Opt. Lett.38, 609–611 (2013).
    [CrossRef] [PubMed]
  20. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics7, 354–362 (2013).
    [CrossRef]
  21. P. S. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol.24, 4729–4749 (2006).
    [CrossRef]
  22. J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A.109, 8434–8439 (2012).
    [CrossRef] [PubMed]

2013

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode fiber,” Biomed. Opt. Express6, 260–270 (2013).
[CrossRef]

E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle,” Opt. Lett.38, 609–611 (2013).
[CrossRef] [PubMed]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics7, 354–362 (2013).
[CrossRef]

2012

C. M. Brown, D. R. Rivera, I. Pavlova, D. G. Ouzonov, W. O. Williams, S. Mohanan, W. W. Webb, and C. Xu, “In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope,” J. Biomed. Opt.17, 040505 (2012).
[CrossRef] [PubMed]

T. Cizmar and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun.3, 1027 (2012).
[CrossRef] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett.109, 203901 (2012).
[CrossRef] [PubMed]

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A.109, 8434–8439 (2012).
[CrossRef] [PubMed]

2011

2010

2009

Y. Wu, Y. Leng, J. Xi, and X. Li, “Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues,” Opt. Express17, 7907–7915 (2009).
[CrossRef] [PubMed]

S. Tang, W. G. Jung, D. McCormick, T. Q. Xie, J. P. Su, Y. C. Ahn, B. J. Tromberg, and Z. P. Chen, “Design an implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14, 34005 (2009).
[CrossRef]

2008

C. Labaune, D. Hulin, A. Galvanauskas, and G. Mourou, “On the feasability of a fiber-based inertial fusion laser driver,” Opt. Commun.281, 4075–4080 (2008).
[CrossRef]

H. Bao, J. Allen, R. Pattie, R. Vance, and M. Gu, “Fast handheld two-photon fluorescence microendoscope with a 475 × 475 μ m field of view for in vivo imaging,” Opt. Lett.33, 1333–1335 (2008).
[CrossRef] [PubMed]

2006

2005

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods2, 941–950 (2005).
[CrossRef] [PubMed]

T. Y. Fan, “Laser beam combining for high-power, high radiance sources,” IEEE J. Sel. Top. Quantum Electron.11, 567–577 (2005).
[CrossRef]

Ahn, Y. C.

S. Tang, W. G. Jung, D. McCormick, T. Q. Xie, J. P. Su, Y. C. Ahn, B. J. Tromberg, and Z. P. Chen, “Design an implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14, 34005 (2009).
[CrossRef]

Allen, J.

Andresen, E. R.

Bao, H.

Barthelemy, A.

Bellanger, C.

Bourderionnet, J.

Boussioutas, A.

Bouwmans, G.

Brignon, A.

Brown, C. M.

C. M. Brown, D. R. Rivera, I. Pavlova, D. G. Ouzonov, W. O. Williams, S. Mohanan, W. W. Webb, and C. Xu, “In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope,” J. Biomed. Opt.17, 040505 (2012).
[CrossRef] [PubMed]

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A.108, 17598–17603 (2011).
[CrossRef] [PubMed]

Chen, Z. P.

S. Tang, W. G. Jung, D. McCormick, T. Q. Xie, J. P. Su, Y. C. Ahn, B. J. Tromberg, and Z. P. Chen, “Design an implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14, 34005 (2009).
[CrossRef]

Cheung, E. L. M.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods2, 941–950 (2005).
[CrossRef] [PubMed]

Choi, W.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett.109, 203901 (2012).
[CrossRef] [PubMed]

Choi, Y.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett.109, 203901 (2012).
[CrossRef] [PubMed]

Cizmar, T.

T. Cizmar and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun.3, 1027 (2012).
[CrossRef] [PubMed]

Cocker, E. D.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods2, 941–950 (2005).
[CrossRef] [PubMed]

Cranfield, C.

Cui, M.

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A.109, 8434–8439 (2012).
[CrossRef] [PubMed]

Dasari, R. R.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett.109, 203901 (2012).
[CrossRef] [PubMed]

Dholakia, K.

T. Cizmar and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun.3, 1027 (2012).
[CrossRef] [PubMed]

Dunsby, C.

Elahi, S. F.

S. F. Elahi and T. D. Wang, “Future and advances in endoscopy,” J. Biomed. Opt.4, 471–481 (2011).

Fan, T. Y.

T. Y. Fan, “Laser beam combining for high-power, high radiance sources,” IEEE J. Sel. Top. Quantum Electron.11, 567–577 (2005).
[CrossRef]

Fang-Yen, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett.109, 203901 (2012).
[CrossRef] [PubMed]

Farahi, S.

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode fiber,” Biomed. Opt. Express6, 260–270 (2013).
[CrossRef]

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics7, 354–362 (2013).
[CrossRef]

Flusberg, B. A.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods2, 941–950 (2005).
[CrossRef] [PubMed]

French, P. M. W.

Fu, L.

Galvanauskas, A.

C. Labaune, D. Hulin, A. Galvanauskas, and G. Mourou, “On the feasability of a fiber-based inertial fusion laser driver,” Opt. Commun.281, 4075–4080 (2008).
[CrossRef]

Germain, R. N.

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A.109, 8434–8439 (2012).
[CrossRef] [PubMed]

Gu, M.

Hulin, D.

C. Labaune, D. Hulin, A. Galvanauskas, and G. Mourou, “On the feasability of a fiber-based inertial fusion laser driver,” Opt. Commun.281, 4075–4080 (2008).
[CrossRef]

Jain, A.

Jeremy, R.

Jung, J. C.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods2, 941–950 (2005).
[CrossRef] [PubMed]

Jung, W. G.

S. Tang, W. G. Jung, D. McCormick, T. Q. Xie, J. P. Su, Y. C. Ahn, B. J. Tromberg, and Z. P. Chen, “Design an implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14, 34005 (2009).
[CrossRef]

Kim, M.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett.109, 203901 (2012).
[CrossRef] [PubMed]

Kobat, D.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A.108, 17598–17603 (2011).
[CrossRef] [PubMed]

Labaune, C.

C. Labaune, D. Hulin, A. Galvanauskas, and G. Mourou, “On the feasability of a fiber-based inertial fusion laser driver,” Opt. Commun.281, 4075–4080 (2008).
[CrossRef]

Lee, K. J.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett.109, 203901 (2012).
[CrossRef] [PubMed]

LeFort, C.

Leng, Y.

Li, X.

Louradour, F.

MacDonald, D. J.

Mansuryan, T.

McCormick, D.

S. Tang, W. G. Jung, D. McCormick, T. Q. Xie, J. P. Su, Y. C. Ahn, B. J. Tromberg, and Z. P. Chen, “Design an implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14, 34005 (2009).
[CrossRef]

Mohanan, S.

C. M. Brown, D. R. Rivera, I. Pavlova, D. G. Ouzonov, W. O. Williams, S. Mohanan, W. W. Webb, and C. Xu, “In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope,” J. Biomed. Opt.17, 040505 (2012).
[CrossRef] [PubMed]

Monneret, S.

Moser, C.

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode fiber,” Biomed. Opt. Express6, 260–270 (2013).
[CrossRef]

Mourou, G.

C. Labaune, D. Hulin, A. Galvanauskas, and G. Mourou, “On the feasability of a fiber-based inertial fusion laser driver,” Opt. Commun.281, 4075–4080 (2008).
[CrossRef]

Myaing, M. R.

Neil, M. A. A.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics7, 354–362 (2013).
[CrossRef]

Ouzonov, D. G.

C. M. Brown, D. R. Rivera, I. Pavlova, D. G. Ouzonov, W. O. Williams, S. Mohanan, W. W. Webb, and C. Xu, “In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope,” J. Biomed. Opt.17, 040505 (2012).
[CrossRef] [PubMed]

Ouzounov, D. G.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A.108, 17598–17603 (2011).
[CrossRef] [PubMed]

Papadopoulos, I. N.

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode fiber,” Biomed. Opt. Express6, 260–270 (2013).
[CrossRef]

Paterson, C.

Pattie, R.

Pavlova, I.

C. M. Brown, D. R. Rivera, I. Pavlova, D. G. Ouzonov, W. O. Williams, S. Mohanan, W. W. Webb, and C. Xu, “In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope,” J. Biomed. Opt.17, 040505 (2012).
[CrossRef] [PubMed]

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A.108, 17598–17603 (2011).
[CrossRef] [PubMed]

Piyawattanametha, W.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods2, 941–950 (2005).
[CrossRef] [PubMed]

Primot, J.

Psaltis, D.

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode fiber,” Biomed. Opt. Express6, 260–270 (2013).
[CrossRef]

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics7, 354–362 (2013).
[CrossRef]

Rigneault, H.

Rivera, D. R.

C. M. Brown, D. R. Rivera, I. Pavlova, D. G. Ouzonov, W. O. Williams, S. Mohanan, W. W. Webb, and C. Xu, “In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope,” J. Biomed. Opt.17, 040505 (2012).
[CrossRef] [PubMed]

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A.108, 17598–17603 (2011).
[CrossRef] [PubMed]

Russell, P. S. J.

Russell, S.

Schnitzer, M. J.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods2, 941–950 (2005).
[CrossRef] [PubMed]

Su, J. P.

S. Tang, W. G. Jung, D. McCormick, T. Q. Xie, J. P. Su, Y. C. Ahn, B. J. Tromberg, and Z. P. Chen, “Design an implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14, 34005 (2009).
[CrossRef]

Tang, J.

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A.109, 8434–8439 (2012).
[CrossRef] [PubMed]

Tang, S.

S. Tang, W. G. Jung, D. McCormick, T. Q. Xie, J. P. Su, Y. C. Ahn, B. J. Tromberg, and Z. P. Chen, “Design an implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14, 34005 (2009).
[CrossRef]

Thompson, A. J.

Tromberg, B. J.

S. Tang, W. G. Jung, D. McCormick, T. Q. Xie, J. P. Su, Y. C. Ahn, B. J. Tromberg, and Z. P. Chen, “Design an implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14, 34005 (2009).
[CrossRef]

Vance, R.

Wang, T. D.

S. F. Elahi and T. D. Wang, “Future and advances in endoscopy,” J. Biomed. Opt.4, 471–481 (2011).

Webb, W. W.

C. M. Brown, D. R. Rivera, I. Pavlova, D. G. Ouzonov, W. O. Williams, S. Mohanan, W. W. Webb, and C. Xu, “In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope,” J. Biomed. Opt.17, 040505 (2012).
[CrossRef] [PubMed]

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A.108, 17598–17603 (2011).
[CrossRef] [PubMed]

Williams, W. O.

C. M. Brown, D. R. Rivera, I. Pavlova, D. G. Ouzonov, W. O. Williams, S. Mohanan, W. W. Webb, and C. Xu, “In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope,” J. Biomed. Opt.17, 040505 (2012).
[CrossRef] [PubMed]

Wu, Y.

Xi, J.

Xie, H.

Xie, T. Q.

S. Tang, W. G. Jung, D. McCormick, T. Q. Xie, J. P. Su, Y. C. Ahn, B. J. Tromberg, and Z. P. Chen, “Design an implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14, 34005 (2009).
[CrossRef]

Xu, C.

C. M. Brown, D. R. Rivera, I. Pavlova, D. G. Ouzonov, W. O. Williams, S. Mohanan, W. W. Webb, and C. Xu, “In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope,” J. Biomed. Opt.17, 040505 (2012).
[CrossRef] [PubMed]

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A.108, 17598–17603 (2011).
[CrossRef] [PubMed]

Yang, T. D.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett.109, 203901 (2012).
[CrossRef] [PubMed]

Yoon, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett.109, 203901 (2012).
[CrossRef] [PubMed]

Biomed. Opt. Express

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode fiber,” Biomed. Opt. Express6, 260–270 (2013).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

T. Y. Fan, “Laser beam combining for high-power, high radiance sources,” IEEE J. Sel. Top. Quantum Electron.11, 567–577 (2005).
[CrossRef]

J. Biomed. Opt.

C. M. Brown, D. R. Rivera, I. Pavlova, D. G. Ouzonov, W. O. Williams, S. Mohanan, W. W. Webb, and C. Xu, “In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope,” J. Biomed. Opt.17, 040505 (2012).
[CrossRef] [PubMed]

S. F. Elahi and T. D. Wang, “Future and advances in endoscopy,” J. Biomed. Opt.4, 471–481 (2011).

S. Tang, W. G. Jung, D. McCormick, T. Q. Xie, J. P. Su, Y. C. Ahn, B. J. Tromberg, and Z. P. Chen, “Design an implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14, 34005 (2009).
[CrossRef]

J. Lightwave Technol.

Nat. Commun.

T. Cizmar and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun.3, 1027 (2012).
[CrossRef] [PubMed]

Nat. Methods

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods2, 941–950 (2005).
[CrossRef] [PubMed]

Nat. Photonics

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics7, 354–362 (2013).
[CrossRef]

Opt. Commun.

C. Labaune, D. Hulin, A. Galvanauskas, and G. Mourou, “On the feasability of a fiber-based inertial fusion laser driver,” Opt. Commun.281, 4075–4080 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-Free and Wide-Field Endoscopic Imaging by Using a Single Multimode Optical Fiber,” Phys. Rev. Lett.109, 203901 (2012).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A.108, 17598–17603 (2011).
[CrossRef] [PubMed]

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A.109, 8434–8439 (2012).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Sketch of the experimental setup. f1 = 100 mm; f2 = 200 mm; f3 = 30 mm; f4 = 200 mm; f5 = 500 mm; f6 = 75 mm; f7 = 100 mm; f8 = 6.24 mm; f9 = 20× objective (LucPlanFLN, Olympus); f10 = 150 mm; Bundle, 30 cm bundle. 2D-SLM, two-dimensional spatial light modulator; ID, iris diaphragm; OP, object plane; LP, Long-pass filter (FEL1000, Thorlabs); SP, Short-pass filters (2 FM01, Thorlabs; SP945, Semrock); CMOS, CMOS camera; APD, avalanche photodiode (SPCM-AQRH-13, Perkin-Elmer); PC, personal computer. Dashed line represents back-scattered light. (b) Example of a mask on the 2D-SLM. (c) Scanning electron micrograph of the bundle with inverted contrast, for clarity. (d) Image of OP before phase calibration with a 5× gain, for clarity. (e) Image of OP after phase calibration.

Fig. 2
Fig. 2

TPEF endoscopic images of a Rh6G crystal. (a) White-light image of the crystal. (b) Rh6G TPEF signal (proximal detection) versus the focal length fdistal of the lensless endoscope. (c) Power dependence of the Rh6G TPEF signal. Note that the scales are logarithmic. (d) Endoscopic (proximal detection) TPEF images of the Rh6G crystal for different focal lengths. (e) Same as (d) but with distal detection, for comparison. Scale bar 20 μm.

Fig. 3
Fig. 3

Calculations illustrating of the phase calibration procedure. (a) Intensity distribution in the distal end plane of the bundle. (b) Intensity distribution in the plane OP. (c) Absolute value of the 2D Fourier transform of (b), with labels marking the peaks where the phase ϕi can be read off from the phase of the Fourier transform.

Fig. 4
Fig. 4

Illustration of the phase calibration procedure on experimental data. (a) Intensity distribution in the distal end plane of the bundle. (b) Intensity distribution in the plane OP. (c) Absolute value of the 2D Fourier transform of (b).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Φ i mask ( X , Y ) = sawtooth [ ϕ i proximal + 2 π f c ( X X i ) + π λ f conc ( ( X X i ) 2 + ( Y Y i ) 2 ) ) ] .
ϕ i distal ( x i , y i ) = 2 π λ ( x i 2 + y i 2 + z OP 2 z OP ) π λ z OP ( x i 2 + y i 2 ) 1 2 ϕ ( 2 ) ( x i 2 + y i 2 ) .
ϕ i distal ( x i , y i ) = ϕ x ( 1 ) x i + ϕ y ( 1 ) y i + 1 2 ϕ ( 2 ) ( x i 2 + y i 2 ) .
E i ( x , y , z ) = i ( x x i , y y i , z ) e i 2 π λ ( x x i z x + y y i z y ) + i ϕ i
I 0 i ( x , y , z OP ) = | E 0 ( x , y , z OP ) + E i ( x , y , z OP ) | 2 = | 0 ( x , y , z OP ) | 2 + | i ( x x i , y y i , z OP ) | 2 + 2 0 ( x , y , z OP ) i ( x x i , y y i , z OP ) cos [ 2 π λ z OP ( x i x + y i y ϕ i ) ] .
I ˜ 0 i ( k x , k y , z OP ) = [ I 0 i ( x , y , z OP ) ] .

Metrics