Abstract

Metallic nanostructures supporting collective localized surface plasmons (cLSPs) are investigated for the amplification of signal in fluorescence biosensors. cLSPs modes are supported by diffractive arrays of metallic nanoparticles that are embedded in a refractive index-symmetrical environment. They exhibit lower damping and thus their excitation is associated with higher field intensity enhancement and narrower resonance than that for regular localized surface plasmons. Through finite difference time domain (FDTD) simulations, we designed a novel cLSP structure that exhibit two resonances overlapping with absorption and emission wavelengths of assumed fluorophore (similar to Cy5 or Alexa Fluor 647). The simulations of surface plasmon-enhanced fluorescence (PEF) took into account the cLSP-driven excitation, directional emission, and mediated quantum yield in realistic sandwich immunoassays that utilize fluorophore-labeled detection antibodies. Achieved results indicate that cLSP-based structures holds potential for extraordinarily high fluorescence intensity enhancement that exceeds a value of 103.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Höppener and L. Novotny, “Exploiting the light-metal interaction for biomolecular sensing and imaging,” Q. Rev. Biophys.45(2), 209–255 (2012).
    [CrossRef] [PubMed]
  2. S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev.37(5), 898–911 (2008).
    [CrossRef] [PubMed]
  3. B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today15(1-2), 16–25 (2012).
    [CrossRef]
  4. J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases3(3), FD12–FD22 (2008).
    [CrossRef] [PubMed]
  5. K. Aslan, J. Huang, G. M. Wilson, and C. D. Geddes, “Metal-enhanced fluorescence-based RNA sensing,” J. Am. Chem. Soc.128(13), 4206–4207 (2006).
    [CrossRef] [PubMed]
  6. Y. Wang, A. Brunsen, U. Jonas, J. Dostálek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem.81(23), 9625–9632 (2009).
    [CrossRef] [PubMed]
  7. C. J. Huang, J. Dostalek, and W. Knoll, “Long range surface plasmon and hydrogel optical waveguide field-enhanced fluorescence biosensor with 3D hydrogel binding matrix: On the role of diffusion mass transfer,” Biosens. Bioelectron.26(4), 1425–1431 (2010).
    [CrossRef] [PubMed]
  8. L. Touahir, E. Galopin, R. Boukherroub, A. C. Gouget-Laemmel, J. N. Chazalviel, F. Ozanam, and S. Szunerits, “Localized surface plasmon-enhanced fluorescence spectroscopy for highly-sensitive real-time detection of DNA hybridization,” Biosens. Bioelectron.25(12), 2579–2585 (2010).
    [CrossRef] [PubMed]
  9. K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express16(13), 9781–9790 (2008).
    [CrossRef] [PubMed]
  10. H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett.11(2), 637–644 (2011).
    [CrossRef] [PubMed]
  11. X. Q. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced fluorescence microscopic imaging by plasmonic nanostructures: From a 1D grating to a 2D nanohole array,” Adv. Funct. Mater.20(6), 945–950 (2010).
    [CrossRef]
  12. A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
    [CrossRef]
  13. Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008).
    [CrossRef]
  14. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000).
    [CrossRef] [PubMed]
  15. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80(20), 201401 (2009).
    [CrossRef]
  16. B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82(15), 155447 (2010).
    [CrossRef]
  17. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102(14), 146807 (2009).
    [CrossRef] [PubMed]
  18. M. H. Chowdhury, J. Pond, S. K. Gray, and J. R. Lakowicz, “Systematic computational study of the effect of silver nanoparticle dimers on the coupled emission from nearby fluorophores,” J. Phys. Chem. C112(30), 11236–11249 (2008).
    [CrossRef] [PubMed]
  19. P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express15(21), 14266–14274 (2007).
    [CrossRef] [PubMed]
  20. M. Slootsky and S. R. Forrest, “Full-wave simulation of enhanced outcoupling of organic light-emitting devices with an embedded low-index grid,” Appl. Phys. Lett.94(16), 163302 (2009).
    [CrossRef]
  21. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113(4), 195–287 (1984).
    [CrossRef]
  22. P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  23. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon.1(3), 438–483 (2009).
    [CrossRef]
  24. T. Jøssang, J. Feder, and E. Rosenqvist, “Photon correlation spectroscopy of human IgG,” J. Protein Chem.7(2), 165–171 (1988).
    [CrossRef] [PubMed]
  25. W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol.6(7), 423–427 (2011).
    [CrossRef] [PubMed]
  26. A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B74(15), 155435 (2006).
    [CrossRef]
  27. N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B75(23), 235426 (2007).
    [CrossRef]
  28. Y. Z. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett.34(3), 244–246 (2009).
    [CrossRef] [PubMed]
  29. M. T. Zin, K. Leong, N. Y. Wong, H. Ma, M. Sarikaya, and A. K. Y. Jen, “Surface-plasmon-enhanced fluorescence from periodic quantum dot arrays through distance control using biomolecular linkers,” Nanotechnology20(1), 015305 (2009).
    [CrossRef] [PubMed]
  30. T. Ruckstuhl, M. Rankl, and S. Seeger, “Highly sensitive biosensing using a supercritical angle fluorescence (SAF) instrument,” Biosens. Bioelectron.18(9), 1193–1199 (2003).
    [CrossRef] [PubMed]
  31. T. Ruckstuhl and D. Verdes, “Supercritical angle fluorescence (SAF) microscopy,” Opt. Express12(18), 4246–4254 (2004).
    [CrossRef] [PubMed]
  32. L. Feuz, P. Jönsson, M. P. Jonsson, and F. Höök, “Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas,” ACS Nano4(4), 2167–2177 (2010).
    [CrossRef] [PubMed]

2012 (2)

C. Höppener and L. Novotny, “Exploiting the light-metal interaction for biomolecular sensing and imaging,” Q. Rev. Biophys.45(2), 209–255 (2012).
[CrossRef] [PubMed]

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today15(1-2), 16–25 (2012).
[CrossRef]

2011 (2)

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett.11(2), 637–644 (2011).
[CrossRef] [PubMed]

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol.6(7), 423–427 (2011).
[CrossRef] [PubMed]

2010 (5)

L. Feuz, P. Jönsson, M. P. Jonsson, and F. Höök, “Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas,” ACS Nano4(4), 2167–2177 (2010).
[CrossRef] [PubMed]

X. Q. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced fluorescence microscopic imaging by plasmonic nanostructures: From a 1D grating to a 2D nanohole array,” Adv. Funct. Mater.20(6), 945–950 (2010).
[CrossRef]

C. J. Huang, J. Dostalek, and W. Knoll, “Long range surface plasmon and hydrogel optical waveguide field-enhanced fluorescence biosensor with 3D hydrogel binding matrix: On the role of diffusion mass transfer,” Biosens. Bioelectron.26(4), 1425–1431 (2010).
[CrossRef] [PubMed]

L. Touahir, E. Galopin, R. Boukherroub, A. C. Gouget-Laemmel, J. N. Chazalviel, F. Ozanam, and S. Szunerits, “Localized surface plasmon-enhanced fluorescence spectroscopy for highly-sensitive real-time detection of DNA hybridization,” Biosens. Bioelectron.25(12), 2579–2585 (2010).
[CrossRef] [PubMed]

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82(15), 155447 (2010).
[CrossRef]

2009 (8)

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102(14), 146807 (2009).
[CrossRef] [PubMed]

Y. Wang, A. Brunsen, U. Jonas, J. Dostálek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem.81(23), 9625–9632 (2009).
[CrossRef] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80(20), 201401 (2009).
[CrossRef]

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Y. Z. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett.34(3), 244–246 (2009).
[CrossRef] [PubMed]

M. T. Zin, K. Leong, N. Y. Wong, H. Ma, M. Sarikaya, and A. K. Y. Jen, “Surface-plasmon-enhanced fluorescence from periodic quantum dot arrays through distance control using biomolecular linkers,” Nanotechnology20(1), 015305 (2009).
[CrossRef] [PubMed]

M. Slootsky and S. R. Forrest, “Full-wave simulation of enhanced outcoupling of organic light-emitting devices with an embedded low-index grid,” Appl. Phys. Lett.94(16), 163302 (2009).
[CrossRef]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon.1(3), 438–483 (2009).
[CrossRef]

2008 (5)

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008).
[CrossRef]

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases3(3), FD12–FD22 (2008).
[CrossRef] [PubMed]

S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev.37(5), 898–911 (2008).
[CrossRef] [PubMed]

K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express16(13), 9781–9790 (2008).
[CrossRef] [PubMed]

M. H. Chowdhury, J. Pond, S. K. Gray, and J. R. Lakowicz, “Systematic computational study of the effect of silver nanoparticle dimers on the coupled emission from nearby fluorophores,” J. Phys. Chem. C112(30), 11236–11249 (2008).
[CrossRef] [PubMed]

2007 (2)

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express15(21), 14266–14274 (2007).
[CrossRef] [PubMed]

N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B75(23), 235426 (2007).
[CrossRef]

2006 (2)

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B74(15), 155435 (2006).
[CrossRef]

K. Aslan, J. Huang, G. M. Wilson, and C. D. Geddes, “Metal-enhanced fluorescence-based RNA sensing,” J. Am. Chem. Soc.128(13), 4206–4207 (2006).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

T. Ruckstuhl, M. Rankl, and S. Seeger, “Highly sensitive biosensing using a supercritical angle fluorescence (SAF) instrument,” Biosens. Bioelectron.18(9), 1193–1199 (2003).
[CrossRef] [PubMed]

2000 (1)

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

1988 (1)

T. Jøssang, J. Feder, and E. Rosenqvist, “Photon correlation spectroscopy of human IgG,” J. Protein Chem.7(2), 165–171 (1988).
[CrossRef] [PubMed]

1984 (1)

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113(4), 195–287 (1984).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Aouani, H.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett.11(2), 637–644 (2011).
[CrossRef] [PubMed]

Aslan, K.

K. Aslan, J. Huang, G. M. Wilson, and C. D. Geddes, “Metal-enhanced fluorescence-based RNA sensing,” J. Am. Chem. Soc.128(13), 4206–4207 (2006).
[CrossRef] [PubMed]

Auguié, B.

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82(15), 155447 (2010).
[CrossRef]

Aussenegg, F. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Avlasevich, Y.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Barnes, W. L.

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82(15), 155447 (2010).
[CrossRef]

Bendaña, X. M.

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82(15), 155447 (2010).
[CrossRef]

Bharadwaj, P.

Bonod, N.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett.11(2), 637–644 (2011).
[CrossRef] [PubMed]

Boukherroub, R.

L. Touahir, E. Galopin, R. Boukherroub, A. C. Gouget-Laemmel, J. N. Chazalviel, F. Ozanam, and S. Szunerits, “Localized surface plasmon-enhanced fluorescence spectroscopy for highly-sensitive real-time detection of DNA hybridization,” Biosens. Bioelectron.25(12), 2579–2585 (2010).
[CrossRef] [PubMed]

Brunsen, A.

Y. Wang, A. Brunsen, U. Jonas, J. Dostálek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem.81(23), 9625–9632 (2009).
[CrossRef] [PubMed]

Chazalviel, J. N.

L. Touahir, E. Galopin, R. Boukherroub, A. C. Gouget-Laemmel, J. N. Chazalviel, F. Ozanam, and S. Szunerits, “Localized surface plasmon-enhanced fluorescence spectroscopy for highly-sensitive real-time detection of DNA hybridization,” Biosens. Bioelectron.25(12), 2579–2585 (2010).
[CrossRef] [PubMed]

Chowdhury, M. H.

M. H. Chowdhury, J. Pond, S. K. Gray, and J. R. Lakowicz, “Systematic computational study of the effect of silver nanoparticle dimers on the coupled emission from nearby fluorophores,” J. Phys. Chem. C112(30), 11236–11249 (2008).
[CrossRef] [PubMed]

Christ, A.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B74(15), 155435 (2006).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Chu, Y. Z.

Y. Z. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett.34(3), 244–246 (2009).
[CrossRef] [PubMed]

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008).
[CrossRef]

Crozier, K. B.

Y. Z. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett.34(3), 244–246 (2009).
[CrossRef] [PubMed]

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008).
[CrossRef]

Cui, X. Q.

X. Q. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced fluorescence microscopic imaging by plasmonic nanostructures: From a 1D grating to a 2D nanohole array,” Adv. Funct. Mater.20(6), 945–950 (2010).
[CrossRef]

Deutsch, B.

Devaux, E.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett.11(2), 637–644 (2011).
[CrossRef] [PubMed]

Ditlbacher, H.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Dostalek, J.

C. J. Huang, J. Dostalek, and W. Knoll, “Long range surface plasmon and hydrogel optical waveguide field-enhanced fluorescence biosensor with 3D hydrogel binding matrix: On the role of diffusion mass transfer,” Biosens. Bioelectron.26(4), 1425–1431 (2010).
[CrossRef] [PubMed]

Dostálek, J.

Y. Wang, A. Brunsen, U. Jonas, J. Dostálek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem.81(23), 9625–9632 (2009).
[CrossRef] [PubMed]

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases3(3), FD12–FD22 (2008).
[CrossRef] [PubMed]

Ebbesen, T. W.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett.11(2), 637–644 (2011).
[CrossRef] [PubMed]

Fan, S. H.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Feder, J.

T. Jøssang, J. Feder, and E. Rosenqvist, “Photon correlation spectroscopy of human IgG,” J. Protein Chem.7(2), 165–171 (1988).
[CrossRef] [PubMed]

Feuz, L.

L. Feuz, P. Jönsson, M. P. Jonsson, and F. Höök, “Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas,” ACS Nano4(4), 2167–2177 (2010).
[CrossRef] [PubMed]

Ford, G. W.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113(4), 195–287 (1984).
[CrossRef]

Forrest, S. R.

M. Slootsky and S. R. Forrest, “Full-wave simulation of enhanced outcoupling of organic light-emitting devices with an embedded low-index grid,” Appl. Phys. Lett.94(16), 163302 (2009).
[CrossRef]

Frontiera, R. R.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today15(1-2), 16–25 (2012).
[CrossRef]

Galopin, E.

L. Touahir, E. Galopin, R. Boukherroub, A. C. Gouget-Laemmel, J. N. Chazalviel, F. Ozanam, and S. Szunerits, “Localized surface plasmon-enhanced fluorescence spectroscopy for highly-sensitive real-time detection of DNA hybridization,” Biosens. Bioelectron.25(12), 2579–2585 (2010).
[CrossRef] [PubMed]

García de Abajo, F. J.

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82(15), 155447 (2010).
[CrossRef]

Geddes, C. D.

K. Aslan, J. Huang, G. M. Wilson, and C. D. Geddes, “Metal-enhanced fluorescence-based RNA sensing,” J. Am. Chem. Soc.128(13), 4206–4207 (2006).
[CrossRef] [PubMed]

Giannini, V.

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102(14), 146807 (2009).
[CrossRef] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80(20), 201401 (2009).
[CrossRef]

Giessen, H.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B74(15), 155435 (2006).
[CrossRef]

Gippius, N. A.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B74(15), 155435 (2006).
[CrossRef]

Gómez Rivas, J.

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80(20), 201401 (2009).
[CrossRef]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102(14), 146807 (2009).
[CrossRef] [PubMed]

Gouget-Laemmel, A. C.

L. Touahir, E. Galopin, R. Boukherroub, A. C. Gouget-Laemmel, J. N. Chazalviel, F. Ozanam, and S. Szunerits, “Localized surface plasmon-enhanced fluorescence spectroscopy for highly-sensitive real-time detection of DNA hybridization,” Biosens. Bioelectron.25(12), 2579–2585 (2010).
[CrossRef] [PubMed]

Grady, N. K.

S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev.37(5), 898–911 (2008).
[CrossRef] [PubMed]

Gray, S. K.

M. H. Chowdhury, J. Pond, S. K. Gray, and J. R. Lakowicz, “Systematic computational study of the effect of silver nanoparticle dimers on the coupled emission from nearby fluorophores,” J. Phys. Chem. C112(30), 11236–11249 (2008).
[CrossRef] [PubMed]

Halas, N. J.

S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev.37(5), 898–911 (2008).
[CrossRef] [PubMed]

Henry, A. I.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today15(1-2), 16–25 (2012).
[CrossRef]

Höök, F.

L. Feuz, P. Jönsson, M. P. Jonsson, and F. Höök, “Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas,” ACS Nano4(4), 2167–2177 (2010).
[CrossRef] [PubMed]

Höppener, C.

C. Höppener and L. Novotny, “Exploiting the light-metal interaction for biomolecular sensing and imaging,” Q. Rev. Biophys.45(2), 209–255 (2012).
[CrossRef] [PubMed]

Hori, H.

Huang, C. J.

C. J. Huang, J. Dostalek, and W. Knoll, “Long range surface plasmon and hydrogel optical waveguide field-enhanced fluorescence biosensor with 3D hydrogel binding matrix: On the role of diffusion mass transfer,” Biosens. Bioelectron.26(4), 1425–1431 (2010).
[CrossRef] [PubMed]

Huang, J.

K. Aslan, J. Huang, G. M. Wilson, and C. D. Geddes, “Metal-enhanced fluorescence-based RNA sensing,” J. Am. Chem. Soc.128(13), 4206–4207 (2006).
[CrossRef] [PubMed]

Jen, A. K. Y.

M. T. Zin, K. Leong, N. Y. Wong, H. Ma, M. Sarikaya, and A. K. Y. Jen, “Surface-plasmon-enhanced fluorescence from periodic quantum dot arrays through distance control using biomolecular linkers,” Nanotechnology20(1), 015305 (2009).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Jonas, U.

Y. Wang, A. Brunsen, U. Jonas, J. Dostálek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem.81(23), 9625–9632 (2009).
[CrossRef] [PubMed]

Jonsson, M. P.

L. Feuz, P. Jönsson, M. P. Jonsson, and F. Höök, “Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas,” ACS Nano4(4), 2167–2177 (2010).
[CrossRef] [PubMed]

Jönsson, P.

L. Feuz, P. Jönsson, M. P. Jonsson, and F. Höök, “Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas,” ACS Nano4(4), 2167–2177 (2010).
[CrossRef] [PubMed]

Jøssang, T.

T. Jøssang, J. Feder, and E. Rosenqvist, “Photon correlation spectroscopy of human IgG,” J. Protein Chem.7(2), 165–171 (1988).
[CrossRef] [PubMed]

Kinkhabwala, A.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Kintaka, K.

X. Q. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced fluorescence microscopic imaging by plasmonic nanostructures: From a 1D grating to a 2D nanohole array,” Adv. Funct. Mater.20(6), 945–950 (2010).
[CrossRef]

K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express16(13), 9781–9790 (2008).
[CrossRef] [PubMed]

Kiyosue, K.

Knoll, W.

C. J. Huang, J. Dostalek, and W. Knoll, “Long range surface plasmon and hydrogel optical waveguide field-enhanced fluorescence biosensor with 3D hydrogel binding matrix: On the role of diffusion mass transfer,” Biosens. Bioelectron.26(4), 1425–1431 (2010).
[CrossRef] [PubMed]

Y. Wang, A. Brunsen, U. Jonas, J. Dostálek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem.81(23), 9625–9632 (2009).
[CrossRef] [PubMed]

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases3(3), FD12–FD22 (2008).
[CrossRef] [PubMed]

Krenn, J. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Kuhl, J.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B74(15), 155435 (2006).
[CrossRef]

Kundu, J.

S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev.37(5), 898–911 (2008).
[CrossRef] [PubMed]

Lakowicz, J. R.

M. H. Chowdhury, J. Pond, S. K. Gray, and J. R. Lakowicz, “Systematic computational study of the effect of silver nanoparticle dimers on the coupled emission from nearby fluorophores,” J. Phys. Chem. C112(30), 11236–11249 (2008).
[CrossRef] [PubMed]

Lal, S.

S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev.37(5), 898–911 (2008).
[CrossRef] [PubMed]

Lamprecht, B.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Lassiter, J. B.

S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev.37(5), 898–911 (2008).
[CrossRef] [PubMed]

Lechner, R. T.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Leitner, A.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Leong, K.

M. T. Zin, K. Leong, N. Y. Wong, H. Ma, M. Sarikaya, and A. K. Y. Jen, “Surface-plasmon-enhanced fluorescence from periodic quantum dot arrays through distance control using biomolecular linkers,” Nanotechnology20(1), 015305 (2009).
[CrossRef] [PubMed]

Levin, C. S.

S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev.37(5), 898–911 (2008).
[CrossRef] [PubMed]

Ma, H.

M. T. Zin, K. Leong, N. Y. Wong, H. Ma, M. Sarikaya, and A. K. Y. Jen, “Surface-plasmon-enhanced fluorescence from periodic quantum dot arrays through distance control using biomolecular linkers,” Nanotechnology20(1), 015305 (2009).
[CrossRef] [PubMed]

Mahboub, O.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett.11(2), 637–644 (2011).
[CrossRef] [PubMed]

Moerner, W. E.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Mullen, K.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Nishii, J.

X. Q. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced fluorescence microscopic imaging by plasmonic nanostructures: From a 1D grating to a 2D nanohole array,” Adv. Funct. Mater.20(6), 945–950 (2010).
[CrossRef]

K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express16(13), 9781–9790 (2008).
[CrossRef] [PubMed]

Novotny, L.

Odom, T. W.

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol.6(7), 423–427 (2011).
[CrossRef] [PubMed]

Ozanam, F.

L. Touahir, E. Galopin, R. Boukherroub, A. C. Gouget-Laemmel, J. N. Chazalviel, F. Ozanam, and S. Szunerits, “Localized surface plasmon-enhanced fluorescence spectroscopy for highly-sensitive real-time detection of DNA hybridization,” Biosens. Bioelectron.25(12), 2579–2585 (2010).
[CrossRef] [PubMed]

Papanikolaou, N.

N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B75(23), 235426 (2007).
[CrossRef]

Pond, J.

M. H. Chowdhury, J. Pond, S. K. Gray, and J. R. Lakowicz, “Systematic computational study of the effect of silver nanoparticle dimers on the coupled emission from nearby fluorophores,” J. Phys. Chem. C112(30), 11236–11249 (2008).
[CrossRef] [PubMed]

Popov, E.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett.11(2), 637–644 (2011).
[CrossRef] [PubMed]

Rankl, M.

T. Ruckstuhl, M. Rankl, and S. Seeger, “Highly sensitive biosensing using a supercritical angle fluorescence (SAF) instrument,” Biosens. Bioelectron.18(9), 1193–1199 (2003).
[CrossRef] [PubMed]

Rigneault, H.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett.11(2), 637–644 (2011).
[CrossRef] [PubMed]

Ringe, E.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today15(1-2), 16–25 (2012).
[CrossRef]

Rosenqvist, E.

T. Jøssang, J. Feder, and E. Rosenqvist, “Photon correlation spectroscopy of human IgG,” J. Protein Chem.7(2), 165–171 (1988).
[CrossRef] [PubMed]

Ruckstuhl, T.

T. Ruckstuhl and D. Verdes, “Supercritical angle fluorescence (SAF) microscopy,” Opt. Express12(18), 4246–4254 (2004).
[CrossRef] [PubMed]

T. Ruckstuhl, M. Rankl, and S. Seeger, “Highly sensitive biosensing using a supercritical angle fluorescence (SAF) instrument,” Biosens. Bioelectron.18(9), 1193–1199 (2003).
[CrossRef] [PubMed]

Sarikaya, M.

M. T. Zin, K. Leong, N. Y. Wong, H. Ma, M. Sarikaya, and A. K. Y. Jen, “Surface-plasmon-enhanced fluorescence from periodic quantum dot arrays through distance control using biomolecular linkers,” Nanotechnology20(1), 015305 (2009).
[CrossRef] [PubMed]

Schider, G.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Schonbrun, E.

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008).
[CrossRef]

Seeger, S.

T. Ruckstuhl, M. Rankl, and S. Seeger, “Highly sensitive biosensing using a supercritical angle fluorescence (SAF) instrument,” Biosens. Bioelectron.18(9), 1193–1199 (2003).
[CrossRef] [PubMed]

Sharma, B.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today15(1-2), 16–25 (2012).
[CrossRef]

Slootsky, M.

M. Slootsky and S. R. Forrest, “Full-wave simulation of enhanced outcoupling of organic light-emitting devices with an embedded low-index grid,” Appl. Phys. Lett.94(16), 163302 (2009).
[CrossRef]

Szunerits, S.

L. Touahir, E. Galopin, R. Boukherroub, A. C. Gouget-Laemmel, J. N. Chazalviel, F. Ozanam, and S. Szunerits, “Localized surface plasmon-enhanced fluorescence spectroscopy for highly-sensitive real-time detection of DNA hybridization,” Biosens. Bioelectron.25(12), 2579–2585 (2010).
[CrossRef] [PubMed]

Tatsu, Y.

Tawa, K.

X. Q. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced fluorescence microscopic imaging by plasmonic nanostructures: From a 1D grating to a 2D nanohole array,” Adv. Funct. Mater.20(6), 945–950 (2010).
[CrossRef]

K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express16(13), 9781–9790 (2008).
[CrossRef] [PubMed]

Tikhodeev, S. G.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B74(15), 155435 (2006).
[CrossRef]

Touahir, L.

L. Touahir, E. Galopin, R. Boukherroub, A. C. Gouget-Laemmel, J. N. Chazalviel, F. Ozanam, and S. Szunerits, “Localized surface plasmon-enhanced fluorescence spectroscopy for highly-sensitive real-time detection of DNA hybridization,” Biosens. Bioelectron.25(12), 2579–2585 (2010).
[CrossRef] [PubMed]

Van Duyne, R. P.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today15(1-2), 16–25 (2012).
[CrossRef]

Vecchi, G.

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80(20), 201401 (2009).
[CrossRef]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102(14), 146807 (2009).
[CrossRef] [PubMed]

Verdes, D.

Wang, Y.

Y. Wang, A. Brunsen, U. Jonas, J. Dostálek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem.81(23), 9625–9632 (2009).
[CrossRef] [PubMed]

Weber, W. H.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113(4), 195–287 (1984).
[CrossRef]

Wenger, J.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett.11(2), 637–644 (2011).
[CrossRef] [PubMed]

Wilson, G. M.

K. Aslan, J. Huang, G. M. Wilson, and C. D. Geddes, “Metal-enhanced fluorescence-based RNA sensing,” J. Am. Chem. Soc.128(13), 4206–4207 (2006).
[CrossRef] [PubMed]

Wong, N. Y.

M. T. Zin, K. Leong, N. Y. Wong, H. Ma, M. Sarikaya, and A. K. Y. Jen, “Surface-plasmon-enhanced fluorescence from periodic quantum dot arrays through distance control using biomolecular linkers,” Nanotechnology20(1), 015305 (2009).
[CrossRef] [PubMed]

Yang, T.

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008).
[CrossRef]

Yu, Z. F.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Zentgraf, T.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B74(15), 155435 (2006).
[CrossRef]

Zhou, W.

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol.6(7), 423–427 (2011).
[CrossRef] [PubMed]

Zin, M. T.

M. T. Zin, K. Leong, N. Y. Wong, H. Ma, M. Sarikaya, and A. K. Y. Jen, “Surface-plasmon-enhanced fluorescence from periodic quantum dot arrays through distance control using biomolecular linkers,” Nanotechnology20(1), 015305 (2009).
[CrossRef] [PubMed]

ACS Nano (1)

L. Feuz, P. Jönsson, M. P. Jonsson, and F. Höök, “Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas,” ACS Nano4(4), 2167–2177 (2010).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

X. Q. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced fluorescence microscopic imaging by plasmonic nanostructures: From a 1D grating to a 2D nanohole array,” Adv. Funct. Mater.20(6), 945–950 (2010).
[CrossRef]

Adv. Opt. Photon. (1)

Anal. Chem. (1)

Y. Wang, A. Brunsen, U. Jonas, J. Dostálek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem.81(23), 9625–9632 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008).
[CrossRef]

M. Slootsky and S. R. Forrest, “Full-wave simulation of enhanced outcoupling of organic light-emitting devices with an embedded low-index grid,” Appl. Phys. Lett.94(16), 163302 (2009).
[CrossRef]

Biointerphases (1)

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases3(3), FD12–FD22 (2008).
[CrossRef] [PubMed]

Biosens. Bioelectron. (3)

C. J. Huang, J. Dostalek, and W. Knoll, “Long range surface plasmon and hydrogel optical waveguide field-enhanced fluorescence biosensor with 3D hydrogel binding matrix: On the role of diffusion mass transfer,” Biosens. Bioelectron.26(4), 1425–1431 (2010).
[CrossRef] [PubMed]

L. Touahir, E. Galopin, R. Boukherroub, A. C. Gouget-Laemmel, J. N. Chazalviel, F. Ozanam, and S. Szunerits, “Localized surface plasmon-enhanced fluorescence spectroscopy for highly-sensitive real-time detection of DNA hybridization,” Biosens. Bioelectron.25(12), 2579–2585 (2010).
[CrossRef] [PubMed]

T. Ruckstuhl, M. Rankl, and S. Seeger, “Highly sensitive biosensing using a supercritical angle fluorescence (SAF) instrument,” Biosens. Bioelectron.18(9), 1193–1199 (2003).
[CrossRef] [PubMed]

Chem. Soc. Rev. (1)

S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev.37(5), 898–911 (2008).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

K. Aslan, J. Huang, G. M. Wilson, and C. D. Geddes, “Metal-enhanced fluorescence-based RNA sensing,” J. Am. Chem. Soc.128(13), 4206–4207 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

M. H. Chowdhury, J. Pond, S. K. Gray, and J. R. Lakowicz, “Systematic computational study of the effect of silver nanoparticle dimers on the coupled emission from nearby fluorophores,” J. Phys. Chem. C112(30), 11236–11249 (2008).
[CrossRef] [PubMed]

J. Protein Chem. (1)

T. Jøssang, J. Feder, and E. Rosenqvist, “Photon correlation spectroscopy of human IgG,” J. Protein Chem.7(2), 165–171 (1988).
[CrossRef] [PubMed]

Mater. Today (1)

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today15(1-2), 16–25 (2012).
[CrossRef]

Nano Lett. (1)

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett.11(2), 637–644 (2011).
[CrossRef] [PubMed]

Nanotechnology (1)

M. T. Zin, K. Leong, N. Y. Wong, H. Ma, M. Sarikaya, and A. K. Y. Jen, “Surface-plasmon-enhanced fluorescence from periodic quantum dot arrays through distance control using biomolecular linkers,” Nanotechnology20(1), 015305 (2009).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol.6(7), 423–427 (2011).
[CrossRef] [PubMed]

Nat. Photonics (1)

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rep. (1)

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113(4), 195–287 (1984).
[CrossRef]

Phys. Rev. B (5)

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B74(15), 155435 (2006).
[CrossRef]

N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B75(23), 235426 (2007).
[CrossRef]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80(20), 201401 (2009).
[CrossRef]

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82(15), 155447 (2010).
[CrossRef]

Phys. Rev. Lett. (2)

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102(14), 146807 (2009).
[CrossRef] [PubMed]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Q. Rev. Biophys. (1)

C. Höppener and L. Novotny, “Exploiting the light-metal interaction for biomolecular sensing and imaging,” Q. Rev. Biophys.45(2), 209–255 (2012).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of arrays of cylindrical metallic nanoparticles decorated with randomly oriented dipoles representing fluorophores (left) with two possible relations in the orientation of the absorption μ ab and emission μ em, dipoles (right).

Fig. 2
Fig. 2

(a) Schematic of cLSPs-supporting structure and reference structures including (b) dense nanoparticle array on glass substrate, (c) flat gold surface, and (d) flat glass surface. Insets show a model immunoassay with capture antibody (green molecule), captured analyte (yellow molecule), and detection antibody (blue molecule) labeled with a fluorophore (red arrow).

Fig. 3
Fig. 3

(a) Wavelength spectrum of reflectivity and electric field intensity enhancement |E/E0|2 for diffractive arrays of metallic nanoparticles. |E/E0|2 was calculated for a single point with distance f = 20 nm parallel to E 0 . Detail of spatial distribution of |E/E0|2 at (b) λab and (c) λem with indicated E 0 polarization.

Fig. 4
Fig. 4

Reflectivity spectra and electric field intensity enhancement at the distance of f = 20 nm for the dense nanoparticle arrays (a-b), flat gold surface (c-d), and BK7 glass surface (e-f). Spatial distribution of the electric field intensity is shown at wavelengths of 670 nm for (b) and 633 nm for (d) and (f).

Fig. 5
Fig. 5

(a) Example of the dependence of emission and excitation rates for the cLSP – supporting structure and a fluorophore with η0 = 0.3 (b) Distance dependence of the quantum yield η for the fluorophore intrinsic quantum yield of η0 = 0.03, 0.3 and 1. The emission and excitation dipole orientations and locations are indicated in respective insets.

Fig. 6
Fig. 6

Example of a far-field emission intensity from a fluorophore on the surface of cLSP-supporting structure. The orientation and position of emission dipole μem at the distance of f = 20 nm are clearly indicated.

Fig. 7
Fig. 7

Comparison of a cross-section of averaged angular fluorescence intensity <Pr(θ,φ = 0)> for (a) cLSP-supporting structure and reference structures including (b) dense nanoparticle particle array supporting regular LSP, (c) flat gold surface, and (d) flat glass surface. Numerical aperture (NA = 0.2) is indicated as a dotted straight line and the calculated collection efficiency CE is clearly shown in each graph.

Fig. 8
Fig. 8

Summary of the fluorescence intensity enhancement factor EF calculated for cLSP-supporting structure (fourth column) compared to a reference structures (first – third column). The data are compared for intrinsic quantum yield of η0 = 1, 0.3, and 0.03 and two mutual orientations of absorption and emission dipoles.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

γ e | E ( λ ab ) μ ab | 2 .
η= γ r / γ r 0 γ r / γ r 0 + γ abs / γ r 0 + ( 1 η 0 ) / η 0 .
CE= 0 2π 0 θ max P r ( θ,φ )sinθdφdθ / 0 2π 0 π P r ( θ,φ )sinθdφdθ .
EF= γ e ×η×CE γ e 0 × η 0 ×C E 0 .
λ= Λ i 2 + j 2 ×Re{ n b 2 n m 2 n b 2 + n m 2 },

Metrics