Abstract

Reflection-type terahertz tomography is obtained using time-domain spectroscopy. Due to different velocities of the terahertz ray in free space and inside a sample, the tomographic transverse plane is not obtained by a simple reconstruction using time index. A pre-processing method is proposed to compensate for the different velocities of the terahertz ray for tomographic reconstruction. Maximum intensity projection, averaging, and short-time Fourier transform are proposed as post-processing methods along the depth direction for the terahertz tomography. Log-scale display is also suggested for a better visualization. Some experimental results with the pre- and post-processing are demonstrated.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett.20(16), 1716–1718 (1995).
    [CrossRef] [PubMed]
  2. A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz pulsed imaging of human breast tumors,” Radiology239(2), 533–540 (2006).
    [CrossRef] [PubMed]
  3. M. M. Nazarov, A. P. Shkurinov, E. A. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Quantum Electron.38(7), 647–654 (2008).
    [CrossRef]
  4. S. J. Oh, J. Choi, I. Maeng, J. Y. Park, K. Lee, Y.-M. Huh, J.-S. Suh, S. Haam, and J.-H. Son, “Molecular imaging with terahertz waves,” Opt. Express19(5), 4009–4016 (2011).
    [CrossRef] [PubMed]
  5. D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, “T-ray tomography,” Opt. Lett.22(12), 904–906 (1997).
    [CrossRef] [PubMed]
  6. S. H. Cho, S. H. Lee, C. Nam-Gung, S. J. Oh, J. H. Son, H. Park, and C. B. Ahn, “Fast terahertz reflection tomography using block-based compressed sensing,” Opt. Express19(17), 16401–16409 (2011).
    [CrossRef] [PubMed]
  7. B.-M. Hwang, S. H. Lee, W.-T. Lim, C. B. Ahn, J.-H. Son, and H. Park, “A fast spatial-domain terahertz imaging using block-based compressed sensing,” J. Infrared, Millimeter, Terahertz Waves32(11), 1328–1336 (2011).
    [CrossRef]
  8. K. W. Kim, K.-S. Kim, H. Kim, S. H. Lee, J.-H. Park, J.-H. Han, S.-H. Seok, J. Park, Y. Choi, Y. I. Kim, J. K. Han, and J.-H. Son, “Terahertz dynamic imaging of skin drug absorption,” Opt. Express20(9), 9476–9484 (2012).
    [CrossRef] [PubMed]
  9. J. Takayanagi, H. Jinno, S. Ichino, K. Suizu, M. Yamashita, T. Ouchi, S. Kasai, H. Ohtake, H. Uchida, N. Nishizawa, and K. Kawase, “High-resolution time-of-flight terahertz tomography using a femtosecond fiber laser,” Opt. Express17(9), 7533–7555 (2009).
    [CrossRef] [PubMed]
  10. K. Iwaszczuk, H. Heiselberg, and P. U. Jepsen, “Terahertz radar cross section measurements,” Opt. Express18(25), 26399–26408 (2010).
    [CrossRef] [PubMed]
  11. B. Ferguson, S. Wang, D. Gray, D. Abbot, and X. C. Zhang, “T-ray computed tomography,” Opt. Lett.27(15), 1312–1314 (2002).
    [CrossRef] [PubMed]
  12. B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J.-P. Caumes, and E. Abraham, “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” Opt. Express19(6), 5105–5117 (2011).
    [CrossRef] [PubMed]
  13. S. Wang and X. C. Zhang, “Pulsed terahertz tomography,” J. Phys. D Appl. Phys.37(4), R1–R36 (2004).
    [CrossRef]

2012 (1)

2011 (4)

2010 (1)

2009 (1)

2008 (1)

M. M. Nazarov, A. P. Shkurinov, E. A. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Quantum Electron.38(7), 647–654 (2008).
[CrossRef]

2006 (1)

A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz pulsed imaging of human breast tumors,” Radiology239(2), 533–540 (2006).
[CrossRef] [PubMed]

2004 (1)

S. Wang and X. C. Zhang, “Pulsed terahertz tomography,” J. Phys. D Appl. Phys.37(4), R1–R36 (2004).
[CrossRef]

2002 (1)

1997 (1)

1995 (1)

Abbot, D.

Abraham, E.

Ahn, C. B.

S. H. Cho, S. H. Lee, C. Nam-Gung, S. J. Oh, J. H. Son, H. Park, and C. B. Ahn, “Fast terahertz reflection tomography using block-based compressed sensing,” Opt. Express19(17), 16401–16409 (2011).
[CrossRef] [PubMed]

B.-M. Hwang, S. H. Lee, W.-T. Lim, C. B. Ahn, J.-H. Son, and H. Park, “A fast spatial-domain terahertz imaging using block-based compressed sensing,” J. Infrared, Millimeter, Terahertz Waves32(11), 1328–1336 (2011).
[CrossRef]

Arnone, D. D.

A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz pulsed imaging of human breast tumors,” Radiology239(2), 533–540 (2006).
[CrossRef] [PubMed]

Bobrow, L.

A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz pulsed imaging of human breast tumors,” Radiology239(2), 533–540 (2006).
[CrossRef] [PubMed]

Boivin, L.

Caumes, J.-P.

Chassagne, B.

Cho, S. H.

Choi, J.

Choi, Y.

Desbarats, P.

Ferguson, B.

Fitzgerald, A. J.

A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz pulsed imaging of human breast tumors,” Radiology239(2), 533–540 (2006).
[CrossRef] [PubMed]

Gray, D.

Haam, S.

Han, J. K.

Han, J.-H.

Heiselberg, H.

Hu, B. B.

Huh, Y.-M.

Hunsche, S.

Hwang, B.-M.

B.-M. Hwang, S. H. Lee, W.-T. Lim, C. B. Ahn, J.-H. Son, and H. Park, “A fast spatial-domain terahertz imaging using block-based compressed sensing,” J. Infrared, Millimeter, Terahertz Waves32(11), 1328–1336 (2011).
[CrossRef]

Ichino, S.

Iwaszczuk, K.

Jepsen, P. U.

Jimenez-Linan, M.

A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz pulsed imaging of human breast tumors,” Radiology239(2), 533–540 (2006).
[CrossRef] [PubMed]

Jinno, H.

Kasai, S.

Kawase, K.

Kim, H.

Kim, K. W.

Kim, K.-S.

Kim, Y. I.

Kuleshov, E. A.

M. M. Nazarov, A. P. Shkurinov, E. A. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Quantum Electron.38(7), 647–654 (2008).
[CrossRef]

Lee, K.

Lee, S. H.

Lim, W.-T.

B.-M. Hwang, S. H. Lee, W.-T. Lim, C. B. Ahn, J.-H. Son, and H. Park, “A fast spatial-domain terahertz imaging using block-based compressed sensing,” J. Infrared, Millimeter, Terahertz Waves32(11), 1328–1336 (2011).
[CrossRef]

Maeng, I.

Mittleman, D. M.

Mounaix, P.

Nam-Gung, C.

Nazarov, M. M.

M. M. Nazarov, A. P. Shkurinov, E. A. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Quantum Electron.38(7), 647–654 (2008).
[CrossRef]

Nishizawa, N.

Nuss, M. C.

Oh, S. J.

Ohtake, H.

Ouchi, T.

Park, H.

B.-M. Hwang, S. H. Lee, W.-T. Lim, C. B. Ahn, J.-H. Son, and H. Park, “A fast spatial-domain terahertz imaging using block-based compressed sensing,” J. Infrared, Millimeter, Terahertz Waves32(11), 1328–1336 (2011).
[CrossRef]

S. H. Cho, S. H. Lee, C. Nam-Gung, S. J. Oh, J. H. Son, H. Park, and C. B. Ahn, “Fast terahertz reflection tomography using block-based compressed sensing,” Opt. Express19(17), 16401–16409 (2011).
[CrossRef] [PubMed]

Park, J.

Park, J. Y.

Park, J.-H.

Purushotham, A. D.

A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz pulsed imaging of human breast tumors,” Radiology239(2), 533–540 (2006).
[CrossRef] [PubMed]

Pye, R. J.

A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz pulsed imaging of human breast tumors,” Radiology239(2), 533–540 (2006).
[CrossRef] [PubMed]

Recur, B.

Salort, S.

Seok, S.-H.

Shkurinov, A. P.

M. M. Nazarov, A. P. Shkurinov, E. A. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Quantum Electron.38(7), 647–654 (2008).
[CrossRef]

Son, J. H.

Son, J.-H.

Suh, J.-S.

Suizu, K.

Takayanagi, J.

Tuchin, V. V.

M. M. Nazarov, A. P. Shkurinov, E. A. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Quantum Electron.38(7), 647–654 (2008).
[CrossRef]

Uchida, H.

Wallace, V. P.

A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz pulsed imaging of human breast tumors,” Radiology239(2), 533–540 (2006).
[CrossRef] [PubMed]

Wang, S.

S. Wang and X. C. Zhang, “Pulsed terahertz tomography,” J. Phys. D Appl. Phys.37(4), R1–R36 (2004).
[CrossRef]

B. Ferguson, S. Wang, D. Gray, D. Abbot, and X. C. Zhang, “T-ray computed tomography,” Opt. Lett.27(15), 1312–1314 (2002).
[CrossRef] [PubMed]

Yamashita, M.

Younus, A.

Zhang, X. C.

S. Wang and X. C. Zhang, “Pulsed terahertz tomography,” J. Phys. D Appl. Phys.37(4), R1–R36 (2004).
[CrossRef]

B. Ferguson, S. Wang, D. Gray, D. Abbot, and X. C. Zhang, “T-ray computed tomography,” Opt. Lett.27(15), 1312–1314 (2002).
[CrossRef] [PubMed]

J. Infrared, Millimeter, Terahertz Waves (1)

B.-M. Hwang, S. H. Lee, W.-T. Lim, C. B. Ahn, J.-H. Son, and H. Park, “A fast spatial-domain terahertz imaging using block-based compressed sensing,” J. Infrared, Millimeter, Terahertz Waves32(11), 1328–1336 (2011).
[CrossRef]

J. Phys. D Appl. Phys. (1)

S. Wang and X. C. Zhang, “Pulsed terahertz tomography,” J. Phys. D Appl. Phys.37(4), R1–R36 (2004).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Quantum Electron. (1)

M. M. Nazarov, A. P. Shkurinov, E. A. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Quantum Electron.38(7), 647–654 (2008).
[CrossRef]

Radiology (1)

A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz pulsed imaging of human breast tumors,” Radiology239(2), 533–540 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Illustration of a phantom (a), recorded wave front as a function of time in the vertical direction (refractive index, n = 2) (b), and a reconstructed plane on a time index (c). The location of the reconstructed plane and the time index are shown in (a) and (b) with red dotted lines, respectively.

Fig. 2
Fig. 2

Schematic diagram to measure the refractive index of a sample is shown.

Fig. 3
Fig. 3

Restored wave front as a function of depth after the compensation (n = 2) (a) and a reconstructed plane (b) for the location shown in (a) with a dotted line.

Fig. 4
Fig. 4

Photograph of the patched anchovy (a), dissection image (b) and positive peak image of the T-ray in log scale (c). Horizontal and vertical dotted lines are added in (c) for profile plot.

Fig. 5
Fig. 5

Cut views of the sample in horizontal (a) and vertical (b) directions.

Fig. 6
Fig. 6

The Maximum intensity projection (MIP) images of the T-ray tomography are shown in log scale before the velocity compensation.

Fig. 7
Fig. 7

The MIP images of the T-ray tomography in log scale after the velocity compensation. The resolution in the transverse plane is 250μm x 250μm, and the depth resolution is 65μm.

Fig. 8
Fig. 8

The MIP images of the T-ray tomography in linear scale.

Fig. 9
Fig. 9

Five MIP images of the T-ray tomography of the anchovy are shown with an isotropic resolution of 250 μm in both the transverse plane and the depth direction.

Fig. 10
Fig. 10

Five average images of T-ray tomography of the anchovy with an isotropic resolution of 250 μm.

Fig. 11
Fig. 11

Narrow band spectral responses (0.374THz ~1.123THz) of the T-ray tomographic images of the anchovy are shown with an isotropic resolution of 250 μm by the short-time Fourier transform.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n= v air v sample = d air t air d sample t sample
d air = d sample + d gap d sample
n t sample t air = t 2 t 1 t 3 t 1
d= l 1 Δt v air + l 2 Δt v sample = l 1 Δtn v sample + l 2 Δt v sample = l 1 nΔd+ l 2 Δd =( l 1 n+ l 2 )Δd
Δd=Δt v sample

Metrics