L. Xu, J. Jia, and Y. Matsushita, “Motion detail preserving optical flow estimation,” IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1744–1757 (2012).
[Crossref]
[PubMed]
A. V. Kanaev, “Confidence measures of optical flow estimation suitable for multi-frame super-resolution,” Proc. SPIE 8399, 839903, 839903-12 (2012).
[Crossref]
R. C. Hardie and K. J. Barnard, “Fast super-resolution using an adaptive Wiener filter with robustness to local motion,” Opt. Express 20(19), 21053–21073 (2012).
[Crossref]
[PubMed]
S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski, “A database and evaluation methodology for optical flow,” Int. J. Comput. Vis. 92(1), 1–31 (2011).
[Crossref]
T. Brox and J. Malik, “Large displacement optical flow: descriptor matching in variational motion estimation,” IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 500–513 (2011).
[Crossref]
[PubMed]
O. A. Omer and T. Tanaka, “Region-based weighted-norm with adaptive regularization for resolution enhancement,” Digit. Signal Process. 21(4), 508–516 (2011).
[Crossref]
S. P. Belekos, N. P. Galatsanos, and A. K. Katsaggelos, “Maximum a posteriori video super-resolution using a new multichannel image prior,” IEEE Trans. Image Process. 19(6), 1451–1464 (2010).
[Crossref]
[PubMed]
M. Unger, T. Pock, M. Werlberger, and H. Bischof, “A convex approach for variational super-resolution,” Lect. Notes Comput. Sci. 6376, 313–322 (2010).
[Crossref]
M. Protter, M. Elad, H. Takeda, and P. Milanfar, “Generalizing the Nonlocal-Means to Super-Resolution Reconstruction,” IEEE Trans. Image Process. 18(1), 36–51 (2009).
[Crossref]
[PubMed]
H. Takeda, P. Milanfar, M. Protter, and M. Elad, “Super-resolution without explicit subpixel motion estimation,” IEEE Trans. Image Process. 18(9), 1958–1975 (2009).
[Crossref]
[PubMed]
D. Mitzel, T. Pock, T. Schoenemann, and D. Cremers, “Video super resolution using duality based TV-L1 optical flow,” Lect. Notes Comput. Sci. 5748, 432–441 (2009).
[Crossref]
H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel, “Complementary optic flow,” Lect. Notes Comput. Sci. 5681, 207–220 (2009).
[Crossref]
O. A. Omer and T. Tanaka, “Multiframe image and video super-resolution algorithm with inaccurate motion registration errors rejection,” Proc. SPIE 6822, 682222, 682222-9 (2008).
[Crossref]
K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image restoration by sparse 3D transform-domain collaborative filtering,” Proc. SPIE 6812, 681207 (2008).
[Crossref]
K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3D transform-domain collaborative filtering,” IEEE Trans. Image Process. 16(8), 2080–2095 (2007).
[Crossref]
[PubMed]
M. K. Park, M. G. Kang, and A. K. Katsaggelos, “Regularized high-resolution image reconstruction considering inaccurate motion information,” Opt. Eng. 46(11), 117004 (2007).
[Crossref]
T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracy optical flow estimation based on a theory for warping,” Lect. Notes Comput. Sci. 3024, 25–36 (2004).
[Crossref]
D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
[Crossref]
S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: A technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[Crossref]
S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski, “A database and evaluation methodology for optical flow,” Int. J. Comput. Vis. 92(1), 1–31 (2011).
[Crossref]
S. P. Belekos, N. P. Galatsanos, and A. K. Katsaggelos, “Maximum a posteriori video super-resolution using a new multichannel image prior,” IEEE Trans. Image Process. 19(6), 1451–1464 (2010).
[Crossref]
[PubMed]
M. Unger, T. Pock, M. Werlberger, and H. Bischof, “A convex approach for variational super-resolution,” Lect. Notes Comput. Sci. 6376, 313–322 (2010).
[Crossref]
S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski, “A database and evaluation methodology for optical flow,” Int. J. Comput. Vis. 92(1), 1–31 (2011).
[Crossref]
T. Brox and J. Malik, “Large displacement optical flow: descriptor matching in variational motion estimation,” IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 500–513 (2011).
[Crossref]
[PubMed]
T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracy optical flow estimation based on a theory for warping,” Lect. Notes Comput. Sci. 3024, 25–36 (2004).
[Crossref]
H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel, “Complementary optic flow,” Lect. Notes Comput. Sci. 5681, 207–220 (2009).
[Crossref]
T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracy optical flow estimation based on a theory for warping,” Lect. Notes Comput. Sci. 3024, 25–36 (2004).
[Crossref]
D. Mitzel, T. Pock, T. Schoenemann, and D. Cremers, “Video super resolution using duality based TV-L1 optical flow,” Lect. Notes Comput. Sci. 5748, 432–441 (2009).
[Crossref]
K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image restoration by sparse 3D transform-domain collaborative filtering,” Proc. SPIE 6812, 681207 (2008).
[Crossref]
K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3D transform-domain collaborative filtering,” IEEE Trans. Image Process. 16(8), 2080–2095 (2007).
[Crossref]
[PubMed]
K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image restoration by sparse 3D transform-domain collaborative filtering,” Proc. SPIE 6812, 681207 (2008).
[Crossref]
K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3D transform-domain collaborative filtering,” IEEE Trans. Image Process. 16(8), 2080–2095 (2007).
[Crossref]
[PubMed]
H. Takeda, P. Milanfar, M. Protter, and M. Elad, “Super-resolution without explicit subpixel motion estimation,” IEEE Trans. Image Process. 18(9), 1958–1975 (2009).
[Crossref]
[PubMed]
M. Protter, M. Elad, H. Takeda, and P. Milanfar, “Generalizing the Nonlocal-Means to Super-Resolution Reconstruction,” IEEE Trans. Image Process. 18(1), 36–51 (2009).
[Crossref]
[PubMed]
K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image restoration by sparse 3D transform-domain collaborative filtering,” Proc. SPIE 6812, 681207 (2008).
[Crossref]
K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3D transform-domain collaborative filtering,” IEEE Trans. Image Process. 16(8), 2080–2095 (2007).
[Crossref]
[PubMed]
S. P. Belekos, N. P. Galatsanos, and A. K. Katsaggelos, “Maximum a posteriori video super-resolution using a new multichannel image prior,” IEEE Trans. Image Process. 19(6), 1451–1464 (2010).
[Crossref]
[PubMed]
L. Xu, J. Jia, and Y. Matsushita, “Motion detail preserving optical flow estimation,” IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1744–1757 (2012).
[Crossref]
[PubMed]
A. V. Kanaev, “Confidence measures of optical flow estimation suitable for multi-frame super-resolution,” Proc. SPIE 8399, 839903, 839903-12 (2012).
[Crossref]
M. K. Park, M. G. Kang, and A. K. Katsaggelos, “Regularized high-resolution image reconstruction considering inaccurate motion information,” Opt. Eng. 46(11), 117004 (2007).
[Crossref]
S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: A technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[Crossref]
K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image restoration by sparse 3D transform-domain collaborative filtering,” Proc. SPIE 6812, 681207 (2008).
[Crossref]
K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3D transform-domain collaborative filtering,” IEEE Trans. Image Process. 16(8), 2080–2095 (2007).
[Crossref]
[PubMed]
S. P. Belekos, N. P. Galatsanos, and A. K. Katsaggelos, “Maximum a posteriori video super-resolution using a new multichannel image prior,” IEEE Trans. Image Process. 19(6), 1451–1464 (2010).
[Crossref]
[PubMed]
M. K. Park, M. G. Kang, and A. K. Katsaggelos, “Regularized high-resolution image reconstruction considering inaccurate motion information,” Opt. Eng. 46(11), 117004 (2007).
[Crossref]
S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski, “A database and evaluation methodology for optical flow,” Int. J. Comput. Vis. 92(1), 1–31 (2011).
[Crossref]
D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
[Crossref]
T. Brox and J. Malik, “Large displacement optical flow: descriptor matching in variational motion estimation,” IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 500–513 (2011).
[Crossref]
[PubMed]
L. Xu, J. Jia, and Y. Matsushita, “Motion detail preserving optical flow estimation,” IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1744–1757 (2012).
[Crossref]
[PubMed]
M. Protter, M. Elad, H. Takeda, and P. Milanfar, “Generalizing the Nonlocal-Means to Super-Resolution Reconstruction,” IEEE Trans. Image Process. 18(1), 36–51 (2009).
[Crossref]
[PubMed]
H. Takeda, P. Milanfar, M. Protter, and M. Elad, “Super-resolution without explicit subpixel motion estimation,” IEEE Trans. Image Process. 18(9), 1958–1975 (2009).
[Crossref]
[PubMed]
D. Mitzel, T. Pock, T. Schoenemann, and D. Cremers, “Video super resolution using duality based TV-L1 optical flow,” Lect. Notes Comput. Sci. 5748, 432–441 (2009).
[Crossref]
O. A. Omer and T. Tanaka, “Region-based weighted-norm with adaptive regularization for resolution enhancement,” Digit. Signal Process. 21(4), 508–516 (2011).
[Crossref]
O. A. Omer and T. Tanaka, “Multiframe image and video super-resolution algorithm with inaccurate motion registration errors rejection,” Proc. SPIE 6822, 682222, 682222-9 (2008).
[Crossref]
T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracy optical flow estimation based on a theory for warping,” Lect. Notes Comput. Sci. 3024, 25–36 (2004).
[Crossref]
M. K. Park, M. G. Kang, and A. K. Katsaggelos, “Regularized high-resolution image reconstruction considering inaccurate motion information,” Opt. Eng. 46(11), 117004 (2007).
[Crossref]
S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: A technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[Crossref]
S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: A technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[Crossref]
M. Unger, T. Pock, M. Werlberger, and H. Bischof, “A convex approach for variational super-resolution,” Lect. Notes Comput. Sci. 6376, 313–322 (2010).
[Crossref]
D. Mitzel, T. Pock, T. Schoenemann, and D. Cremers, “Video super resolution using duality based TV-L1 optical flow,” Lect. Notes Comput. Sci. 5748, 432–441 (2009).
[Crossref]
M. Protter, M. Elad, H. Takeda, and P. Milanfar, “Generalizing the Nonlocal-Means to Super-Resolution Reconstruction,” IEEE Trans. Image Process. 18(1), 36–51 (2009).
[Crossref]
[PubMed]
H. Takeda, P. Milanfar, M. Protter, and M. Elad, “Super-resolution without explicit subpixel motion estimation,” IEEE Trans. Image Process. 18(9), 1958–1975 (2009).
[Crossref]
[PubMed]
H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel, “Complementary optic flow,” Lect. Notes Comput. Sci. 5681, 207–220 (2009).
[Crossref]
S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski, “A database and evaluation methodology for optical flow,” Int. J. Comput. Vis. 92(1), 1–31 (2011).
[Crossref]
H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel, “Complementary optic flow,” Lect. Notes Comput. Sci. 5681, 207–220 (2009).
[Crossref]
S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski, “A database and evaluation methodology for optical flow,” Int. J. Comput. Vis. 92(1), 1–31 (2011).
[Crossref]
D. Mitzel, T. Pock, T. Schoenemann, and D. Cremers, “Video super resolution using duality based TV-L1 optical flow,” Lect. Notes Comput. Sci. 5748, 432–441 (2009).
[Crossref]
H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel, “Complementary optic flow,” Lect. Notes Comput. Sci. 5681, 207–220 (2009).
[Crossref]
S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski, “A database and evaluation methodology for optical flow,” Int. J. Comput. Vis. 92(1), 1–31 (2011).
[Crossref]
M. Protter, M. Elad, H. Takeda, and P. Milanfar, “Generalizing the Nonlocal-Means to Super-Resolution Reconstruction,” IEEE Trans. Image Process. 18(1), 36–51 (2009).
[Crossref]
[PubMed]
H. Takeda, P. Milanfar, M. Protter, and M. Elad, “Super-resolution without explicit subpixel motion estimation,” IEEE Trans. Image Process. 18(9), 1958–1975 (2009).
[Crossref]
[PubMed]
O. A. Omer and T. Tanaka, “Region-based weighted-norm with adaptive regularization for resolution enhancement,” Digit. Signal Process. 21(4), 508–516 (2011).
[Crossref]
O. A. Omer and T. Tanaka, “Multiframe image and video super-resolution algorithm with inaccurate motion registration errors rejection,” Proc. SPIE 6822, 682222, 682222-9 (2008).
[Crossref]
M. Unger, T. Pock, M. Werlberger, and H. Bischof, “A convex approach for variational super-resolution,” Lect. Notes Comput. Sci. 6376, 313–322 (2010).
[Crossref]
H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel, “Complementary optic flow,” Lect. Notes Comput. Sci. 5681, 207–220 (2009).
[Crossref]
H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel, “Complementary optic flow,” Lect. Notes Comput. Sci. 5681, 207–220 (2009).
[Crossref]
T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracy optical flow estimation based on a theory for warping,” Lect. Notes Comput. Sci. 3024, 25–36 (2004).
[Crossref]
M. Unger, T. Pock, M. Werlberger, and H. Bischof, “A convex approach for variational super-resolution,” Lect. Notes Comput. Sci. 6376, 313–322 (2010).
[Crossref]
L. Xu, J. Jia, and Y. Matsushita, “Motion detail preserving optical flow estimation,” IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1744–1757 (2012).
[Crossref]
[PubMed]
H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel, “Complementary optic flow,” Lect. Notes Comput. Sci. 5681, 207–220 (2009).
[Crossref]
O. A. Omer and T. Tanaka, “Region-based weighted-norm with adaptive regularization for resolution enhancement,” Digit. Signal Process. 21(4), 508–516 (2011).
[Crossref]
S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: A technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[Crossref]
S. P. Belekos, N. P. Galatsanos, and A. K. Katsaggelos, “Maximum a posteriori video super-resolution using a new multichannel image prior,” IEEE Trans. Image Process. 19(6), 1451–1464 (2010).
[Crossref]
[PubMed]
M. Protter, M. Elad, H. Takeda, and P. Milanfar, “Generalizing the Nonlocal-Means to Super-Resolution Reconstruction,” IEEE Trans. Image Process. 18(1), 36–51 (2009).
[Crossref]
[PubMed]
H. Takeda, P. Milanfar, M. Protter, and M. Elad, “Super-resolution without explicit subpixel motion estimation,” IEEE Trans. Image Process. 18(9), 1958–1975 (2009).
[Crossref]
[PubMed]
K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3D transform-domain collaborative filtering,” IEEE Trans. Image Process. 16(8), 2080–2095 (2007).
[Crossref]
[PubMed]
L. Xu, J. Jia, and Y. Matsushita, “Motion detail preserving optical flow estimation,” IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1744–1757 (2012).
[Crossref]
[PubMed]
T. Brox and J. Malik, “Large displacement optical flow: descriptor matching in variational motion estimation,” IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 500–513 (2011).
[Crossref]
[PubMed]
D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
[Crossref]
S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski, “A database and evaluation methodology for optical flow,” Int. J. Comput. Vis. 92(1), 1–31 (2011).
[Crossref]
T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracy optical flow estimation based on a theory for warping,” Lect. Notes Comput. Sci. 3024, 25–36 (2004).
[Crossref]
H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel, “Complementary optic flow,” Lect. Notes Comput. Sci. 5681, 207–220 (2009).
[Crossref]
D. Mitzel, T. Pock, T. Schoenemann, and D. Cremers, “Video super resolution using duality based TV-L1 optical flow,” Lect. Notes Comput. Sci. 5748, 432–441 (2009).
[Crossref]
M. Unger, T. Pock, M. Werlberger, and H. Bischof, “A convex approach for variational super-resolution,” Lect. Notes Comput. Sci. 6376, 313–322 (2010).
[Crossref]
M. K. Park, M. G. Kang, and A. K. Katsaggelos, “Regularized high-resolution image reconstruction considering inaccurate motion information,” Opt. Eng. 46(11), 117004 (2007).
[Crossref]
K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image restoration by sparse 3D transform-domain collaborative filtering,” Proc. SPIE 6812, 681207 (2008).
[Crossref]
O. A. Omer and T. Tanaka, “Multiframe image and video super-resolution algorithm with inaccurate motion registration errors rejection,” Proc. SPIE 6822, 682222, 682222-9 (2008).
[Crossref]
A. V. Kanaev, “Confidence measures of optical flow estimation suitable for multi-frame super-resolution,” Proc. SPIE 8399, 839903, 839903-12 (2012).
[Crossref]
A. Bruhn and J. Weickert, “A confidence measure for variational optic flow methods,” in Geometric Properties for Incomplete Data, (Springer-Verlag, 2006).
H. Zimmer, A. Bruhn, and J. Weickert, “Freehand HDR Imaging of Moving Scenes with Simultaneous Resolution Enhancement,” in Proceeding of Eurographics, Llandudno, UK, 11–15 April, 2011.
[Crossref]
D. Sun, S. Roth, and M. J. Black, “Secrets of optical flow estimation and their principles,” in Proceeding of Computer Vision and Pattern Recognition Conference (IEEE, 2010), pp. 2432–2439.
[Crossref]
C. Liu and D. Sun, “A Bayesian approach to adaptive video super resolution,” in Proceeding of Computer Vision and Pattern Recognition Conference (IEEE, 2011), pp. 209–216.
[Crossref]
A. Danielyan, A. Foi, V. Katkovnik, and K. Egiazarian, “Image and video super-resolution via spatially adaptive block-matching filtering,” in Proceedings of Int. Workshop on Local and Non-Local Approx. in Image Processing, Lausanne, Switzerland, 23–24 August, 2008.